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Abstract

In the study of finite groups a sort of duality has been observed between conjugacy

classes and irreducible characters, but the connection is quite murky. Abelian groups

are special in that, as Z-modules, they have true duals. They also have the property

that the transpose of their character tables is still a character table. We generalize this

by allowing rows to be multiplied by constants before and after transposition. A group

whose character table is still a character table after this generalized transposition is

called transposable. Transposable groups generalize slightly the notion of self-dual

groups of Okuyama and Hanaki [Oku13; HO97; Han97; Han96a; Han96b]. We derive

some properties of transposable groups and give some examples. We also study the

related property of having square conjugacy class sizes and show that no non-abelian

simple group has square class sizes.
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Chapter 1

Duality of Irreducible Characters
and Conjugacy Classes

1.1 Introduction

Since much of this dissertation has been motivated by the apparent duality between

irreducible characters and conjugacy classes, we begin with a brief introduction to

the concept of duality and why it is interesting. We summarize some results illustrating

the duality (and lack thereof) between irreducible characters and conjugacy classes, and

give a few brief results dual to some in the literature. The bulk of the dissertation is

then devoted to the exploration of what happens when we require this “quasi-”duality

to become closer to a real duality. That is, when the character table of one group is the

transpose of the character table of another group.

In this dissertation all groups are finite unless otherwise noted. For the most part,

our notation is standard, generally following Isaacs [Isa76]. We shall, at various times,

denote the conjugacy class of x in G by xG or Kx. We usually assume that a character
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table has been rearranged so that the first row consists of ones and the first column of

positive integers in ascending order. In other words, the first row corresponds to the

trivial character, and the first column the trivial conjugacy class. We shall often say class

to mean conjugacy class, and occasionally simply use character to mean irreducible

character if it’s clear from context.

Duality is a concept that permeates mathematics, nevertheless, it has no formal

definition. In general terms it means that two structures are similar to each other so

that statements and theorems about one can be translated into the language of the other

and still be true. An example is plane projective geometry, in which the concepts of

point and line can be interchanged and theorems (once properly translated) still hold.

The concept of duality often comes with an interchanging of “large” and “small.”

The dual of a poset is a poset in which the order is reversed. Reversal of the order

relation is often known as a Galois correspondence because, in Galois theory, subfields

correspond to subgroups of the Galois group in such a way that the intersection (meet)

of subfields corresponds to the generated subgroup (join). The dual of a length n

linear code with dimension k has dimension n− k (and length n) so that dimension is

interchanged in this case.

Another important property which is often true is that the bidual (dual of the dual)

of an object is isomorphic to the original object. This isn’t true in general, for example

an infinite dimensional vector space is not isomorphic to its bidual. However, it is true

for duality of finite dimensional vector spaces, posets, modules, and the platonic solids

to name a few.

It is also useful to see an example of something which is not dual. Every platonic

solid is dual to the solid formed by placing a point in the center of every face and taking

the convex hull. This leads to an interchange of faces and corners (2-dimensional and

0-dimensional respectively). Given this example, and the example of plane projective
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geometry, one might presume that interchanging the vertices and edges of an undirected

graph would result in a duality. However, the resulting graph, called the line graph, is

usually not considered a dual because it fails to have many of the desirable properties

of duality. For example, the bidual is only isomorphic to the original in the case of

cyclic graphs. Most importantly, theorems about graphs do not translate nicely into

theorems about line graphs.

Thus, the ability to dualize statements (and operations) is extremely important.

Open and closed sets in topology are dual under the operation of complementation,

and union and intersection are dual operations. This means that the complement of

an open set is a closed set. Likewise, the definition that the union of open sets is open

translates into the equivalent definition that the intersection of closed sets is closed.

Clearly duality is a useful concept, since when stating or proving theorems one can

choose the more convenient form. Many times this is more than just notational, allowing

completely new techniques to be of use. In algebraic geometry the duality between

varieties (a geometric concept) and ideals of polynomial rings (an algebraic concept)

allows techniques from both fields to be used and has proven very fruitful.

One common method of constructing the dual of some structure X is to use the set

X∗ = Hom(X, Y) where Y is some fixed set. If X∗ can be given a similar structure to X,

this can lead to a duality. Usually the privileged set Y must be chosen carefully. This

type of duality is used with vector spaces, for example. If X is a k-vector space, then

Hom(X, k) has the structure of a k-vector space as well. Moreover, there is an injective

“evaluation” map sending x ∈ X to ( f 7→ f (x)) ∈ X∗∗ (where f ∈ Hom(X, k)). This

map is an isomorphism if and only if X is finite dimensional, though the duality is still

useful in general.

Compact abelian groups (including all finite abelian groups) are handled in the same

way. Define the characters of an abelian group G to be the continuous homomorphisms
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from G into the circle group (the complex numbers of magnitude 1). The characters then

form a group called the dual group Ĝ, and the bidual ˆ̂G is canonically isomorphic to G.

This is known as the Pontryagin duality theorem. If G is finite then G ∼= Ĝ, though not

in a canonical way.

If we wish to find the dual of an arbitrary finite group G we run into a problem:

the construction above only gives information about the abelianization of G. To over-

come this problem we can try choosing a different object for Y. Representation theory

studies the case when Y is the general linear group GLn(k) for some field k. The

homomorphisms are called (linear) representations of G. The simplest case is when

k is algebraically closed of characteristic 0 (e.g., k = C). In this case every represen-

tation decomposes into a direct product of irreducible representations. The traces of

these representations, called characters, are maps from G into k and determine the

representations when the characteristic of k is 0. Since these characters are maps from

G → k they share many properties with the characters of abelian groups. (They are

not homomorphisms, however, and so the analogy is not perfect.) In particular, they

are constant on conjugacy classes, and so (except in the abelian case) cannot be used

to separate elements. This prohibits the notion of a bidual with an injective evaluation

map.

It is well known that the number of irreducible representations (equivalently char-

acters) is equal to the number of conjugacy classes. Thus we might hope for a duality

between conjugacy classes and irreducible representations (characters). In some sense,

this duality does exist. First, we should note that conjugacy class sums form a basis for

the center of the group algebra CG, and that the irreducible characters form a basis for

Char(G), the algebra of complex valued class functions on G. We can associate to every
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irreducible character χ, a primitive central idempotent eχ of the group algebra by

eχ =
χ(1)
|G| ∑

g∈G
χ(g−1)g. (1.1)

This gives another basis for the center of the group algebra which is different from the

first.

In fact, this is true in the more general setting of table algebras. Table algebras are

generalizations of character tables and capture many of their elementary properties.

They come in a dizzying number of definitions and names from C-algebra, to hyper-

group, to generalized fusion algebra, and back. Some of the names and definitions

used are explained in the survey paper [Bla09]. Kawada duality states that every table

algebra with basis has a dual basis defined by an equation similar to (1.1).

Given the power of duality in the rest of mathematics, it seems prudent to investigate

the quasi-duality between conjugacy classes and irreducible characters. Indeed, it has

been extensively studied by many people. We are unaware, however, of attempts to use

the techniques employed in this dissertation for this purpose.

1.2 Duality of Character Degrees and
Conjugacy Class Sizes

Irreducible characters and conjugacy classes of finite groups are “dual” in many ways.

The most well known is that a group G has the same number of conjugacy classes as

irreducible characters. The second similarity encountered by students is that they satisfy

similar orthogonality relations. Namely, if we let Rep(G) indicate a set of conjugacy
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class representatives and δi,j the Kronecker delta function, then

δχ,ϕ =
1
|G| ∑

g∈Rep(G)

∣∣∣gG
∣∣∣χ(g)ϕ(g),

δgG, hG =
1
|G| ∑

χ∈Irr(G)

∣∣∣gG
∣∣∣χ(g)χ(h),

for all χ, ϕ ∈ Irr(G) and g, h ∈ G. Thus, at least for these equations, it might be natural

to work with the character table multiplied by the square root of the conjugacy class

sizes (and perhaps divided by the square root of the order of G). Later on, we shall

see more evidence that this is, in fact, a better object for highlighting the duality of

irreducible characters and conjugacy classes.

In this section we further explore this apparent duality by summarizing some results

from the literature. Many of these results involve the multisets of character degrees

cd(G) = {χ(1) | χ ∈ Irr(G)} and conjugacy class sizes ccs(G) = {|Ki| | Ki ∈ Cl(G)} .

Here, and throughout the rest of this dissertation, Cl(G) =
{

gG
∣∣ g ∈ G

}
is the set of

conjugacy classes.

This section is by no means an exhaustive survey of the interesting results in the

area. Rather, we focus on theorems which show the similarities or differences between

the irreducible characters and conjugacy classes. For further information see the survey

articles [CC11], [CH07] and [Lew08]. We shall avoid introducing notation unnecessarily.

A theorem of Brauer [Isa76, Theorem 6.32] states that if a group Γ acts compatibly on

Irr(G) and Cl(G), then for each α ∈ Γ, the number of fixed irreducible characters equals

the number of fixed conjugacy classes. Here compatibly means that χ(g) = χα(gα) for

all α ∈ Γ, χ ∈ Irr(G), g ∈ G, and gα ∈ Kα
g. Thus, orbit theorems can often be applied

to both conjugacy classes and irreducible characters, which helps explain some of the

similarities between the two. By showing that solvable groups have “large” orbits on
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completely reducible faithful G-modules, Yang improved earlier results of Moretó and

Wolf [MW04]. Denote by Fi(G) the ith term of the upper Fitting series, i.e., F1(G) = F(G)

and Fi(G)/Fi−1(G) = F(G/Fi−1(G)).

Theorem 1.2.1 ([Yan09]). If G is solvable, then |G : F8(G)| divides the size of some conjugacy

class. Also, |G : F8(G)| divides χ(1) for some χ ∈ Irr(G).

We now examine what happens when every conjugacy class of a group has distinct

sizes, or when every irreducible character has a different degree. The concepts of

distinct sizes and distinct nontrivial sizes are equivalent for conjugacy classes, but they

are separate for character degrees.

Theorem 1.2.2 ([KLT95; Zha94]). Suppose that distinct noncentral classes of G have distinct

sizes. Then Z(G) = 1, and if G is solvable, G ∼= S3. It is still open for non-solvable groups and

is known as the S3-conjecture.

Theorem 1.2.3 ([BCH92]). There are no nontrivial groups whose character degrees are all

distinct.

Theorem 1.2.4 ([BCH92]). Suppose that χ(1) 6= ϕ(1) for all nonlinear characters χ 6= ϕ.

Then G is one of

1. An extraspecial 2-group of order 22m+1, with a unique irreducible character of degree 2m.

2. A Frobenius group of order pn(pn − 1) for some p, with an elementary abelian kernel G′

of order pn, a cyclic complement and a unique nonlinear character of degree pn − 1.

3. The Frobenius group of order 72, with a complement isomorphic to the quaternion group

of order 8 and two nonlinear irreducible characters of degrees 2 and 8.

As shown in [Chi04], this is the same set of groups that satisfy the condition of

all nonlinear characters having distinct 0-sets; i.e., they vanish on different conjugacy

7



classes. As a dual to characters having distinct 0-sets, Chillag gave in the same paper a

classification of groups whose noncentral conjugacy classes have distinct vanishing sets.

Theorem 1.2.5. If every two distinct noncentral conjugacy classes have different sets of irre-

ducible characters which vanish on them, then G is abelian or G ∼= S3.

If the S3-conjecture is true, the conditions of having distinct vanishing sets and

distinct sizes are equivalent for both character degrees and conjugacy class sizes.

Since the complex conjugate of characters (conjugacy classes) will have the same

degree (size), odd order groups cannot have distinct character degrees (class sizes). In

order to extend the notion to odd order groups, it is natural to require that they have

exactly two irreducible characters (conjugacy classes) of each degree (size).

Theorem 1.2.6 ([HS06]). Let G be a non-abelian odd order group. Then G has exactly two

classes of each size if and only if G is the non-abelian group of order 21.

Strikingly, the same result is true for irreducible characters.

Theorem 1.2.7 ([CH07]). Let G be a non-abelian odd order group. Then G has exactly two

non-principal characters of each degree if and only if G is the non-abelian group of order 21.

But again, if we relax the condition to nonlinear characters, a larger class of groups

arises.

Theorem 1.2.8 ([CH08]). Let G be a non-abelian odd order group. Then G has exactly two

nonlinear characters of each degree if and only if G is one of the following groups.

• An extraspecial 3-group with exactly 2 nonlinear irreducible characters of degree
√
|G|/3.

• A Frobenius group of order pn(pn − 1)/2 for some odd prime p and an abelian kernel G′

of order pn, and exactly 2 nonlinear irreducible characters of degree (pn − 1)/2.
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Chillag studied the zeros of characters and found two dual theorems. He even notes

that the proofs are “dual.”

Theorem 1.2.9 ([Chi99]). If G is a group with G 6= G′ 6= G′′, then G has a conjugacy class K

with |G||K| ≤ 2m where m is the maximal number of zeros in a row of the character table of G.

Theorem 1.2.10 ([Chi99]). If G is a group with 1 6= Z(G) 6= Z2(G), then G has an irreducible

character χ with |G|
|χ(1)2| ≤ 2m where m is the maximal number of zeros in a column of the

character table of G.

Much can be said about a group based on the divisors of its class sizes and character

degrees.

Theorem 1.2.11 ([Tho64]). Suppose that p | χ(1) for all nonlinear irreducible characters χ of

G, then G has a normal p-complement.

A good corresponding theorem for conjugacy classes is unknown. The two obvious

candidates, having a normal p-complement or normal Sylow p-subgroup, are not true.

For example consider SL2(3), which has conjugacy class sizes of {1, 4, 6} but not a

normal 2-complement. The dihedral group of order 24 has conjugacy class sizes of

{1, 2, 6}, but its Sylow 2-subgroup is not normal. The following is one theorem that

does apply under these conditions.

Theorem 1.2.12. If p | |K| for all noncentral conjugacy classes K, then CG(P) ≤ Z(G) for P

a Sylow p-subgroup of G.

Another situation in which more is known about character degrees than class sizes

is given below. In fact, nothing is known about class sizes in this case.

Theorem 1.2.13 ([Tho70]). If the character degrees of G are linearly ordered by divisibility,

then G has a Sylow series.
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The opposite situation occurs when p doesn’t divide the orders.

Theorem 1.2.14 ([Mic86; Itô51]). G has a normal abelian Sylow p-subgroup if and only if

p - χ(1) for all χ ∈ Irr(G).

Theorem 1.2.15 ([Cam72]). The Sylow p-subgroup of G is an abelian direct factor if and only

if p - |K| for all conjugacy classes K of G.

By relaxing the restriction to allow p to divide at most 1 character degree or conjugacy

class size, we obtain the following theorems.

Theorem 1.2.16 ([Isa+09]). Suppose p | χ(1) for at most one χ ∈ Irr(G). Let P be a Sylow

p-subgroup of G, and U = Op(G). If P is not normal in G (i.e., U < P), then

1. U is abelian.

2. P/U is abelian and is cyclic if G is p-solvable.

3. |P/U| = χ(1)p.

4. P/U is a trivial intersection set in G/U.

Theorem 1.2.17 ([DMN09]). Let G be a group with exactly one conjugacy class whose size is

divisible by a prime p. Then one of the following holds

1. G is a Frobenius group with Frobenius complement of order 2 and Frobenius kernel of

order divisible by p.

2. G is a doubly transitive Frobenius group whose Frobenius complement has a nontrivial

central Sylow p-subgroup.

3. p is odd, G = KH where K = F(G) is a q-group for some prime q. Also H = CG(P) for a

Sylow p-subgroup P of G, K ∩ H = Z(K) and G/Z(K) is a doubly transitive Frobenius

group.

10



Several other similar results are summarized in [CH07]. In fact, we can say something

about the sizes of the hypercenter and nilpotent residual if we retain information about

the number of times each class size or character degree appears.

Theorem 1.2.18 ([CH93]). If G is a group then

|G/Op(G)| =
(

∑
χ∈Irr(G)
χ(1)=pa

χ(1)2
)

p
.

The index of the nilpotent residual is the product, for all primes p, of such indices.

Theorem 1.2.19 ([CHM92]). Let G be a group and Cls(G) the set of conjugacy classes. The

order of the hypercenter Z∞(G), can be computed from the prime power class sizes according to

|Z∞(G)|p =
(

∑
K∈Cls(G)
|K|=pa

|K|
)

p
.

As we have seen previously, restrictions on conjugacy class sizes often leads to

stronger restrictions on groups structure. The following is another example of this.

Theorem 1.2.20 ([CH90]). If no conjugacy class size is divisible by 4, then G is solvable.

Theorem 1.2.21 ([Lew07]). If no character degree is divisible by 4, then G is solvable or

G ∼= A7 × S where S is solvable and 2 does not divide any character degree of S.

Theorem 1.2.22 ([CW99; Li99]). If all conjugacy class sizes are square-free then G is super-

solvable, the derived length is bounded by 3, both G/F(G) and G′ are cyclic groups with

square-free orders, and the nilpotency class of F(G) is at most 2.

Theorem 1.2.23 ([HM85]). Let all character degrees of G be square-free. If G is solvable it

has derived length at most 4 and Fitting height no more than 3. If G is not solvable, then

G ∼= A7 × S where S is solvable.
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The following illustrate another difference between the theories.

Theorem 1.2.24 ([BF06; BF08a; BF08b; BF11]). Suppose a group G has conjugacy class sizes

{1, n, m, mn} with gcd(m, n) = 1. Then G is nilpotent and m, n are prime powers.

Theorem 1.2.25 ([Lew98, Example 8.1]). Given any coprime integers m, n, there exists a

directly indecomposable group G with character degrees {1, n, m, mn}.

Given the previous theorem, the following may be slightly surprising.

Theorem 1.2.26 ([Lew98]). If G has character degrees of {1, p, q, r, pq, pr} for distinct primes

p, q, and r, then G = A× B where cd(A) = {1, p} and cd(B) = {1, q, r}.

Stronger results for conjugacy classes, including the following, are found in [CC00].

Theorem 1.2.27 ([CC00]). Suppose G has conjugacy class sizes of

{1, pa1
1 , . . . , pas

s } × {1, qb1
1 , . . . , qbr

r }

for distinct primes pi, qj. Then G = A× B where ccs(A) = {1, pa1
1 , . . . , pas

s } and ccs(B) =

{1, qb1
1 , . . . , qbr

r }.

Despite all the similarities, the following theorem illustrates just how different

character degrees and conjugate class sizes can be.

Theorem 1.2.28 ([FM01]). Given any two integers r and s greater than 1, there exists a p-group

of nilpotency class 2 such that the number of distinct character degrees is r and the number of

distinct class sizes is s.

One final interesting comparison is in the multiplication of conjugacy classes (char-

acters) with coprime sizes (degrees). It is easy to prove (see Lemma 3.4.1 and Corol-

lary 3.4.2) the following lemma about conjugacy classes.
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Lemma 1.2.29. If x, y ∈ G are elements such that (
∣∣xG
∣∣, ∣∣yG

∣∣) = 1, then xGyG = (xy)G. In

other words products of conjugacy classes of coprime size are “irreducible.”

In [Gaj79], Gajendragadkar studies the case of π-separable groups. There he proves

that χϕ is irreducible for two characters χ and ϕ if they are π-special and π′-special

respectively (which implies coprime degrees). Being π-special is more restrictive than

just having coprime degrees. In general, products of characters with coprime degrees are

not irreducible, even for π-separable groups, as the symmetric group S4 demonstrates.

In the other direction, Adan-Bante was motivated in [Ada06] by a result about

multiplication of characters to find the corresponding result for conjugacy classes. The

duality here is probably the least straightforward of any we present.

Theorem 1.2.30 ([ALM04]). Suppose G is a finite nilpotent group and χ, ϕ are faithful

irreducible characters such that χϕ is a multiple of an irreducible. Then χ and ϕ both vanish

outside the center of G.

Theorem 1.2.31 ([Ada06]). Let G be a finite group, aG and bG be conjugacy classes of G such

that CG(a) = CG(b). Then aGbG = (ab)G if and only if [ab, G] = [a, G] = [b, G] and [ab, G]

is a normal subgroup of G.

1.2.1 Graphs

To better understand the arithmetical properties of the character degrees and conjugacy

class sizes, two graphs have been studied. The notation for these graphs is not standard

across the different papers, so care must be taken when reading the literature. Let X

denote a set of positive integers, and π(X) the set of divisors of elements of X. The

prime vertex graph, denoted ∆(X), has as vertices the set π(X). Two primes p and q

are connected in ∆(X) if pq divides some integer x ∈ X. The second graph, which we
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Figure 1.1: B(X) for X = {2, 4, 6, 12}

denote Γ(X), is called the common divisor graph and has as vertices all elements of X

except 1. Two vertices a, b ∈ Γ(X) are connected if gcd(a, b) > 1.

Given a graph G, it is not difficult to construct a set X so that ∆(X) or Γ(X) is

isomorphic to G. Once X is fixed, however, the structure of the two graphs is related.

For example, the number of connected components is the same between ∆(X) and Γ(X).

Moreover, the diameter of the two graphs differs by at most 1. These facts are easily

seen by considering the bipartite graph B(X), introduced in [IP10], whose vertex set is

the disjoint union of the vertices of ∆(X) and Γ(X). There is an edge between p ∈ π(X)

and x ∈ X if p | x. By “collapsing” the vertices of ∆(X), Γ(X) can be recovered and vice

versa.

We shall often write ∆(ccs) and ∆(cd) instead of ∆(ccs(G)) and ∆(cd(G)) when

the group G is understood, and we use the notation n(Γ) to indicate the number of

connected components of a graph Γ. It should also be noted that some authors define

the graphs slightly differently, e.g., by creating a vertex for each noncentral conjugacy

class instead of one for each distinct size. However, this does not change the essence of

any of the theorems we quote.

In general, all of the graphs studied have “many” edges. For example, if G has a

non-abelian p-group quotient for some prime p, then p will be adjacent to every other
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prime in ∆(cd). We start by considering ∆(cd) and ∆(ccs).

Theorem 1.2.32 ([Pál98]). If G is a solvable group, then given any 3 primes in ∆(cd(G)) there

will be an edge connecting 2 of them.

Theorem 1.2.33 ([Dol06]). For any 3 primes in ∆(ccs), there will be an edge connecting 2 of

them.

Corollary 1.2.34 ([Man85; MWW89]). The graph ∆(cd) for solvable groups, or ∆(ccs) for

all groups, has at most 2 connected components. If it is connected, then the diameter is no more

than 3, otherwise each connected component is a complete graph.

There are examples of solvable groups for which ∆(cd) have diameter 3, and

examples for ∆(ccs) as well. The non-solvable case is predictably more complicated.

Theorem 1.2.35 ([LW07; LW05; LW03; MSW88]). If G is a non-solvable group, then ∆(cd)

can have up to three connected components. If ∆(cd) is connected, then its diameter is at most

3. Otherwise one connected component is an isolated vertex. If n(∆(cd)) = 2, it is possible that

the other component has diameter 2, rather than being complete as in the solvable case.

The cases where ∆(cd) is disconnected were classified in [Lew01] for solvable groups,

and in [LW03; LW05] for non-solvable groups. The only groups with disconnected ∆(ccs)

are quasi-Frobenius with abelian kernel and complement as noted in Theorem 1.2.40.

Theorem 1.2.36 ([Itô53; Dol95]). If p and q are not connected in ∆(ccs(G)), then G is either

p-nilpotent or q-nilpotent. If G is solvable, then the Sylow p-subgroups and Sylow q-subgroups

are abelian.

Theorem 1.2.37 ([CD09]). For a given group G, ∆(cd(G)) is a subgraph of ∆(ccs(G)).

We now consider the common divisor graphs.

Theorem 1.2.38 ([Lew08]). The graph Γ(cd) has at most 3 connected components.
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1. If n(Γ(cd)) = 3, then G is non-solvable and each component is an isolated vertex.

2. If n(Γ(cd)) = 2 and G is non-solvable, then one component is an isolated vertex and the

other has diameter at most 2.

3. If n(Γ(cd)) = 2 and G is solvable, then one component is complete and the other has

diameter at most 2.

Theorem 1.2.39 ([McV04b; McV04a]). If Γ(cd) is connected, then the diameter of Γ(cd) is at

most 3 with examples showing that this is best possible for both the solvable and non-solvable

cases.

Theorem 1.2.40. [Kaz81; BHM90; CHM93; FA87] Let G be a group, then n(Γ(ccs)) ≤ 2

1. n(Γ(ccs)) = 2 if and only if G is quasi-Frobenius with abelian kernel and complement.

In this case both connected components are isolated vertices.

2. diam Γ(ccs) ≤ 3 if Γ(ccs) is connected.

3. If G is a non-abelian simple group, then Γ(ccs(G)) is complete.

4. If G is a nontrivial perfect group, then Γ(ccs(G)) is connected of diameter at most 2.

In fact, groups for which Γ(ccs) is not complete have been characterized.

Theorem 1.2.41 ([Ada+96]). Γ(ccs) is not a complete graph if and only if there exist subgroups

A and B and a set of primes π such that

1. G = AB.

2. CG(A) > Z(G).

3. CG(B) > Z(B).

4. |G|π | |A| and |G|π′ | |B|, and A and B are minimal with respect to this property.
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The following result may be unexpected given that Γ(ccs) is complete for simple

groups, and ∆(cd) is complete for most simple groups.

Theorem 1.2.42 ([Bia+07]). If Γ(cd) is complete, then G is solvable.

There are various generalizations of these graphs defined, for example, by restricting

to certain subsets of cd(G) or ccs(G). However, the results already included are

sufficient to give a flavor of theorems found in the literature.

1.3 Some Dual Results

In this section we prove two results dual to some in the literature. These results were

first published in [AH13]. Robinson showed in [Rob09] that the character degrees are

determined by knowing, for all n, the number of ways that the identity can be expressed

as a product of n commutators. Earlier, in [Str92], Strunkov showed that the existence of

characters of p-defect 0 can be determined by counting solutions to equations involving

commutators and conjugates.

Robinson is able to determine all character degrees by knowing how many ways the

identity can be represented as a product of commutators. Strunkov, on the other hand,

determines information about p-defects but only requires counting modulo p.

Theorem 1.3.1 ([Rob09]). Given a finite group G, knowing the number of solutions, for

n = 1, 2, . . . , |G|, to equations 1 = [a1, b1][a2, b2] · · · [an, bn] determines the character degrees

(with multiplicity) of G.

If instead, the equations are of the form 1 = a2
1b2

1a2
2b2

2 · · · a2
nb2

n then the degrees of real

characters are obtained.

Theorem 1.3.2 ([Str91]). Let G be a finite group and S a Sylow p-subgroup of G. Let

f (x1, . . . , xk, u1, . . . , ul) be a function on G that it is the product of elementary functions
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[xi, xi+1] and u
xj
j where xi ∈ G and uj ∈ S. Moreover, let k ≥ 2 and let each variable appear

in a single elementary function. Then G has a p-block of defect 0 if and only if the number of

solutions to g = f (x1, . . . , xk, u1, . . . , ul) is not divisible by p|S|l for some g ∈ G.

If f contains at least one elementary multiplier of the form x2
j , then the existence of real

characters with p-defect 0 is determined instead.

In particular the existence of a p-block of defect 0 is equivalent to the fact that the

number of solutions to g = [x1, x2] is coprime to p for some g ∈ G.

We prove analogous theorems to those of Robinson and Strunkov, showing that

knowledge of character multiplication is enough to determine information about conju-

gacy class sizes. This shows that, in this sense at least, multiplication of characters is

dual to that of conjugacy classes.

We first give a few definitions. Let π = ∑χ∈Irr(G) χχ be the permutation character

of G acting on itself via conjugation, and let γn(ϕ) denote the multiplicity of ϕ in πn.

Similarly, let ψ = ∑χ∈Irr(G) χ2 and δn(ϕ) be the multiplicity of ϕ in ψn. Recall that a

conjugacy class K has p-defect 0 if |K|p = |G|p.

Theorem 1.3.3. The conjugacy class sizes of G are determined by knowing |G|, and γn(1G) for

n = 1, 2, . . . , |G|. Knowing δn(1G) instead gives the sizes of real conjugacy classes.

Theorem 1.3.4. Let n ≥ 2. A group G has a conjugacy class of p-defect 0 if and only if γn(ϕ)

is not divisible by p for some irreducible character ϕ. Likewise, G has a real class of p-defect 0 if

and only if δn(ϕ) is coprime to p for some ϕ ∈ Irr(G).

Where Robinson counted the appearance of the identity in products of the form

[a1, b1][a2, b2] · · · [an, bn] or a2
1b2

1a2
2b2

2 · · · a2
nb2

n, we count the appearance of the trivial char-
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acter in products of the form χ1χ1χ2χ2 · · · χnχn or χ2
1χ2

2 · · · χ2
n. This is because

πn =
(

∑
χ∈Irr(G)

χχ
)n

= ∑
χi∈Irr(G)

χ1χ1χ2χ2 · · · χnχn,

ψn =
(

∑
χ∈Irr(G)

χ2
)n

= ∑
χi∈Irr(G)

χ2
1χ2

2 · · · χ2
n.

Similarly, Strunkov equates the existence of (real) characters of p-defect 0 to the

existence of a group element such that the multiplicity of its appearance in certain

products is not divisible by p. In the simplest case his products take the same form

as those of Robinson. Our analog states that G has a (real) conjugacy class of p-defect

0 if and only if there exists an irreducible character such that the multiplicity of its

appearance in certain products is not divisible by p.

Our proof of Theorem 1.3.3 is very different from that of Robinson, though the proof

of Theorem 1.3.4 is similar to Strunkov’s. We recall the statements for convenience.

Theorem 1.3.3. The conjugacy class sizes of G are determined by knowing |G|, and

γn(1G) for n = 1, 2, . . . , |G|. Knowing δn(1G) instead gives the sizes of real conjugacy

classes.

Proof. First, note that π(g) = |CG(g)| = |G|/
∣∣gG
∣∣. Consider the multiplicity of the

trivial character in πn:

[1G, πn] =
1
|G|∑K

|K|1G(gK)πn(gK)

= ∑
K

|K|
|G|

(
|G|
|K|

)n
= ∑
K

(
|G|
|K|

)n−1

where the sum is over all conjugacy classes K, and gK ∈ K.

Let ai be the number of conjugacy classes of size i and Ci =
|G|

i . By reformulating
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the equations above, the equations

[1G, π] = ∑ ai

[1G, π2] = ∑ aiCi

[1G, π3] = ∑ aiC
2
i

...

are seen to hold. Clearly ai = 0 for all i > |G|, so the sums are finite. Suppose that the

[1G, πn] are given, and view each line as having variables ai with known coefficients

Cj
i . Considering the first |G| of them gives a set of linear equations. There is a unique

solution since the coefficient matrix is of Vandermonde type, hence non-singular. Thus,

the sequence [1G, πn] for n = 1, 2, . . . , |G| determines the conjugacy class sizes of G.

Note that

ψ(g) = ∑
χ∈Irr(G)

χ(g)2

= ∑
χ∈Irr(G)

χ(g)χ(g−1)

=

{
|CG(g)| if g is a real element
0 otherwise

is essentially π above, but restricted to real classes.

The proof follows exactly the same as before, except the sum

[1G, ψn] = ∑
K=K−1

(
|G|
|K|

)n−1

is over real classes, and therefore only determines their class sizes. �

Note that the multiplicity of an irreducible character in π or ψ is given by row sums
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in the character table

[ϕ, π] = ∑
K

ϕ(gK);

[ϕ, ψ] = ∑
K=K−1

ϕ(gK).

We now prove a partial analog of Strunkov’s theorem.

Theorem 1.3.4. Let n ≥ 2. A group G has a conjugacy class of p-defect 0 if and only if

γn(ϕ) is not divisible by p for some irreducible character ϕ. In the same way, G has a

real class of p-defect 0 if and only if δn(ϕ) is coprime to p for some ϕ ∈ Irr(G).

Proof. Fix n ≥ 2, and consider the following equation for ϕ ∈ Irr(G):

γn(ϕ) = [ϕ, πn] =
1
|G|∑K

|K|ϕ(gK)πn(gK) = ∑
K

(
|G|
|K|

)n−1

ϕ(gK).

It is a weighted sum of the row of ϕ in the character table. If G has no class of p-defect

0, then all coefficients |G|/|K| are divisible by p, and so are γn(ϕ) for every ϕ. The

weights at p-singular columns are always divisible by p.

Consider now the above equations mod p and suppose that the sums are 0 for all

ϕ ∈ Irr(G). That is, there is a mod p combination of the p-regular columns of the

character table that gives the all zero column. Every Brauer character η is a Z-linear

combination of ordinary characters [Nav98, Corollary 2.16], and so the same linear

combination of the columns of the Brauer character table is also zero. But the columns

of the Brauer character table are linearly independent over k, an algebraically closed

field of characteristic p [Nav98, Theorem 1.19], and so a nontrivial combination of them

cannot be zero. Consequently all weights are divisible by p, as required.

All the same arguments hold for real classes when π is replaced by ψ. �
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Since πnψm = ψn+m, information about real classes (for both theorems) is determined

by counting over products of the form

|χ1|2|χ2|2 · · · |χn|2χ2
n+1 · · · χ2

n+m

as long as m ≥ 1 and n + m ≥ 2.

Theorem 1.3.4 is not a complete analog of Strunkov’s because we only include an

analog for commutators (or squares), not for conjugates of elements of S. One must first

determine what the analog of elements of S would be. The conjugates of elements in S

comprise the conjugacy classes of p-elements.

Let ε be a primitive |G|th root of unity and R the algebraic integers of Q[ε]. Let M

be a maximal ideal of R containing the prime p. The element g ∈ G is a p-element if

and only if for all χ ∈ Irr(G), χ(g) ≡ χ(1) mod M. See [Isa76, Theorem 8.20].

An analog for characters based on similar congruence criteria is that χ is in the

principal block B0 of G if and only if
χ(g)|gG|

χ(1) ≡
∣∣gG
∣∣ mod M for all g ∈ G. The analog

of u
xj
j would be |χ|2ϕ. However, the corresponding result does not hold.

As a counter example, consider S3 for p = 3. It has a unique 3-block B0, and the

class of transpositions is of 3-defect 0. Calculating

γ(ψ) = ∑
χ1,χ2,χ3∈Irr(G)

ϕ∈Irr(B0)

[ψ, |χ1χ2|2|χ3|2ϕ]

(the analog of [x1, x2]ux3) gives results divisible by 9 = 3|G|3 for all ψ ∈ Irr(G). One

might consider using ∑ϕ∈Irr(B0) ϕ(1)2 (or its p-part) in place of |S| = |G|p, but under

these conditions there are other groups which do not satisfy the theorem (e.g., the

dihedral group of order 12). So it seems that, if it exists, the correct analog is not the

principal block. See, however, Corollary 3.2.5 where it is the correct analog.
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Chapter 2

Transpositions of Character Tables

2.1 Introduction

Although the number of conjugacy classes and irreducible characters is always the

same, there is usually not a “natural” bijection between the two. If there were

a natural bijection, it might help us understand the quasi-duality between them. We

seek such a bijection by studying groups G whose character table is the transpose of the

character table of some other group H. That is, when the transpose of a character table

is itself a character table. This gives us a “natural” bijection between the irreducible

characters of G and the conjugacy classes of H, and vice versa.

The trivial conjugacy class is the only column of the character table consisting of all

positive integers, and hence must correspond in the transpose to the trivial character

which is always a row of ones. This implies that all character degrees are 1, which is

only true for abelian groups. In fact, abelian groups are Z-modules, and for Z-modules

there is a concept of duality M 7→ M∗ = Hom(M, C). That M ∼= M∗ follows from the

structure of finite abelian groups.
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We now explore one way to extend this notion of duality to non-abelian groups.

Definition 2.1.1. We say that a group G with character table X is transposable if there

exist non-negative diagonal integer matrices D and N such that X̃ = (D−1XN)T is the

character table of some group GT. We also say that GT is a transpose group of G.

Remark 2.1.2. In our definition we stipulated that the matrices D and N must be matrices

of non-negative integers. It is clear that it is sufficient to consider such matrices. In

fact, D is the diagonal matrix consisting of the character degrees of G, and N is of the

degrees of GT.

With this definition we shall find that, although GT is not unique, its character table

is. We also show that G and GT have dual normal subgroup lattices, and that the lower

central series of G is “dual” to the upper central series of GT. These two results can

be used to prove that if G is solvable and transposable, then G is nilpotent. However,

a very different proof by Okuyama, which we give as Corollary 3.2.5, shows that all

transposable groups are nilpotent without requiring the assumption of solvability.

2.2 Basic Results

Of immediate concern are the possible values for the new character degrees. Perhaps

unsurprisingly, they are unique and given by the square roots of the conjugacy class

sizes.

Proposition 2.2.1. Let X be the character table of a finite group G. Let D be the diagonal

matrix with the character degrees of G along the diagonal (in the same order as they appear

in X). Let N be an arbitrary diagonal matrix such that X̃ = (D−1XN)T = NXTD−1 is the

character table of some group GT. Then N2 is the diagonal matrix with entries equal to the

conjugacy class sizes of G (in the same order as they appear in X).
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Proof. If X̃ is the character table of a group, then it must satisfy the orthogonality rela-

tions, in particular column orthogonality. The columns of X̃ are indexed by irreducible

characters of G, and the rows by conjugacy classes. We indicate by di the new character

degrees, i.e., the diagonal entries of N, and by gi a representative of the ith conjugacy

class of G (as indexed by X). Assume that g1 is the identity element, hence d1 = 1, and

denote by 1G the trivial character of G. Let n be the number of irreducible characters of

G.

The new character table X̃ has di
χ(gi)
χ(1) in row i, column χ.

1G χ

1 1 . . . χ(g1)
χ(1) . . .

...
...

di di . . . di
χ(gi)
χ(1) . . .

...
...

dn dn . . . dn
χ(gn)
χ(1) . . .

Column orthogonality of X̃ implies that for χ 6= 1G

0 =
n

∑
i=1

di
χ(gi)

χ(1)
di =

1
χ(1)

n

∑
i=1

d2
i χ(gi) =

n

∑
i=1

d2
i χ(gi),

which constrains the possible values for the di. Letting ki = d2
i , we obtain a system of

n− 1 linear equations in n− 1 unknowns (since d1 = 1). From the row orthogonality

relations for X, we know that ki =
∣∣gG

i

∣∣ is a solution. Since the equations are simply

n− 1 of the rows of X, they are linearly independent and so the solution is unique. �

Corollary 2.2.2. If a finite group G is transposable then the conjugacy classes of G must all

have square size.
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Proof. Since the di are the character degrees of the dual character table they must be

integers which can only be the case when d2
i = ki is a square. �

In other words, if X̃ is a character table obtained from X by dividing each row by the

character degree and multiplying columns by positive integers, then the columns must

be multiplied by the square root of the conjugacy class sizes. It is convenient to define

the weighted character table to be the character table with the columns multiplied

by the square root of the conjugacy class sizes. This definition allows us to calculate

the weighted character table (which is straightforward given the character table) and

compare the transpose of this matrix with the weighted character table of another group

to determine if they are transpose groups. Likewise, it would be enough to consider

character tables divided by character degrees, which we call normalized character

tables. In this case it is more difficult to simply “read off” data from the table, but they

are also convenient, particularly for proofs. From a normalized character table it is easy

to determine the character degrees, thereby returning to an ordinary character table,

since by row orthogonality
|G|

χ(1)2 = ∑
g

χ(g)
χ(1)

χ(g)
χ(1)

.

Suppose that the character tables for two groups G, H are such that their transposes

are character tables for some groups GT, HT respectively. It is clear from the construction

of character tables of direct products that the character table of G× H is the transpose

of GT × HT. Because transposability of character tables is closed under forming direct

products, one might hope that the converse is true, that is, that it suffices to check the

direct factors of the group. This is, in fact, the case.

Proposition 2.2.3. Suppose that M is the character table of a group G and factors as the

Kronecker product of two matrices X and Y such that the first row of both X and Y consists of

ones and the first column of positive integers. Then G is a nontrivial direct product of groups
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having character tables X and Y.

Proof. By assumption of the structure of M, we have character degrees ai = (X)i,1,

bi = (Y)i,1 such that a1 = b1 = 1,

X =

 1 1 · · ·
b2 ∗
...

, Y =

 1 1 · · ·
a2 ∗
...

,

and M has the form

A

A 1 1 . . . 1 1 . . . 1 1 . . .

a2 a2 a2 B
...

...
...

A b2 b2 . . .

A b3 b3 . . .
. . .

...

B B B . . .

as hypothesized. Note that the upper left block is the matrix Y, and the upper left

entries of each block form the matrix X.

Let A be the subset of conjugacy classes consisting of the first column of blocks.

Also, let A be the subset of rows consisting of the first row of each block as marked. We

27



claim that the intersection of the kernels of these characters

N =
⋂

χ∈A
ker χ = ker

⊕
χ∈A

χ

is the normal subgroup containing exactly the conjugacy classes in A.

It is clear that N ⊃ A since, when restricted to A, the characters are all integer

multiples of the trivial character. Suppose N ) A, then some column of M outside of A

is such that the first entry in the ith block is given by bi for all i. Since these entries are

1 · bi,j, it must be that bi,j = bi for j > 1 and all i. This is impossible since the columns of

M are linearly independent and so the columns of X must be as well. Thus N = A.

Similarly, let B be the first block of rows and B the first column in each block. The

intersection of kernels H =
⋂

χ∈B ker χ = ker
⊕

χ∈B χ corresponds to the subset B of

conjugacy classes. In particular N and H are normal subgroups with trivial intersection.

We now determine the character tables of the factor groups G/H and G/N. To find

the character table of G/N (see for example [Isa76, Lemma 2.22]), take the submatrix

of characters with kernel containing N and delete duplicate columns. Since the first

row of Y is all ones, this submatrix will be the Kronecker product [1, 1, . . . ]⊗ X. Once

duplicate columns are removed it will be exactly X, and in the same way the character

table for G/H is Y.

Calculating the order of N and H can be done by summing the squares of the

character degrees:

|G : H| = |G/H| = ∑
i

a2
i

|G : N| = |G/N| = ∑
j

b2
j

|NH| = |N||H| = |G|
|G/N|

|G|
|G/H|
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=
|G|2

∑j b2
j ∑i a2

i
=

|G|2

∑i,j(aibj)2

=
|G|2

|G| = |G|.

Finally, G ∼= N × H since (1) N and H are normal in G, (2) they have trivial intersection,

and (3) G = NH. �

Proposition 2.2.4. If G× H is transposable then so are G and H.

Proof. Let M be the character table of G × H written as M = X ⊗ Y, where X and

Y are the character tables of G and H respectively. Then the (matrix) transpose of

M is XT ⊗ YT and by assumption is a character table of some group Γ after proper

multiplication and division of character degrees. This multiplication splits across the

product so that XT is the character table of some group G0 and YT is that of some other

group H0. That is, G and H are transposable. �

2.3 Self-dual Groups

The concept of a self-dual group has appeared in a series of papers by Hanaki and

Okuyama [Oku13; HO97; Han97; Han96a; Han96b]. They call a group self-dual if (after

a suitable rearrangement) ∣∣∣xG
j

∣∣∣χi(xj)

χi(1)
= χj(1)χj(xi)

for χi ∈ Irr(G) and xi ∈ Rep(G). This condition is equivalent to the condition that

the group association scheme is self-dual. It is also equivalent to being transposable

with GT = G, which is easily seen after noting that χj(1)2 =
∣∣∣xG

j

∣∣∣ must hold. This last

condition is called the B-condition in [Han96a] after E. Bannai who studied it in [Ban93].

In that paper, Bannai studies generalizations of fusion algebras from mathematical
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physics and shows that they are in one-to-one correspondence with “character algebras,”

which are a generalization of the character algebras obtained from finite groups.

The majority of Hanaki’s and Okuyama’s papers are spent constructing examples

of self-dual groups which we include in Chapter 5. In an unpublished paper [Oku13],

Okuyama proved that self-dual groups must be nilpotent. Professor Okuyama was kind

enough to send us his proof, and we include it as Section 3.2 slightly generalized to

transposable groups.
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Chapter 3

Properties of Transposable Groups

T ransposable groups must have square conjugacy class sizes as we have shown. In

this chapter we investigate other properties which transposable groups satisfy. The

most important of these is a correspondence between the normal subgroups of G and

GT. Much of this chapter, as well as the examples from Chapter 5 are included in the

forthcoming paper [AHO12].

3.1 Normal Subgroup Correspondences

We start with a simple observation.

Proposition 3.1.1. Let G be a transposable group and let A = GT/(GT)′ be the abelianization

of GT. Then A ∼= Z(G).

Proof. First, recall that the linear characters are precisely those whose kernel contains

the commutator subgroup. Thus, we can calculate the character table of A by taking

the linear characters of GT and deleting duplicate columns. There are exactly enough
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duplicate columns to make the table square.

The linear characters of GT correspond to the central classes of G for these classes

have size 1. Note that the number and size of conjugacy classes do not change when

we restrict our attention to the character table of Z = Z(G). In order to calculate the

character table of Z, take the character table of G and divide by the character degrees.

Since all the characters of G are homogeneous on Z, each row in the resulting table is

an irreducible character of Z.

Next, remove duplicate rows. These will be the same as those columns removed

when calculating the character table of A. The rows now correspond to distinct char-

acters, and there are enough to make the table square. Hence the character table of Z

is the transpose of that of A. Since abelian groups are determined by their character

tables, we have that Z ∼= A. �

In fact we have nearly proven a more general theorem. Recall that a character is

called homogeneous if it is a multiple of an irreducible character. A character χ ∈ Irr(G)

is called quasi-primitive if χN is homogeneous for all NC G.

Proposition 3.1.2. Let G be a transposable group, and let NC G be such that all irreducible

characters of G are homogeneous when restricted to N. Further, assume that there is no fusion

in N; that is, if n1 = ng
2 for n1, n2 ∈ N, g ∈ G, then g can be chosen to be in N. Let NT be the

set of characters of GT corresponding to the conjugacy classes of N. Then the character table of

N is the transpose of the character table of H = GT/ ker NT.

Proof. The only thing which does not follow immediately from the previous proof is

that the character degrees of N match the square roots of the conjugacy class sizes of H.

This follows from the orthogonality relations and the lack of fusion. �

In light of the above proposition, it is tempting to consider groups in which all

characters are quasi-primitive. In the case of solvable groups, these turn out to be the
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abelian groups [Isa76, Corollary 6.6] for which the result was obvious.

While there is no correspondence which preserves (transposes of) character tables for

all NC G, we can generalize the correspondence to all normal subgroups. For certain

special subgroups, namely those of the upper and lower central series, we are able to

retain some structural information.

Lemma 3.1.3. Given two normal subgroups N1, N2 C G let N be the join N = N1 ∨ N2 =

N1N2 in the normal subgroup lattice. It can be determined from the character table by taking the

union of the conjugacy classes of N1 and N2 and finding the set N of characters whose kernels

contain these classes. Then the classes in K = kerN is the join N = N1N2.

Proof. The join N1N2 must contain all of the conjugacy classes of both N1 and N2 (which

K does), and it is the minimal such, which K is by construction. �

Proposition 3.1.4. Let G be a transposable group and GT one of its transpose groups. Then for

every normal subgroup NC G, there is a normal subgroup NT C GT such that |G/N| =
∣∣NT

∣∣
(equivalently |N| =

∣∣GT/NT
∣∣). Furthermore (N1N2)

T = NT
1 ∩ NT

2 , so that the lattice of

normal subgroups of G is the dual of that of GT including orders of subgroups.

We say that N corresponds to NT.

Proof. Consider some normal subgroup NC G as a collection of conjugacy classes. It

also can be thought of in terms of the set N of irreducible characters whose kernels

contain N. In the transposed character table these concepts are switched: the conjugacy

classes of N correspond to the characters whose kernel make up NT, and the characters

defining N become the conjugacy classes of NT.

Consider the normalized character table, and note that an entry is in the kernel of

a character if its value is 1. In this way kernel entries are easily seen to remain kernel

entries after transposition.
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We now determine the orders of NT and G/N. The character table of G/N is easily

determined from the characters in N by removing duplicate columns. In particular this

leaves the character degrees intact, so that |G/N| = ∑χ∈N χ(1)2. The characters in N

become the conjugacy classes of NT whose order can be computed by summing the

sizes of its conjugacy classes. But this is simply
∣∣NT

∣∣ = ∑χ∈N χ(1)2 since the squares

of the character degrees in G are the conjugacy class sizes in GT.

To prove that NT
1 ∩ NT

2 = (N1N2)
T, observe that conjugacy classes of NT

1 ∩ NT
2 are

given by the intersection of the set of characters whose kernels are N1 and N2 respectively.

The intersection of these sets consists of the irreducible characters whose kernel contains

both N1 and N2, and it follows from Lemma 3.1.3 that NT
1 ∩ NT

2 = (N1N2)
T. �

We should not be too surprised by this result since characters give information about

quotient groups, and conjugacy classes about normal subgroups. Interchanging the two

concepts might be expected to interchange normal subgroups and quotients.

Because they can be determined from the normal subgroup lattice (when augmented

with order information), transposing the character table preserves commutativity, nilpo-

tency, π-separability, (super-)solvability, and simplicity of the underlying group.

3.1.1 Central Series

Recall that the lower (descending) and upper (ascending) central series are defined as

γ1(G) = G Z0(G) = 1

γi(G) = [γi−1(G), G]; Zi(G)/Zi−1(G) = Z(G/Zi−1(G)).

One way to determine Zi(G) is to locate the conjugacy classes of Zi−1(G) and then find

conjugacy classes K such that [K, G] ⊂ Zi−1(G). The following proposition gives us a

way to do that using only the character table.
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Proposition 3.1.5 ([Isa76, Problem 3.10]). Let G be a group and fix g ∈ G. Then h ∈ G is

conjugate to [g, g′] for some g′ ∈ G if and only if

n(g, h) = ∑
χ∈Irr(G)

|χ(g)|2χ(h)
χ(1)

6= 0. (3.1)

According to this we have

g ∈ Zi(G)⇔ n(g, h) = 0 ∀h 6∈ Zi−1(G). (3.2)

We now translate this description into a condition within GT. Let Kg denote the

G-conjugacy class of g, and ϕg the character of GT which corresponds to this class. If χ

is an irreducible character of G, then Kχ will denote the corresponding conjugacy class

of GT, and xχ a representative of this class. With this notation we have the identity

χ(g)
χ(1)

=
ϕg(xχ)

ϕg(1)
.

Substituting into (3.1) gives

∑
Kχ

∣∣ϕg(xχ)
∣∣2 χ(1)2

ϕg(1)2 ϕh(xχ)
χ(1)
ϕh(1)

χ(1)
6= 0

∑
Kχ

∣∣ϕg(xχ)
∣∣2ϕh(xχ)χ(1)2

ϕg(1)2ϕh(1)
6= 0

and since ϕg(1)2ϕh(1) is constant

∑
Kχ

∣∣ϕg(xχ)
∣∣2ϕh(xχ)|Kχ| 6= 0

∣∣∣GT
∣∣∣[ϕg ϕg, ϕh] 6= 0
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[ϕg ϕg, ϕh] 6= 0

where [ , ] is the usual inner product on characters of GT.

Now denote nT(ϕ, ψ) = [ϕϕ, ψ]. The following proposition claims

ker ϕ ⊇ γi(G)⇔ nT(ϕ, ψ) = 0 ∀ψ, ker ψ + γi−1(G). (3.3)

Proposition 3.1.6. Let G be a finite group and ϕ ∈ Irr(G) an irreducible character. All

irreducible components of ϕϕ contain γi−1(G) in their kernel if and only if the kernel of ϕ

contains γi(G).

Proof. Let U be a module affording ϕ, so that |ϕ|2 is the character of Hom(U, U). We

need to prove that the kernel of U contains γi(G) if and only if every simple submodule

of Hom(U, U) has kernel containing γi−1(G), that is if and only if Hom(U, U) has

kernel containing γi−1(G).

If γi(G) ⊂ ker U, then every c ∈ γi−1(G) is central with respect to the action on

U. Let µ ∈ Hom(U, U) and c ∈ γi−1(G). We wish to prove that c fixes µ, i.e., µc = µ.

Consider the action on a vector u ∈ U, by definition

(µc)(u) = µ(uc−1)c.

Now, the action of c is central on U, so it’s equivalent to multiplication by a scalar λ

= µ(uλ−1)λ = µ(u).

This is true for every µ and every u, so that ker Hom(U, U) ⊇ γi−1(G).

To prove the converse, suppose ker Hom(U, U) ⊇ γi−1(G). This means that for
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c ∈ γi−1(G) we have µc = µ, that is

µ(u) = (µc)(u) = µ(uc−1)c.

Then

µ(u)c−1 = µ(uc−1)

for all µ and all u, so the action of c commutes with every µ. Hence, the action of

c is central in U. This is true for every c in γi−1(G), so the kernel of U contains

[γi−1(G), G] = γi(G) as claimed. �

Theorem 3.1.7. Given a transposable group G, the (abelian) factors Zi(G)/Zi−1(G) are

isomorphic to γi(GT)/γi+1(GT) for all i.

Proof. From Propositions 3.1.5 and 3.1.6, there is a correspondence between the con-

jugacy classes of the upper central series of G and the irreducible characters defining

the lower central series of GT. Due to the special nature of the subgroups involved, we

are able to determine the character tables (and hence isomorphism type) of the central

series factors, from the character table of G.

To find the character table of Zi(G)/Zi−1(G), restrict attention to the characters

of G which contain Zi−1(G) in their kernel, and the conjugacy classes of Zi(G).

This corresponds to finding the character table of G/Zi−1(G), and then restricting

to Zi(G)/Zi−1(G). As in Proposition 3.1.1, we simply divide by character degrees

and then remove duplicate columns and duplicate rows to find the character table of

Zi(G)/Zi−1(G).

The character table of γi(GT)/γi+1(GT) is found in a completely dual manner. This

time we restrict attention to the conjugacy classes of γi(GT) and characters whose kernel

contains γi+1(GT). These are the same rows as columns before, and vice versa. Again,

we divide by character degrees and then remove duplicate rows and columns, leading
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to the transpose of the character table of Zi(G)/Zi−1(G). Since they are abelian groups,

Zi(G)/Zi−1(G) and γi(GT)/γi+1(GT) are isomorphic. �

Corollary 3.1.8. The Fitting subgroup and hypercenter of G coincide and they correspond to

the nilpotent residual of GT.

Proof. It follows from the previous theorem that the hypercenter of G and the nilpotent

residual of GT correspond. From Proposition 3.1.4 the nilpotent residual corresponds to

the Fitting subgroup of G. �

Remark 3.1.9. This can also be seen by comparing formulas for the orders of the hyper-

center (Theorem 1.2.19) and nilpotent residual (Theorem 1.2.18).

Corollary 3.1.10. The solvable residual of G corresponds to the hypercenter of GT.

Proof. Let G be transposable. Denote by G(i)T
the subgroup of GT corresponding to G(i)

the ith term of the derived series. We prove by induction that G(i)T
is in the hypercenter

of GT. By Proposition 3.1.1 the case i = 1 holds.

Suppose that G(i)T
is in the hypercenter of GT. As G(i)/G(i+1) is abelian, every

Sylow subgroup of this factor has a normal preimage in G. Hence the same holds

for G(i+1)T
/G(i)T

by Proposition 3.1.4, and thus this factor group is nilpotent. By

assumption, G(i)T
is in the hypercenter of GT and so G(i+1)T

is nilpotent and therefore in

the hypercenter by Corollary 3.1.8. �

Corollary 3.1.11. All solvable normal subgroups are hypercentral, and all solvable quotients

are nilpotent.

Corollary 3.1.12. If NC G such that gcd(|N|, |G/N|) = 1, then N is a direct factor of G.

Proof. By interchanging G and GT if necessary, we can assume that N is solvable and

hence in the hypercenter. Then, since gcd(|N|, |G/N|) = 1, N is a direct factor. �
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Corollary 3.1.13. If G is transposable and solvable, then G is nilpotent.

In fact, we shall see in Corollary 3.2.5 that all transposable groups are nilpotent.

This supports the intuition that transposable groups are “close” to being abelian.

Interestingly, one of the transposable examples in Chapter 5 is used by Kiss and

Pálfy [KP98] as an example of a nilpotent group whose normal subgroup lattice does

not embed in the (normal) subgroup lattice of an abelian group. In this way the class of

transposable groups is “larger” than merely abelian groups.

We finally remark on two more important subgroups corresponding to each other.

Proposition 3.1.14. If G is a transposable group, then the Frattini subgroup Φ(G) corresponds

to the socle.

Proof. The Frattini subgroup is the intersection of all the maximal subgroups (which

will all be normal if G is nilpotent). The socle, on the other hand, is the join of all the

minimal normal subgroups. The result follows from the duality of the subgroup lattices.

�

3.2 Nilpotency of Transposable Groups

This section is from an unpublished paper [Oku13] of Tetsuro Okuyama. In this next

section we write a ≡ b to mean that a is congruent to b modulo a maximal ideal M, as

explained near the end of Section 1.3.

Proposition 3.2.1. Every p-block B of a transposable group G is of full defect.

Proof. By the definition of defect of a block B, there exists χ ∈ B and a conjugacy class

K such that

χ(x−1)
|K|χ(x)

χ(1)
6≡ 0
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for x ∈ K. By the definition of transposable groups, we have that

|K|χ(x)
χ(1)

= ϕK(1)ϕK(xχ) 6≡ 0

and in particular ϕK(1) 6≡ 0, so that |K| = ϕK(1)2 6≡ 0. Therefore, B has full defect.

�

Proposition 3.2.2. Let G be a transposable group. If χ ∈ B0(G), then |Kχ|ϕ(xχ)

ϕ(1) ≡ |Kχ| for

all ϕ ∈ Irr(GT).

Proof. Since

|Kχ|ϕ1(xχ)

ϕ1(1)
≡ |Kχ|ϕ2(xχ)

ϕ2(1)

for all ϕ1 and ϕ2 in the same p-block, we may assume that ϕ(1) 6≡ 0 by Proposition 3.2.1.

Since χ ∈ B0(G), for any conjugacy class K of G, we have

|K|χ(x)
χ(1)

≡ |K|

ϕK(1)ϕK(xχ) ≡ ϕK(1)2

so that

ϕK(xχ) ≡ ϕK(1).

From this it follows that |Kχ|ϕ(xχ)

ϕ(1) ≡ |Kχ|. �

Corollary 3.2.3. If G is transposable and χ ∈ B0(G) with χ(1) 6≡ 0, then χ(1) = 1.

Proof. Since |Kχ| = χ(1)2 6≡ 0, it follows from Proposition 3.2.2 that χ(1)χ(x) =

|Kχ|ϕ(xχ)

ϕ(1) 6≡ 0 for all x ∈ G. In particular χ(1)χ(x) 6= 0 for all x ∈ G, and so χ must be

linear by a famous theorem of Burnside [Isa76, Theorem 3.15]. �
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Theorem 3.2.4 ([IS76, Corollary 3]). Suppose that every nonlinear irreducible character of G

in the principal p-block has degree divisible by p. Then G has a normal p-complement, i.e., is

p-nilpotent.

Corollary 3.2.5. If G is transposable, then G is nilpotent.

Proof. Fix a prime p. By Corollary 3.2.3, we have that the nonlinear irreducible characters

in the principal block have degree divisible by p, and so it follows from 3.2.4 that G is

p-nilpotent. Thus, G is p-nilpotent for all p, and therefore nilpotent. �

Note that the correspondence seen here between the principal p-block of G and the

p-elements of GT is not reflected in Theorem 1.3.4 as noted at the end of Section 1.3.

3.3 Multiplication Constants of Characters and Classes

It is well known (e.g., [Isa76, Exercise 3.9]) that the character table determines multipli-

cation of both characters and conjugacy classes. To be more precise, if Ki is a conjugacy

class and K̂i its class sum, then class multiplication is given by

K̂iK̂j = ∑
ν

aijνK̂ν

for non-negative integers aijν which can be calculated as

aijν =
|Ki|

∣∣Kj
∣∣

|G| ∑
χ∈Irr(G)

χ(gi)χ(gj)χ(gν)

χ(1)
.

Recall that the multiplication constants for the product of two irreducible characters are

bijν = [χiχj, χν] =
1
|G|∑l

|Kl|χi(gl)χj(gl)χν(gl).
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Proposition 3.3.1. The multiplication constants for characters of G are determined by the

multiplication constants for conjugacy classes of GT and the class sizes of G.

Proof. Consider conjugacy classes Ki and Kj as characters of GT, and compute the

coefficients bT
ijν. Using the correspondence Ki ↔ ϕi, χ ↔ Kχ, and xχ ∈ Kχ as before,

we have

bT
ijν =

1
|G| ∑

χ∈Irr(G)

|Kχ|ϕi(xχ)ϕj(xχ)ϕν(xχ)

=
1
|G| ∑

χ∈Irr(G)

χ(1)2 χ(xi)
√
|Ki|

χ(1)

χ(xj)
√∣∣Kj

∣∣
χ(1)

(
χ(xν)

√
|Kν|

χ(1)

)

=

√
|Ki|

∣∣Kj
∣∣|Kν|

|G| ∑
χ∈Irr(G)

χ(xi)χ(xj)χ(xν)

χ(1)

=

√
|Kν|√
|Ki|

∣∣Kj
∣∣ |Ki|

∣∣Kj
∣∣

|G| ∑
χ∈Irr(G)

χ(xi)χ(xj)χ(xν)

χ(1)

=

√
|Kν|√
|Ki|

∣∣Kj
∣∣ aijν. �

We can then apply the fact (see [Isa76, Exercise 4.12]) that for arbitrary characters

[χψ, ϑ] ≤ ϑ(1) to find

bT
ijν =

√
|Kν|√
|Ki|

∣∣Kj
∣∣ aijν ≤

√
|Kν|

so that

aijν ≤
√
|Ki|

∣∣Kj
∣∣

for transposable groups. Of course for all groups the following trivial bound holds

aijν ≤
|Ki|

∣∣Kj
∣∣

|Kν|
.
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3.4 Potential Constraints

Since conjugacy classes and irreducible characters are dual in transposable groups,

we may be able to constrain conjugacy classes by using constraints on the characters

(and vice versa). Such constraints could then be used to constrain the structure of

transposable groups. We examine a few obvious candidates in this section. All but one

of the constraints in this section are guaranteed by nilpotency, and therefore they are

not useful in restricting the set of possible transposable groups any further. We include

them here because they are simple questions and arise naturally.

We discussed in the introduction (see Lemma 1.2.29) the multiplication of characters

(conjugacy classes) with coprime degrees (sizes).

Lemma 3.4.1. Let x and y be elements of G such that CG(x)CG(y) = G, then (xy)G = xGyG.

Corollary 3.4.2. Let x and y be elements of G such that
∣∣xG
∣∣ and

∣∣yG
∣∣ are coprime, then

(xy)G = xGyG. Moreover,
∣∣(xy)G

∣∣ ≥ max
{∣∣xG

∣∣, ∣∣yG
∣∣}, and

∣∣(xy)G
∣∣ | ∣∣xG

∣∣∣∣yG
∣∣.

Based on this, the product of irreducible characters of coprime degree must be

irreducible in a transposable group. But this is true for nilpotent groups, so it provides

us with no new information.

We can also use some properties of character degrees to constrain the sizes of

conjugacy classes. For example,
∣∣(xy)G

∣∣ =
∣∣xG
∣∣∣∣yG

∣∣ when x and y have coprime

conjugacy class sizes. This is not true in general, but is true for nilpotent groups.

A classic theorem of Burnside [Isa76, Theorem 3.15] states that if χ ∈ Irr(G) is

nonlinear, then χ(g) = 0 for some g ∈ G. This gives rise to another necessary condition

for the character table of a group to be transposable: that it not contain any noncentral

non-vanishing classes. A non-vanishing class is a conjugacy class K for which χ(g) 6= 0

for g a representative of K and all χ ∈ Irr(G).
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There are several results about non-vanishing classes in [INW99] indicating that, in

some sense, they are close to being central elements. Given that all transposable groups

are nilpotent, the theorem given below is the most relevant.

Theorem 3.4.3 ([INW99, B]). If G is supersolvable, then the non-vanishing elements of G

all lie in Z(F(G)). In particular, if G is nilpotent, then the non-vanishing elements of G are

central.

It is easy to see that in a transposable group the characters cannot be as large as

they can in an arbitrary group. But, again, this condition (in fact something stronger) is

implied by nilpotency.

Proposition 3.4.4. If G is a transposable group then χ(1)2 divides |G| for every irreducible

character χ. Equivalently, |χ(1)|p ≤ pa/2 where |G|p = pa.

Proof. The squares of the character degrees of G are conjugacy class sizes of a transpose

group GT and must therefore divide |GT| = |G|. �

Theorem 3.4.5 ([GL99]). A group G is nilpotent if and only if χ(1)2 divides |G : ker χ| for

all χ ∈ Irr(G).

One final condition is related to the integrality of character values. It is well known

that the values in a character table are algebraic integers, as are the values χ(x) |K|
χ(1) . In

the case of a transposable group, the values χ(x)
√
|K|

χ(1) are also algebraic integers since

they are character values of GT.

Clearly the class sizes of G must be square in order for χ(x)
√
|K|

χ(1) to be integral. We

may then ask whether all groups with square class sizes satisfy this criteria. Although

some larger non-nilpotent groups do, the smallest non-abelian group with square class

sizes (group [36,9] in GAP’s small group database [GAP] and isomorphic to C2
3 o C4)

does not. We do not have an example of a nilpotent group with square class sizes which

does not satisfy this integrality criteria.
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Chapter 4

Square Conjugacy Class Sizes

One of the first restrictions placed on transposable groups was that they have square

conjugacy class sizes. Yet, unlike most of the properties investigated in the last

chapter, square class sizes seem unrelated to nilpotence. This chapter investigates the

property of having square conjugacy class sizes and, to a lesser extent, square order.

It appears difficult to say much about such groups, but we do show they cannot be

simple.

Theorem 4.0.6. Suppose G has square conjugacy class sizes. If NCG with (|N|, |G/N|) = 1

then N and G/N have square conjugacy class sizes.

Proof. Let π = π(N), and let x be a π-element. By assumption,
∣∣xG
∣∣ is a square,

which means that |G|/|CG(x)| is a square. From the Schur–Zassenhaus theorem, G is a

semidirect product of N and G/N. Then

|G|π
|CG(x)|π

=
|N|
|CN(x)| =

∣∣∣xN
∣∣∣
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is a square and so N has square class sizes. Similarly, let x be a π′-element, and then

|G|π′
|CG(x)|π′

=
|G/N|
|CG/N(x)| =

∣∣∣xG/N
∣∣∣

must be a square. �

A group G is called quasi-Frobenius if G/Z(G) is Frobenius. Suppose G is quasi-

Frobenius and let K, H be the preimages of the kernel and complement respectively.

If K and H are abelian then the nontrivial conjugacy class sizes are |H/Z(G)| and

|K/Z(G)| (see the remarks at the end of Section 2 of [CC11]). This means that if K

and H are abelian and have square orders, then G has square class sizes. However,

quasi-Frobenius groups are not nilpotent, and so cannot be transposable. Thus, we have

a family of groups with square class sizes which are not transposable.

4.1 Simple Groups of Square Order

In this section we consider the questions of when a simple group can have square

conjugacy classes. We include tables 4.1 and 4.2 of the simple groups with their orders.

Proposition 4.1.1 ([CH90, Proposition 3]). If p | |CG(x)| for all x ∈ G, then G is not a

non-abelian simple group. In other words every non-abelian simple group G has a conjugacy

class K such that |G|p = |K|p.

Corollary 4.1.2. If G is a non-abelian simple group with square conjugacy class sizes then |G|

must be a square.

The obvious question is whether there are simple groups with square order. The

answer is yes, as shown in [NSW81]. In that paper they show that the groups B2(p) ∼=
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Table 4.1: Families of Simple Groups

Group Order Restrictions

Zp p p prime

An n!/2 n > 4

An(q) 1
(n+1,q−1)qn(n+1)/2 ∏n

i=1(q
i+1 − 1) (n, q) 6= (1, 2), (1, 3)

Bn(q) 1
(2,q−1)qn2

∏n
i=1(q

2i − 1) n > 1, (n, q) 6= (2, 2)

Cn(q) 1
(2,q−1)qn2

∏n
i=1(q

2i − 1) n > 2

Dn(q) 1
(4,qn−1)qn(n−1)(qn − 1)∏n−1

i=1 (q
2i − 1) n > 3

E6(q) 1
(3,q−1)q36(q5 − 1)(q9 − 1)∏i=1,3,4,6(q2i − 1)

E7(q) 1
(2,q−1)q63 ∏i=1,3,4,5,6,7,9(q2i − 1)

E8(q) q120 ∏i=1,4,6,7,9,10,12,15(q2i − 1)

F4(q) q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1)

G2(q) q6(q6 − 1)(q2 − 1) q 6= 2

2An(q2) 1
(n+1,q+1)qn(n+1)/2 ∏n

i=1(q
i+1 − (−1)i+1) n > 1, (n, q) 6= (2, 2)

2Dn(q2) 1
(4,qn+1)qn(n−1)(qn + 1)∏n−1

i=1 (q
2i − 1) n > 3

2E6(q2) 1
(3,q+1)q36(q9 + 1)(q5 + 1)∏i=1,3,4,6(q2i − 1)

3D4(q3) q12(q8 + q4 + 1)(q6 − 1)(q2 − 1)

2B2(22n+1) q2(q2 + 1)(q− 1) n ≥ 1, q = 22n+1

2F4(22n+1) q12(q6 + 1)(q4 − 1)(q3 + 1)(q− 1) n ≥ 1, q = 22n+1

2G2(32n+1) q3(q3 + 1)(q− 1) n ≥ 1, q = 32n+1
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Table 4.2: Sporadic Simple Groups

Group Order

F2
4(2)

′ 211 · 33 · 52 · 13

M11 24 · 32 · 5 · 11

M12 26 · 33 · 5 · 11

M22 27 · 32 · 5 · 7 · 11

M23 27 · 32 · 5 · 7 · 11 · 23

M24 210 · 33 · 5 · 7 · 11 · 23

J1 23 · 3 · 5 · 7 · 11 · 19

J2 27 · 33 · 52 · 7
J3 27 · 35 · 5 · 17 · 19

J4 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43

Co1 221 · 39 · 54 · 72 · 11 · 13 · 23

Co2 218 · 36 · 53 · 7 · 11 · 23

Co3 210 · 37 · 53 · 7 · 11 · 23

Fi22 217 · 39 · 52 · 7 · 11 · 13

Fi23 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23

Fi′24 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29

HS 29 · 32 · 53 · 7 · 11

McL 27 · 36 · 53 · 7 · 11

He 210 · 33 · 52 · 73 · 17

Ru 214 · 33 · 53 · 7 · 13 · 29

Suz 213 · 37 · 52 · 7 · 11 · 13

O′N 29 · 34 · 5 · 73 · 11 · 19 · 31

HN 214 · 36 · 56 · 7 · 11 · 19

Ly 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67

Th 215 · 310 · 53 · 72 · 13 · 19 · 31

B 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47

M 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
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C2(p) for primes p of the form

s2m+1 =
(1 +

√
2)2m+1 + (1−

√
2)2m+1

2
(4.1)

have square order. The integers s2m+1 have particular importance when they are prime,

in which case they are called Newman–Shanks–Williams (or NSW) primes. For such a

prime p, |B4(p)| = (p2(p2 − 1)t2m+1)
2 where

t2m+1 =
(1 +

√
2)2m+1 − (1−

√
2)2m+1

2
√

2
.

The first NSW primes (OEIS sequence A088165) are 7, 41, 239, 9369319, 63018038201,

and 489133282872437279. Newman, Shanks, and Williams also showed that there are

no other groups in the families Bn(q) or Cn(q) which have square size. Since the paper

was written before the classification of finite simple groups, they did not attempt to

prove that there are no other simple groups with square size. We are unaware of such a

classification for all finite simple groups. In this section we make some progress towards

this end, leaving only the cases of An(q) and 2An(q2) unsettled. We use many of the

techniques employed in [NSW81] to characterize when Cn(q) has square order. We start

by stating a few well known results.

Lemma 4.1.3 (Bertrand–Chebyshev Theorem). If n > 2 is an integer, there is an odd prime

p such that n/2 < p ≤ n.

In fact, a stronger statement is true: for all integers m > 3 there is a prime p such that

m < p < 2m− 2. This in turn implies (n + 1)/2 < p ≤ n for all n > 4.

Lemma 4.1.4. If m and n are positive integers and x 6= 1 is an integer, then the gcd

(
xm − 1
x− 1

,
xn − 1
x− 1

)
=

x(m,n) − 1
x− 1

.
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Lemma 4.1.5 ([Lju43; Nag21]). If n ≥ 3, then the only solutions to the Diophantine equation

y2 =
xn − 1
x− 1

which have |x| > 1 are

n = 4, x = 7, y = ±20,

n = 5, x = 3, y = ±11.

Corollary 4.1.6. The Diophantine equation x2p−1
x2−1 = py2 with p an odd prime has no solutions

with x > 1.

Proof. Let

u =
xp − 1
x− 1

, v =
xp + 1
x + 1

=
(−x)p − 1
(−x)− 1

so that uv = py2. Since p is odd, so are u and v, and therefore the identity

(x + 1)v− (x− 1)u = 2

implies that u and v are coprime. By Lemma 4.1.5, v cannot be a square (since x > 0),

and hence p - u. Thus p | v and u is a square. Checking x = 3 and p = 5, as required

by 4.1.5, we find that 310−1
32−1 = 7381 is not divisible by 3. �

Lemma 4.1.7. If (m, n) = 1 and p is an odd prime then the following hold.

(
q2n − 1
q2 − 1

,
qm + 1
q + 1

)
= 1 (4.2)(

qn − 1
q− 1

,
qm − 1
q− 1

)
= 1 (4.3)(

qn − 1
q− 1

,
qm + 1
q + 1

)
= 1 (4.4)
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(
qn + 1
q + 1

,
qm + 1
q + 1

)
= 1 (4.5)(

q± 1,
qp ± 1
q± 1

)
= 1, p (4.6)

Proof. All but the last of these follow from 4.1.4 by judicious multiplication of one or

both terms. Suppose

g =

(
q− 1,

qp − 1
q− 1

)
> 1.

We have q ≡ 1 mod g, so (qp− 1)/(q− 1) = 1+ q+ · · ·+ qp−1 ≡ p mod g, and therefore

g = p. The case of
(

q + 1, qp+1
q+1

)
follows from the fact that qp+1

q+1 = (−q)p+1
(−q)+1 and that no

assumptions were made on the sign of q. �

We shall also use the elementary fact that squares cannot be too close together. To

be precise (x± 1)2 = x2 ± 2x + 1, so they must differ by at least 2x− 1.

We begin by following [NSW81] in studying the case of Cn(q) and Bn(q), and then

continue with the other families of simple groups. Often we will use N to denote the

order of the group and N1, N2, . . . to denote other integers which must be square if N

is. Although they did not assume in [NSW81] that q was a prime power, we shall do so

when it makes the arguments easier.

4.1.1 Orthogonal and Symplectic Groups: Cn(q) and Bn(q)

The order of Cn(q) (and Bn(q)) is

N =
1

(2, q− 1)
qn2

n

∏
i=1

(q2i − 1)

= qn2
(q2 − 1)n (q4 − 1)

(2, q− 1)(q2 − 1)
(q6 − 1)
(q2 − 1)

· · · (q
2n − 1)

(q2 − 1)
.

Note that the third factor is an integer since (2, q− 1) divides q2 + 1.
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Newman, Shanks, and Williams prove that, if N is a square, then n = 2 and

N1 =
1

(2, q− 1)
(q2 + 1)

is also a square. The gcd in the denominator must be 2, and hence q must be odd.

Moreover, they prove the following theorem, thereby showing that q must be a prime.

Theorem 4.1.8. If m ≥ 2, the Diophantine equation

x2m + 1 = 2y2

has no solution with |x| > 1.

Thus the case of the Symplectic groups has been reduced to n = 2 and q a prime

with the additional property that q2+1
2 is a square. They prove that such primes exist

and have the form given in (4.1).

4.1.2 Linear and Unitary Groups: An(q) and 2An(q2)

The families An(q) (for all n) and 2An(q) (for n > 1 and (n, q) 6= (2, 2)) have orders

|An(q)| =
1

(n + 1, q− 1)
qn(n+1)/2

n

∏
i=1

(qi+1 − 1)

∣∣∣2An(q)
∣∣∣ = 1

(n + 1, q + 1)
qn(n+1)/2

n

∏
i=1

(qi+1 − (−1)i+1)

which can be combined into a single formula where ε = ±1

N =
1

(n + 1, q− ε)
qn(n+1)/2

n

∏
i=1

(qi+1 − εi+1).
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Unfortunately, finding when N is square seems to be a difficult problem. When using

the techniques of [NSW81], the following Diophantine equation arises

p
qp − 1
q− 1

= z2 (4.7)

for primes p. Number theorists have studied such equations since z2 is a repdigit in

base q (assuming p < q). See, for example, [Ink72].

Solutions to (4.7) do exist, for example when p = 2. There are an infinite number of

solutions [Waa73] when p = 3 given by

q =

√
3

4

(
(2 +

√
3)2n+1 − (2−

√
3)2n+1

)
− 1

2
.

This is OEIS sequence A028231 and the first few terms are 1, 22, 313, 4366, 60817.

Broughan [Bro12, Lemma 7] finds that for any p ≥ 5, there are (at most) a finite number

of solutions with |q| > 1 to (4.7). This was also proven in [ST76].

Every solution to p qp−1
q−1 = z2 is one less than a solution to p qp+1

q+1 = z2, so such

equations (arising when ε = −1) need not be considered separately. Several restrictions

on q can be derived, but a full solution is elusive, so in Section 4.2 we prove instead that

An(q) and 2An(q) (and C2(q)) do not have square class sizes.

Apart from the families already mentioned, there are no other simple groups which

can have square sizes.

4.1.3 Sporadic Groups

The sporadic groups (we include the Tits group F2
4(2)

′ in the list) do not have square

order, which can be easily checked from Table 4.2.
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4.1.4 Orthogonal Groups: Dn(q) and 2Dn(q2)

The family Dn(q) (n > 3) has order

N =
1

(4, qn − 1)
qn(n−1)(qn − 1)

n−1

∏
i=1

(q2i − 1)

so that we only need to consider

N1 =
(qn − 1)
(4, qn − 1)

n−1

∏
i=1

(q2i − 1).

Moreover 2Dn(q2) (n > 3) has order

N =
1

(4, qn + 1)
qn(n−1)(qn + 1)

n−1

∏
i=1

(q2i − 1)

N1 =
(qn + 1)
(4, qn + 1)

n−1

∏
i=1

(q2i − 1)

so for these cases we deal with more general equations.

If n is even, consider

N2 =
1

(4, qn ± 1)
(qn ± 1)
(q2 − 1)

n−1

∏
i=1

q2i − 1
q2 − 1

.

By Lemma 4.1.3, there is a prime p > (n− 1)/2 so that q2p−1
q2−1 is coprime to the other

factors. Unless n = 4, we can choose p > n/2, and if n = 4, then p = n− 1 = 3 will

work. The factor q2p−1
q2−1 is also coprime to qn±1

q2−1 unless n = 2p which is impossible.

The contribution of (4, qn ± 1) is only interesting in terms of determining squareness

if it is 2. So we consider q2p−1
q2−1 = 1 + q2 + · · ·+ q2(p−1) mod 4. Because q2 ≡ 0, 1 mod 4,

q2p−1
q2−1 is congruent to either 1 or p mod 4. Neither of these is equal to 2 unless p = 2, but

p is an odd prime. Thus, q2p−1
q2−1 must itself be a square which contradicts Lemma 4.1.5.
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If n is odd, let

N2 =
1

(4, qn ± 1)
(qn ± 1)

n−1

∏
i=1

q2i − 1
q2 − 1

.

As before, there is a prime such that q2p−1
q2−1 is coprime to the other factors, except perhaps

qn ± 1. By considering the gcd (using Lemma 4.1.7)

1 =

(
qn ± 1
q± 1

,
q2p − 1
q2 − 1

)

we see that we need only consider

g =

(
q± 1,

q2p − 1
q2 − 1

)
which divides

g′ =
(

q2 − 1,
q2p − 1
q2 − 1

)
= 1, p.

Hence we see that q2p−1
q2−1 is a square or p times a square. The latter is impossible by

Corollary 4.1.6. Thus in both cases it must be that q2p−1
q2−1 is a square, which means by

Lemma 4.1.5 that p = 5 and q2 = 3, which cannot be.

4.1.5 Chevalley Groups: E6(q), E7(q), E8(q), F4(q), and G2(q)

The family E6(q) has order

N =
1

(3, q− 1)
q36(q12 − 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1)
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which isn’t square unless

N1 =
1

(3, q− 1)
(q12 − 1)
(q− 1)

(q9 − 1)
(q− 1)

(q8 − 1)
(q− 1)

(q6 − 1)
(q− 1)

(q5 − 1)
(q− 1)

(q2 − 1)
(q− 1)

is. But we know by Lemma 4.1.4 that (q5−1)
q−1 is coprime to the other factors and so it

must either be a square, or 3 times a square. By Lemma 4.1.5 it can only be a square if

q = 3, in which case the order of E6(3) = 96708364468594278400 is not a square. But if

g = (q− 1, q5−1
q−1 ) > 1, then g = 5 and hence (q5−1)

q−1 is not divisible by (3, q− 1).

A similar situations arises for the family E7(q).

N =
1

(2, q− 1)
q63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1)

N1 =
(q2 − 1)
(2, q− 1)

(q18 − 1)
(q2 − 1)

(q14 − 1)
(q2 − 1)

(q12 − 1)
(q2 − 1)

(q10 − 1)
(q2 − 1)

(q8 − 1)
(q2 − 1)

(q6 − 1)
(q2 − 1)

In this case the factor q14−1
q2−1 is coprime to the rest (except perhaps the first). Now

(q2 − 1, q14−1
q2−1 ) = 1, 7 and the first case is ruled out by 4.1.5 and the second by 4.1.6.

Exactly the same arguments (including the same factor) hold for E8(q):

N = q120(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1)

N1 =
(q30 − 1)
(q2 − 1)

(q24 − 1)
(q2 − 1)

(q20 − 1)
(q2 − 1)

(q18 − 1)
(q2 − 1)

(q14 − 1)
(q2 − 1)

(q12 − 1)
(q2 − 1)

(q8 − 1)
(q2 − 1)

.

A different argument shows that the family F4(q) does not have square order.

N = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1)

N1 =
(q12 − 1)
(q6 − 1)

(q8 − 1)
(q2 − 1)

(q6 − 1)
(q6 − 1)

(q2 − 1)
(q2 − 1)

= (q6 + 1)(q4 + 1)(q2 + 1)
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N2 =
(q6 + 1)
(q2 + 1)

(q4 + 1)
(q2 + 1)
(q2 + 1)

= (q4 − q2 + 1)(q4 + 1) = q8 − q6 + 2q4 − q2 + 1

N3 = 64q8 − 64q6 + 128q4 − 64q2 + 64

= (8q4 − 4q2 + 7)2 − 8q2 + 15.

Since N3 cannot be too close to a square, we must have

∣∣∣−8q2 + 15
∣∣∣ ≥ 2(8q4 − 4q2 + 7)− 1 = 16q4 − 8q2 + 13

so that

−8q2 + 15 ≥ 16q4 − 8q2 + 13

2 ≥ 16q4

which has no solutions of interest, or

8q2 − 15 ≥ 16q4 − 8q2 + 13

0 ≥ 16q4 − 16q2 + 28

which is not satisfied for any real q. Thus, N3 is not a square.

Next we consider the simple groups G2(q) with q 6= 2. Their order is given by

N = q6(q6 − 1)(q2 − 1)

which is square if and only if

N1 =
(q6 − 1)
(q2 − 1)
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is. But N1 cannot be a square by Lemma 4.1.5.

4.1.6 Twisted Groups: 2E6(q2), 3D4(q3) 2B2(22n+1), 2F4(22n+1), 2G2(32n+1)

The family 2E6(q2) requires a slightly different approach.

N =
1

(3, q + 1)
q36(q12 − 1)(q9 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1)

N1 =
1

(3, q + 1)
(q12 − 1)(q9 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1)

N2 =
1

(3, q + 1)
(q12 − 1)
(q2 − 1)

(q9 + 1)
(q + 1)

(q8 − 1)
(q2 − 1)

(q6 − 1)
(q2 − 1)

(q5 + 1)
(q + 1)

Since (q5 + 1)/(q + 1) is coprime to the other factors by Lemma 4.1.7, we only need to

consider its gcd with respect to the term (3, q + 1). But q + 1 can only share a factor of

5 in common with (q5 + 1)/(q + 1) (again by 4.1.7), and so (q5 + 1)/(q + 1) must be

square.

Consider now the Diophantine equation

y2 = q4 − q3 + q2 − q + 1. (4.8)

Multiply by 22 so that

(2y)2 = 4q4 − 4q3 + 4q2 − 4q + 4

(2y)2 = (2q2 − q + 1)2 − q2 − 2q + 3.

In order to avoid being too close to another square, we must have that

2(2q2 − q + 1) ≤ q2 + 2q− 3

4q2 − 2q + 2 ≤ q2 + 2q− 3
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3q2 − 4q + 5 ≤ 0

which is not satisfied by any real numbers. Since there are no solutions to this equation,

there are no solutions to (4.8). Hence, q5+1
q+1 is not a square and neither is N.

The case of 3D4(q3) is simpler.

N = q12(q8 + q4 + 1)(q6 − 1)(q2 − 1)

N1 = (q8 + q4 + 1)(q6 − 1)(q2 − 1)

N2 =
(q12 − 1)
(q4 − 1)

(q6 − 1)
(q2 − 1)

N3 =
(q12 − 1)(q6 − 1)

(q2 + 1)

N4 =
(q6 + 1)
(q2 + 1)

= q4 − q2 + 1

But N4 is too close to the square q4 to be a square itself.

Calculations for the family 2B2(22n+1) are even easier.

N = q2(q2 + 1)(q− 1)

N1 = (q2 + 1)(q− 1)

Because N1 ≡ −1 mod 4, it cannot be a square.

The family 2F4(q) with q = 22n+1 has order

N = q12(q6 + 1)(q4 − 1)(q3 + 1)(q− 1)

and so the following must also be square

N1 = (q6 + 1)(q2 + 1)(q + 1)(q− 1)(q3 + 1)(q− 1)
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N2 =
(q6 + 1)
(q2 + 1)

(q3 + 1)
(q + 1)

= (q4 − q2 + 1)(q2 − q + 1).

Neither factor of N2 is a square, so their gcd must be nontrivial. However,

(q4 − q2 + 1, q2 − q + 1) = (q4 − q2 + 1− (q2 + q− 1)(q2 − q + 1), q2 − q + 1)

= (−2q + 2, q2 − q + 1).

Since q2 − q + 1 is odd, this is further equal to

(q− 1, q2 − q + 1) = (q− 1, q2 − q + 1− (q2 − q)) = (q− 1, 1) = 1.

Finally, the family 2G2(q) for q = 32n+1 has order q3(q3 + 1)(q− 1), which is not a

square given that q3 is not a square.

4.2 Class Sizes in Simple Groups

As seen in the previous section no simple group can have square conjugacy class sizes

with the possible exceptions of B2(p) ∼= C2(p), An(q), and 2An(q). First we note that

the groups of interest are the classical groups C2(p) = PSp2·2(q), An(q) = PSLn+1(q)

and 2An(q) = PSUn+1(q2).

It is possible to calculate class sizes in these groups, though the formulas tend to be

quite complicated [Wal63]. We shall not reproduce the theory here, but the basic idea

is that in GLn(q) the Jordan canonical form determines the conjugacy class. Thus, the

conjugacy classes are identified by irreducible monic polynomials (whose roots are the

eigenvalues) as well as block sizes. From this information centralizer sizes can then be

calculated. To simplify our calculations, we will consider only unipotent elements, i.e.,

elements whose eigenvalues are all 1. Then the only polynomials involved are x− 1,
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and the block sizes correspond to partitions of m.

We shall use µ to indicate a partition of m, µ′ to be its conjugate (or dual) partition,

and mi(µ) to be the number of parts of µ of size i. Given these definitions we have

the formulas below for centralizer sizes. We shall use q∗ to indicate some power of

q. The exact power of q is usually unimportant since q will always be coprime to the

other terms. We use gµ to indicate a unipotent element of the appropriate group with a

corresponding partition µ.

CGLm(q)(gµ) = ∏
i

∣∣∣GLmi(µ)
(q)
∣∣∣

CGUm(q2)(gµ) =

q∗∏i

∣∣∣GUmi(µ)
(q2)

∣∣∣ q odd

q∗∏i

∣∣∣GLmi(µ)
(q2)

∣∣∣ q even

CGSp2m(q)(gµ) =

q∗∏i

∣∣∣GSp2mi(µ)
(q)
∣∣∣ i odd

q∗∏i

∣∣∣O±mi(µ)
(q)
∣∣∣ i even

For the symplectic case, all even parts of µ must have even multiplicity. In addition,

there is a choice of sign for the even parts which gives rise to the different orthogonal

groups in those cases (hence the appearance of O±mi(µ)
(q)).

Theorem 4.2.1. There are no non-abelian simple groups all of whose conjugacy class sizes are

square.

Proof. The only symplectic groups of interest are C2(q) = PSp2·2(q) with q an odd

prime. Consider the symplectic group with partition µ = (2, 2) of 2 · 2, and both choices

of sign. Let G = GSp4(q) and g(2,2) a unipotent element of G corresponding to the

partition (2, 2). Then

∣∣∣CG(g(2,2))
∣∣∣ = q∗

∣∣O±2·2(q)∣∣ = q∗(q2 ± 1)(q2 − 1)
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∣∣∣gG
(2,2)

∣∣∣ = q∗
(q4 − 1)(q2 − 1)
(q2 ± 1)(q2 − 1)

= q∗(q2 ∓ 1)

When factoring by the center (scalar matrices) the class sizes stay the same because the

only central unipotent element is the identity. So we have that both q2 + 1 and q2 − 1

must be square, but clearly neither can be.

We now turn our attention to the linear and unitary groups, which are similar,

and rule out a few small cases. Let G be either PSLm(q) or PSUm(q) with ε = ±1

accordingly. If m = 2, then

|G| = q
(2, q− ε)

(q2 − 1).

Clearly q must be a square itself, say r2. If q is even, then (2, q− ε) = 1, and |G| is not

square. Otherwise (r4 − 1)/2 must be a square, but this is impossible by Theorem 4.1.8,

and so m 6= 2.

For m = 3 we have

|G| = q2·3/2

(3, q− ε)
(q2 − ε2)(q3 − ε3)

so that

N =
q3

(3, q− ε)

(q2 − ε2)

(q− ε)

(q3 − ε3)

(q− ε)

must also be square. The last two factors are coprime, and (q3−ε3)
(q−ε)

is not square by

Lemma 4.1.5 Nor is it 3 times a square by Corollary 4.1.6 (since q must be a square).

For m = 5

|G| = q∗

(5, q− ε)
(q2 − ε2)(q3 − ε3)(q4 − ε4)(q5 − ε5).
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There are an even number of terms, so dividing each by q − ε does not change the

squareness of the number. Because of this, (q3−ε3)
(q−ε)

= ((εq)3−1)
((εq)−1) is coprime to all other

terms and not a square by Lemma 4.1.5.

In fact, similar arguments hold for all larger odd m. This is because we have a large

prime p > m/2, and qp−ε
q−ε cannot be square. (It is easy to check the few cases when qp−ε

q−ε

can be a square, namely q = 3 and p = 5, do not lead to a square group order.) Thus, in

order for |G| to be square it must be that (m, q− ε, qp−εp

q−ε ) = p. Since 2p > m we have

m = p, in which case there is another prime p′ between (m− 1)/2 and p for which
qp−εp

q−ε cannot be square.

This leaves the cases when m ≥ 4 is even. In these cases there must be at least one

solution to the Diophantine equation

p
qp − ε

q− ε
= y2

for p an odd prime. If p > 3 (m ≥ 6), then from [Rot83, Theorems 5” and 6’] we have

that q ≡ 1 mod 4.

Since q is odd, both linear and unitary groups can be treated simultaneously. Let

Gm(q) denote either GLm(q) or GUm(q2). We will consider two partitions of m, µ1 =

(2, 1, . . . ) and µ2 = (2, 2, 1, . . . ), which lead to class sizes of

∣∣∣CGm(q)(gµ1)
∣∣∣ = q∗|G1(q)||Gm−2(q)| = q∗(q− ε)

m−2

∏
i=1

(qi − εi);

∣∣∣gG
µ1

∣∣∣ = q∗ ∏m
i=1(q

i − εi)

(q− ε)∏m−2
i=1 (qi − εi)

= q∗
(qm − εm)(qm−1 − εm−1)

(q− ε)
;

∣∣∣CGm(q)(gµ2)
∣∣∣ = q∗|G2(q)||Gm−4(q)| = q∗(q− ε)(q2 − 1)

m−4

∏
i=1

(qi − εi);

∣∣∣gG
µ2

∣∣∣ = q∗ ∏m
i=1(q

i − εi)

(q− ε)(q2 − 1)∏m−4
i=1 (qi − εi)
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= q∗
(qm − εm)(qm−1 − εm−1)

(q− ε)

(qm−2 − εm−2)(qm−3 − εm−3)

(q2 − 1)
.

When passing to the SLm(q) or SUm(q) the classes split into (m, q− ε) classes of equal

size, and factoring out by the center does not change the class size.

When m = 4 (and q odd) the class size of gµ1 in G, the appropriate simple group, is

∣∣∣gG
µ1

∣∣∣ = q∗
(q4 − ε4)(q3 − ε3)

(4, q− ε)(q− ε)
.

Combining with the group order

|G| = q∗

(4, q− ε)
(q2 − ε2)(q3 − ε3)(q4 − ε4)

we find that

N =
q2 − ε2

q− ε
= q + ε

is a square. On the other hand, by combining the two conjugacy class sizes, we know

that

N1 =
(q2 − ε2)(q1 − ε1)

(q2 − 1)
= q− ε

must also be square. But of course q− ε and q + ε cannot both be square.

If m = 4 and q is even then, (4, q− ε) = 1 so

|G| = q∗(q2 − ε2)(q3 − ε3)(q4 − ε4)

which is square if and only if

N1 = q∗(q3 − ε3)(q2 + 1)
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= q∗(q− ε)
(q3 − ε3)

(q− ε)
(q2 + 1)

is as well. However, the gcd

(q− ε, q2 + 1) = (q− ε, q2 + 1− (q + ε)(q− ε))

= (q− ε, 1 + ε2) = (q− ε, 2) = 1

so that (q− ε) is coprime to q2 + 1, which is also coprime to (q3−ε3)
(q−ε)

(by Lemma 4.1.7).

This means that q2 + 1 must be square, which is impossible.

If m > 4 is even, then by combining the group order with the class size of gµ1 , we

find that

N =
m−2

∏
i=1

(qi − εi)

and

N1 =
m−2

∏
i=1

(qi − εi)

(q− ε)

must be square. Since m ≥ 6, we will have an odd prime p > (m− 2)/2 and a factor

which is coprime to all others. By Lemma 4.1.5 only q = 3 and p = 5 is possible. This

means that m < 12 since 5 > (m− 2)/2. All such m are easily checked to not give rise

to square group order.

And so there are no simple groups with square class sizes. �

Remark 4.2.2. As m increases the number of simultaneous Diophantine equations to

solve increases and so the likelihood of |G| being square decreases. For this reason it is

likely that symplectic groups are the only simple groups with square order.
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Chapter 5

Examples of Transposable Groups

Relatively few examples of non-abelian transposable groups are known. Since

such groups are nilpotent, only directly indecomposable p-groups need to be

considered. In this chapter we discuss the known families and some methods of creating

new transposable groups.

We first introduce the method of grafting two transposable groups together. This

method yields abelian groups when applied to abelian groups, but it allows us to turn a

non-abelian transposable group into an infinite family of examples. It also allows us to

concentrate on certain basic families of groups which we call stem groups, mimicking

the terminology of isoclinism. Our method is reminiscent of grafting roots or branches

onto a group, so the terminology is fitting.

Then, we enumerate all known stem groups. All of these are self-dual, but grafting

allows us to create transposable groups which are not self-dual. It is an interesting

question whether there are any transposable groups that are not self-dual in an essential

way. Finally, we prove the transposability of a family of stem groups which has not

appeared in the literature.
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5.1 Constructions

We now explain the important construction of grafting.

Proposition 5.1.1. Let G be a transposable group, x ∈ Z(G) and X = 〈x〉. Furthermore,

suppose that X ∩ G′ = 1, then G/X is transposable.

Proof. Let g ∈ G \ X and ḡ its image in G/X. We first show that
∣∣gG
∣∣ = ∣∣ḡG/X

∣∣. To find

ḡG/X, take gG and all X-translates of it, and then factor out by X. Since X intersects

G′ trivially and is central, the X-translates are all distinct and all the same size. Thus,∣∣ḡG/X
∣∣ = ∣∣gG

∣∣ |X|
|X| =

∣∣gG
∣∣.

The concept dual to factoring by a cyclic group is taking a linear character λ ∈ Irr(GT)

and restricting all characters to H = ker λ. If all the restrictions are irreducible, then

these (after removing duplicates) give the character table of H. This is not true in general,

but comes from what we know of the character table of G/X. The character degrees

remain the same and are the same as the conjugacy class sizes of G/X. The duplicate

characters will be the same as the duplicate conjugacy classes which were merged in

the character table of G/X. Hence ∑χ∈Irr(H) χ(1)2 = ∑K∈Cl(G/X)|K| = |G/X| = |H|.

Since x is a central element, its dual, λ, is a linear character of the same order. Hence,

ker λ has index |X| in GT. Since x 6∈ G′, the kernel of λ does not contain the center of GT

and Z(GT) contains a full set of right coset representatives of H. The inertia subgroup

of any ϕ ∈ Irr(H) is therefore all of GT because g can be chosen from the center when

calculating ϕg = ϕ(ghg−1). Thus, ϕH is homogeneous for all ϕ ∈ Irr(G).

Because Z(GT) contains a full set of right coset representatives of H, there is no

fusion in H; i.e., every conjugacy class of H is also a conjugacy class of G. This means

that the operations performed in calculating the character tables of H and G/X are

exactly the duals of each other. Therefore, the number of conjugacy classes of H is the

same as the number of irreducible characters, and the ϕH must be irreducible and not
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only homogeneous. And thus we see that the character table of H is the transpose of

that of G/X. �

Corollary 5.1.2. If G is transposable and NCG such that G = NZ(G), then N is transposable.

Proof. The dual property to X ∩ G′ = 1 is that NZ(G) = G, and the dual property to

X ≤ Z(G) is that N ≥ G′. However, N ≥ G′ is implied because elements of G have

the form g = zn for z ∈ Z(G) and n ∈ N. Since central elements are irrelevant when

calculating commutators,

[z1n1, z2n2] = [n1, n2]

and so N ≥ G′. �

By starting with two transposable groups G1, G2 (in particular one may be abelian)

we can create new (directly indecomposable) transposable groups. First, let G =

G1 × G2, and choose gi ∈ Z(Gi) so that (g1, g2) ∈ Z(G). If, say, 〈g2〉 ∩ G′2 = 1, then

〈(g1, g2)〉 ∩ G′ = 1 and so G/〈(g1, g2)〉 will be transposable.

We often think of this as adding an abelian group rather than combining two groups,

though combining two non-abelian is certainly possible as well. The additional elements

either “hang down” from the top of the group, or “grow up” from the bottom. In fact,

starting with a transposable group, we can choose g, h ∈ G with gp = hp = 1, g 6∈ G′,

h ∈ Z(G) and create a new group with a new power map of gp = h and hp = 1.

When adding an abelian group we do not change the commutator structure, only

the power map of the original group. Therefore, this construction doesn’t change the

nilpotency class or the derived length of the groups.

Another method, called inflation, can be used to turn a transposable group into a

family of such groups. Inflation results in transposable groups in many cases, but its
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efficacy has not been proven in general. Let G = 〈gi〉 be a group with a presentation

such that every generator gi has a relation of the form gp
i = xi, where xi is some product

of the other generators. Fix q = pa, and define the inflated group Hq = 〈gi〉 to have the

same relations as G, except that gq
i = xi. Obviously, an inflated abelian group is abelian.

5.2 Examples

Apart from abelian groups, there are two families of finite transposable groups found

in the literature, to which we add a third.

The first family, discussed in [Han97], exists for p ≥ 3 and has order p5. It has a

presentation of the form

G =
〈

a1, a2, b, c1, c2

∣∣∣ [a1, a2] = b, [ai, b] = ci, ap
i = ζi, bp

= cp
i = 1

〉

where ζi is central, and unlisted commutators of generators are trivial. The possible

values of ζi leading to distinct groups is found in [Jam80] but are irrelevant for our

purposes.

It is clear from the presentation that Z(G) = 〈ci〉 ∼= Z2
p and G′ = 〈b, ci〉. Moreover,

G/Z(G) is an extraspecial group of type +. The nilpotency class is 3 and the derived

length is 2. It is not difficult to see that all normal subgroups of G are either contained

in the center, or contain the commutator subgroup. This leads to the normal subgroup

lattice in Figure 5.1. Of course, the number of normal subgroups depends on the prime

p.

The second family appears to be unknown as being self-dual. It exists for p ≥ 5 and

has order p7. For the cases with p ≤ 11, these groups are included in the database of

small groups available in GAP [GAP]. Its structure is strikingly similar to the previous
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· · ·

· · ·

1

Z(G) = γ3(G)

Z2(G) = γ2(G)

G

Figure 5.1: Hanaki’s Groups

· · ·

· · ·

1

Z(G) = γ5(G)

Z2(G) = γ4(G)

Z3(G) = γ3(G)

Z4(G) = γ2(G)

G

Figure 5.2: Class 5 Groups

family. It has a presentation of

G =
〈

a1, a2,b1, b2, b3, c1, c2
∣∣

[a2, a1] = b1, [bi=1,2, a1] = bi+1, [b3, a1] = c1,

[b2, a2] = [b3, a2] = [b1, b2] = c2, ap
i = ζi, bp

i = cp
i = 1

〉
where ζi is central and trivial commutators are not listed.

It is clear from the presentation that Z(G) = 〈ci〉 ∼= Z2
p and G′ = 〈bi, ci〉. The

nilpotency class is 5 and the derived length is 3. Similar to before, G has coclass 2 and

G/Z3(G) is an extraspecial group of type +. Its normal subgroup lattice is similar and

given in Figure 5.2.
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We shall prove that this family of groups is transposable in the next section. Our

attempts to construct similar groups of class 7 have failed. More precisely, we assumed

a presentation of the form

G =
〈

a1, a2, b1, b2, b3, b4, b5, c1, c2
∣∣[a2, a1] = b1, [bi=1,2,3,4, a1] = bi+1, [b5, a1] = c1,

[bi, a2] = ζi, [bi, bj] = ζi,j,

ap
i = bp

i = cp
i = 1

〉
with ζi and ζi,j powers of c2. Groups created this way fail to have square class sizes.

The final family of self-dual groups is a generalization of the Suzuki 2-groups A(n, θ)

and has been studied in several papers [Rie99; Han96b; Sag03]. The nontrivial claims

below are proven in one or more of those papers.

Let q = pa be a prime power, s and l be positive integers, and θ a generator of the

Galois group of Fqs over Fq. Furthermore, assume that s is odd and (s, l!) = (s, q) =

(s, q− 1) = 1. Then, we can define a group G = G(q, s, l), whose elements are l-tuples

of elements of Fq and multiplication c = ab given by

ci = ai +
i−1

∑
j=1

aθ j

i−jbj + bi.

This can be thought of as multiplication of skew polynomials of the form 1 + ∑l
i=1 aixi

modulo the ideal
(
xl+1), see [Rie99]. It is also easily seen to be equivalent to

a = (a1, a2, . . . , al) =



1
a1 1
a2 aθ

1 1
a3 aθ

2 aθ2

1 1
...

... . . . . . .
al aθ

l−1 aθ2

l−2 · · · aθl−1

1 1


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with the regular matrix multiplication.

The lower and upper central series of G coincide and each central series factor is

isomorphic to the additive group of Fqs , i.e., elementary abelian of order qs. In fact,

the central series is easily defined in terms of “layers” in the matrix or fixed powers of

x. Clearly G(q, s, l)/Z(G(q, s, l)) ∼= G(q, s, l − 1). The nilpotency class of G is l, and its

derived length is dlog2(l + 1)e.

The group G has ql−i(qs − 1) (or qs if l = i) irreducible characters of degree

q(l−i)(s−1)/2 and the same number of conjugacy classes of size q(l−i)(s−1).

Not all such groups are self-dual. If l > p then G(pa, s, l) is not self-dual, but when

l = s− 1 < p it is self-dual [HO97]. This gives a construction for transposable groups

with arbitrarily large nilpotency class. It is unknown whether G(pa, s, l) is self-dual for

all l ≤ p, but at least G(p, 3, 2) is self-dual, so it is reasonable to conjecture that they are

when l ≤ p.

5.3 Self-duality of a certain family of p-groups

For a fixed prime p > 3, let G be the class 5 p-group defined previously, namely the

group with presentation

G =
〈

a1, a2,b1, b2, b3, c1, c2
∣∣

[a2, a1] = b1, [bi=1,2, a1] = bi+1, [b3, a1] = c1,

[b2, a2] = [b3, a2] = [b1, b2] = c2, ap
i = bp

i = cp
i = 1

〉
.

There is a privileged chain of normal subgroups G > N > γ2 > γ3 > γ4 > γ5 > C > 1

where N = 〈a2, bi, ci〉, γi = γi(G), and C = 〈c2〉. Each subgroup has index p in the

previous (recall the normal subgroup lattice in Figure 5.2).
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We divide the conjugacy classes into different sets as listed below. For each set we

give a complete list of class representatives. Unless otherwise noted, all exponents

range from 0 to p− 1. The sizes of all conjugacy classes are p2 except in the center and

in Cl6(G) where they are p4.

Cl0(G) = C =
{
(c f

2)
G
}

Cl1(G) = Z(G) \ C =
{
(ce

1c f
2)

G
∣∣∣ e 6= 0

}
Cl2(G) = Z2(G) \ Z(G) =

{
(bd

3)
G
∣∣∣ d 6= 0

}
Cl3(G) = Z3 \ Z2(G) =

{
(bc

2ce
1)

G
∣∣∣ c 6= 0

}
Cl4(G) = Z4 \ Z3(G) =

{
(bb

1bd
3ce

1)
G
∣∣∣ b 6= 0

}
Cl5(G) = N \ Z4(G) =

{
(aa

2bc
2bd

3ce
1)

G
∣∣∣ a 6= 0

}
Cl6(G) = G \ N =

{
((a1aa

2)
bcc

2)
G
∣∣∣ b 6= 0

}

The case of Cl0(G) and Cl1(G) is obvious. For Cl6(G), note that conjugation by a2,

b1, b2, and b3, can be used to produce any desired power of b1, b2, b3 and c1. However,

the power of c2 cannot be chosen in this way. Conjugating by a1 will never produce c2,

so the class representatives are as stated.

For the rest of the classes, conjugation by a1 can be used to get desired powers of the

“missing” element. For example, the leading element of Cl5(G) is a2, so powers of b1

are “missing” because they can be obtained through conjugation by a1. Of course, only

powers of a single element can be produced in this way. Powers of c2 can be obtained

through conjugation by a2, and the classes are as stated.

Likewise, we group the irreducible characters into disjoint sets. To determine the

irreducible characters in each class takes more work than in the case of conjugacy
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classes. We do this in the following section.

Irr0(G) = {χ ∈ Irr(G) | ker χ ⊇ N}

Irr1(G) = {χ ∈ Irr(G) | ker χ ⊇ γ2(G), ker χ 6⊇ N}

Irr2(G) = {χ ∈ Irr(G) | ker χ = γ3(G)}

Irr3(G) = {χ ∈ Irr(G) | ker χ = γ4(G)}

Irr4(G) = {χ ∈ Irr(G) | ker χ = γ5(G)}

Irr5(G) = {χ ∈ Irr(G) | ker χ = C}

Irr6(G) = {χ ∈ Irr(G) | ker χ ⊆ Z(G), ker χ 6= C}

5.3.1 Determination of Characters

The characters in Irr0(G) are obvious. We shall save Irr6(G) for later, and deal with

Irr1(G) through Irr5(G) now.

Because [G, N] = 〈c2〉, it is easy to see that N/C is an abelian group with generators

a2, b1, b2, b3, and c1. Fix ω, a primitive pth root of unity, and define ϕa2 ∈ Irr(N/C) as

ϕa2(aa
2bb

1bc
2bd

3ce
1) = ωa.

Define ϕb1 , ϕb2 , ϕb3 , and ϕc1 similarly, and then any χ ∈ Irr(N/C) is the product of

powers of these characters. We then induce these characters from N/C to G/C and lift

to G.

The powers of a1 give a set of coset representatives for N. Using x = aa
2bb

1bc
2bd

3ce
1 and

χ = ϕ
j
a2 ϕk

b1
ϕl

b2
ϕm

b3
ϕn

c1
it is a long, but simple calculation to show

(aa
2bb

1bc
2bd

3ce
1)

ai
1 = aa

2bb+ia
1 bc+ib+a( i

2)
2 bd+ic+b( i

2)+a( i
3)

3 ce+id+c( i
2)+b( i

3)+a( i
4)

1
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and then

χG(x) =
p−1

∑
i=0

χ◦
(

aa
2bb+ia

1 bc+ib+a( i
2)

2 bd+ic+b( i
2)+a( i

3)
3 ce+id+c( i

2)+b( i
3)+a( i

4)
1

)
.

Since χ is linear on N/C, we have

=
p−1

∑
i=0

ϕ
j
a2(aa

2)ϕk
b1
(bb+ia

1 )ϕl
b2

(
bc+ib+a( i

2)
2

)
ϕm

b3

(
bd+ic+b( i

2)+a( i
3)

3

)
ϕn

c1

(
ce+id+c( i

2)+b( i
3)+a( i

4)
1

)
χG(x) = ω ja+kb+lc+md+ne

p−1

∑
i=0

ωkia+lib+la( i
2)+mic+mb( i

2)+ma( i
3)+nid+nc( i

2)+nb( i
3)+na( i

4). (5.1)

Proposition 5.3.1. Inducing nontrivial characters from N/C to G/C preserves irreducibility.

Proof. With notation as before we have

[χG/C, χG/C]G/C = [χG/C|N/C, χ]N/C

=
1

|N/C| ∑
x∈N/C

χG(x)χ(x)

=
1
p5

p−1

∑
i,a,b,c,d,e=0

ωkia+lib+la( i
2)+mic+mb( i

2)+ma( i
3)+nid+nc( i

2)+nb( i
3)+na( i

4)

and since e doesn’t appear in the sum, it simplifies to

=
1
p4

p−1

∑
i,a,b,c,d=0

ωkia+lib+la( i
2)+mic+mb( i

2)+ma( i
3)+nid+nc( i

2)+nb( i
3)+na( i

4).

Considering the exponent d we find

=
1
p4

p−1

∑
i,a,b,c,d=0

ωkia+lib+la( i
2)+mic+mb( i

2)+ma( i
3)+nc( i

2)+nb( i
3)+na( i

4)

{
p ni = 0
0 ni 6= 0
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and if n 6= 0, then i must be 0 and the whole sum simplifies to p4. We now consider the

case when n = 0 and eliminate the exponent c using the same method.

=
1
p3

p−1

∑
i,a,b,c=0

ωkia+lib+la( i
2)+mic+mb( i

2)+ma( i
3)

=
1
p3

p−1

∑
i,a,b=0

ωkia+lib+la( i
2)+mb( i

2)+ma( i
3)

{
p mi = 0
0 mi 6= 0

Again if m 6= 0, then the sum simplifies to p3, so we consider m = 0, and so on

=
1
p2

p−1

∑
i,a,b=0

ωkia+lib+la( i
2) =

1
p2

p−1

∑
i,a=0

ωkia+la( i
2)

{
p ci = 0
0 ci 6= 0

=
1
p

p−1

∑
i,a=0

ωkia = 1

since not all of j, k, l, m, and n can be 0. �

Define ϕa1 in the manner similar to before, namely as the character (this time of G)

which takes value ω on a1 and 1 on the other generators. We shall use ϕa2 to indicate

either a character of N or of G defined in the same way and distinguish based on

context.

Proposition 5.3.2. The sets Irr0(G) through Irr5(G) can be parametrized as

Irr0(G) =
{

ϕi
a1

}
,

Irr1(G) =
{

ϕi
a1

ϕ
j
a2

∣∣∣ j 6= 0
}

,

Irr2(G) =
{
(ϕk

b1
)G
∣∣∣ k 6= 0

}
,

Irr3(G) =
{
(ϕ

j
a2 ϕl

b2
)G
∣∣∣ l 6= 0

}
,

Irr4(G) =
{
(ϕ

j
a2 ϕk

b1
ϕm

b3
)G
∣∣∣m 6= 0

}
,

Irr5(G) =
{
(ϕ

j
a2 ϕk

b1
ϕl

b2
ϕn

c1
)G
∣∣∣ n 6= 0

}
.

76



Corollary 5.3.3. The characters in Irr0(G) through Irr5(G) comprise all characters of G/C.

Proof. The characters in Irr2(G) through Irr5(G) have degree p, so simply calculate

5

∑
i=0
|Irri(G)|χ(1)2 = p + p(p− 1) + p2(p− 1) + p3(p− 1) + p4(p− 1) + p5(p− 1)

= p6 = |G/C|. �

Proof of 5.3.2. The cases of Irr0(G) and Irr1(G) are obvious. All the other cases are

basically identical, so we work through Irr3(G) as an example. In this case, l 6= 0 and

m = n = 0, so (5.1) simplifies to

χG(x) = ω ja+kb+lc
p−1

∑
i=0

ωkia+lib+la( i
2).

If a = b = 0 (x ∈ Cl1,2,3(G)), then χG(x) = pχ(x), and if a = 0, b 6= 0 (x ∈ Cl4(G)) then

χG(x) = 0. It is always the case that χG(x) = 0 when χ ∈ Irri(G) and g ∈ Cli+1(G)

Now suppose a 6= 0. Then the choice of k is redundant which can be seen by letting

k = k′ + l and relabeling the sum by replacing i with i− 1. Relabeling the sum doesn’t

change it since the terms depend only on the value of i mod p. These changes give

χG(x) = ω ja+(k′+l)b+lc
p−1

∑
i=0

ωk′ia+lib+la( i
2)−k′a−lb

= ω(j−k′)a+(k′+l−l)b+lc
p−1

∑
i=0

ωk′ia+lib+la( i
2)

= ω(j−k′)a+k′b+lc
p−1

∑
i=0

ωk′ia+lib+la( i
2)

so that changing the value of k is equivalent to changing the value of j. Thus, there are
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p(p− 1) distinct characters, namely

Irr3(G) =
{
(ϕ

j
a2 ϕl

b2
)G
∣∣∣ l 6= 0

}
.

For the general case, consider the exponent of ω as a polynomial in i. Once the

leading coefficient is fixed, the next term can vary arbitrarily. The result is multiplication

by a power of ω, but such multiplication can also be achieved by changing the lower

terms. What this means is that the second to last exponent in χ = ϕ
j
a2 ϕk

b1
ϕl

b2
ϕm

b3
ϕn

c1
is

irrelevant. Notice that this is the dual of the case for conjugacy classes. �

Characters in Irr6(G)

The case of Irr6(G) is quite different. Let x be an element of G \ N, then 〈x〉G′ is one of

p different groups. We may assume for simplicity that x = a1aa
2 with 0 ≤ a < p, and

define Hx = 〈x, b2, b3, c1, c2〉. Inducing certain linear characters from Hx will give rise to

irreducible characters of degree p2. Let χ be a linear character of Hx. Of course, [Hx, Hx]

must be in its kernel. Because [b2, b3] = 1, H′x = 〈[b2, x], [b3, x]〉 so that |H′x| = p2. In

particular [b3, a1aa
2] = c1ca

2 is in the kernel. Since [b2, x] = b3ca
2 is not central, c2 is not

forced to be in the kernel of χ. In fact, c2 cannot be in the kernel or the induced character

wouldn’t be in Irr6(G).

Thus, we have p independent choices for each of χ(x) and χ(b2), and p− 1 choices

for the value of χ(c2). It can happen that xp 6= 1, in which case χ(x)p is a fixed power

of χ(c2), but we can choose such a value in p ways. We shall see, however, that the

choices for χ(b2) are unimportant. In the end we have p choices for Hx, each of which

gives p(p− 1) distinct characters of degree p2. Combining these characters with those
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of Irr0,...,5(G) we have

p6 + p4|Irr6(G)| = p6 + p6(p− 1) = p7 = |G|

so that there are enough of these characters once we prove they are irreducible and

distinct.

We must first spend some time calculating the value of χG. It is easy to see that{
bi

1aj
2

∣∣∣ 0 ≤ i, j < p
}

is a set of coset representatives of Hx. Since Cl4(G) and Cl5(G)

intersect Hx trivially, χG = 0 on them. We turn our attention to Cl0,1,2,3(G):

χG(bc
2bd

3ce
1c f

2) =
p−1

∑
i=0

p−1

∑
j=0

χ◦(a−j
2 b−i

1 (bc
2bd

3ce
1c f

2)b
i
1aj

2)

=
p−1

∑
i=0

p−1

∑
j=0

χ(a−j
2 (bc

2bd
3cic

2 )aj
2 · c

e
1c f

2)

=
p−1

∑
i=0

p−1

∑
j=0

χ(bc
2bd

3ce
1c f−ic+j(c+d)

2 )

and since χ is linear on Hx,

= χ(bc
2bd

3ce
1c f

2)
p−1

∑
i=0

p−1

∑
j=0

χ(c−ic+jc+jd
2 )

= χ(bc
2bd

3ce
1c f

2)
p−1

∑
i=0

χ(c2)
−ic

p−1

∑
j=0

χ(c2)
j(c+d).

Unless c = 0 the first sum will be zero. On the other hand, if c = 0 the second sum will

be zero unless d is also 0. If c = d = 0, then we are in the center and

χG(ce
1c f

2) = p2χ(ce
1c f

2) = p2χ(ce
1cae

2 )χ(c f−ae
2 ) = p2χ(c f−ae

2 ). (5.2)

Portions of Cl6(G) intersect Hx. In fact, Cl6(G) can be broken up into p different sets,

each corresponding to Hx for a different x. As noted at the beginning of this section, a
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conjugacy class in Cl6(G) has a representative of the form (a1aa
2)

bcc
2 with b 6= 0. Since

the powers of a1 and a2 are invariant under conjugation, χG = 0 except on a conjugacy

class of the form (xbcc
2)

G. Thus, we only need to consider the value that it takes on such

conjugacy classes:

χG((a1aa
2)

bcc
2) =

p−1

∑
i=0

p−1

∑
j=0

χ◦(b−j
1 a−i

2 (a1aa
2)

bcc
2 ai

2bj
1).

If we consider conjugation by a2, we get (ignoring powers of elements other than b1)

=
p−1

∑
i=0

p−1

∑
j=0

χ◦(b−j
1 (a1aa

2)
bbib

1 · · · cc
2 bj

1).

Of course, conjugation by b1 will not change the power of b1. Hence, this element is in

Hx only if ib = 0, and the sum simplifies to the case i = 0:

=
p−1

∑
j=0

χ◦(b−j
1 (a1aa

2)
bcc

2 bj
1).

We next multiply out xb. There are some extra powers of c2 involved, but they are

irrelevant (as we shall see) and messy so we denote them by ∗ to get

=
p−1

∑
j=0

χ◦(b−j
1 (ab

1aab
2 ba(b

2)
1 ba(b

3)
2 ba(b

4)
3 ca(b

5)
1 cc+∗

2 )bj
1)

=
p−1

∑
j=0

χ◦((b−j
1 ab

1bj
1)aab

2 ba(b
2)

1 ba(b
3)

2 ba(b
4)

3 ca(b
5)

1 cc+∗
2 c−aj(b

3)
2 )

=
p−1

∑
j=0

χ◦(ab
1aab

2 ba(b
2)

1 ba(b
3)

2 ba(b
4)

3 ca(b
5)

1 c∗2

b−jb
2 b−j(b

2)
3 c−j(b

3)
1 c

c+b( j
2)−aj(b

3)−ajb(b
2)−ajb2+ajb(b

2)
2 )
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=
p−1

∑
j=0

χ◦((a1aa
2)

bb−jb
2 b−j(b

2)
3 c−j(b

3)
1 c

c+b( j
2)−aj(b

3)−ajb2

2 ).

We are now in Hx where χ is linear, so

=
p−1

∑
j=0

χ(xb)χ(b−jb
2 )χ(b−j(b

2)
3 c−aj(b

2)
2 )χ(c−j(b

3)
1 c−aj(b

3)
2 )

χ(c
c+b( j

2)−aj(b
3)−ajb2+aj(b

2)+aj(b
3)

2 ).

Since the kernel of χ contains both [b2, a1aa
2] = b3ca

2 and [b3, a1aa
2] = c1ca

2, we have

=
p−1

∑
j=0

χ(x)bχ(b2)
−jbχ(c2)

c+b( j
2)−ajb2+aj(b

2)

= χ(x)bχ(c2)
c

p−1

∑
j=0

χ(b2)
−jbχ(c2)

−jb(ab+a−j+1)/2.

For simplicity we relabel the sum, changing j to −j for a final form of

χG((a1aa
2)

bcc
2) = χ(a1aa

2)
bχ(c2)

c
p−1

∑
j=0

χ(b2)
jbχ(c2)

jb(ab+a+j+1)/2.

Proposition 5.3.4. When enumerating the characters χG ∈ Irr6(G), the choice of χ(b2) is

redundant.

Proof. To show the redundancy of χ(b2), we first substitute χ(b2) = ωm and χ(c2) = ωl .

Fix ζ such that ζ p = ω. Then, χ(x)p = χ(c2)
r for some r depending only on x (it is

possible that r = 0). In other words, χ(x) = ζrl+kp = ζrlωk. This gives

χ((a1aa
2)

bcc
2) =

p−1

∑
j=0

ζrblωbk+cl+jbm+
jbl
2 (a(b+1)+j+1). (5.3)

81



We can now make substitutions of k = k′ −m′ − al
2 (b + 1) and m = m′ − l to find

=
p−1

∑
j=0

ζrblωb(k′−m′− al
2 (b+1))+cl+jb(m′−l)+ jbl

2 (a(b+1)+j+1)

=
p−1

∑
j=0

ζrblωbk′+cl+jbm′−bm′− abl
2 (b+1)−jbl+ jbl

2 (a(b+1)+j+1)

=
p−1

∑
j=0

ζrblωbk′+cl+(j−1)bm′+ jbl
2 (a(b+1)+j+1)− jbl

2 −
abl
2 (b+1)− jbl

2

=
p−1

∑
j=0

ζrblωbk′+cl+(j−1)bm′+ jbl
2 (a(b+1)+(j−1)+1)− bl

2 (a(b+1)−(j−1)+1)

=
p−1

∑
j=0

ζrblωbk′+cl+(j−1)bm′+ (j−1)bl
2 (a(b+1)+(j−1)+1)

which, of course, is the same by re-indexing the sum. Since b 6= 0 we can obtain any

value of m that we want without changing the sum simply by choosing a new k. Thus,

we may assume that m = al2−l
2 , which will be convenient later. It is important to note

that only k was changed to account for different m, so this choice of m will not restrict

our choice of l. �

Proposition 5.3.5. Suppose that ψ ∈ Irr6(G) as described. Then ψ is irreducible.

Proof. Let ψ ∈ Irr6(G), and suppose ϕ ∈ Irr6(G) is induced from another Hx, then their

product is nonzero only on the center where they restrict homogeneously to distinct

characters (they have distinct kernels). Thus, [ψ, ϕ] = 0. This same argument holds for

all ϕ ∈ Irr(G) unless ϕ is linear. Suppose ϕ is linear,

[ψ = χG, ϕ] = ∑
g∈G

ψ(g)ϕ(g)

= ∑
g∈Z(G)

ψ(g)1 + ∑
b,c

∣∣∣(xbcc
2)

G
∣∣∣ψ(xbcc

2)ϕ(xb)
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then ϕ(x) = ω is a pth root of unity.

= 0 + p4 ∑
b,c

ψ(xbcc
2)ω

b

= p4 ∑
b

χ(x)bωb ∑
j

χ(b2)
jbχ(c2)

jb(ab+a+j+1)/2 ∑
c

χ(c2)
c

and since χ(c2) 6= 1, the sum over c is zero.

The final case is when ψ and ϕ are both induced from the same Hx.

|G|[ψ = χG, ϕ = ηG] = ∑
g∈G

ψ(g)ϕ(g)

= ∑
g∈Z(G)

ψ(g)ϕ(g) +
p−1

∑
b=1,c=0

∣∣∣(xbcc
2)

G
∣∣∣ψ(xbcc

2)ϕ(xbcc
2)

= ∑
g∈Z(G)

p4χ(g)η(g) + p4 ∑
b,c

ψ(xbcc
2)ϕ(xbcc

2)

= p6δχ(c2),η(c2) + p4 ∑
i,j,b,c

χ(x)bχ(c2)
cη(x)bη(c2)cχ(c2)

...η(c2)...

For the moment we omit the exponents of χ(c2) and η(c2), though we shall add them

later. As we shall see, c is not involved in these exponents, so we can pull out the sum

over c.

= p6δχ(c2),η(c2) + p4 ∑
c

χ(c2)
cη(c2)c ∑

i,j,b
χ(x)bη(x)bχ(c2)

...η(c2)...

If χ(c2) 6= η(c2), then the sum over c is zero (and the first term is as well), so assume

that χ(c2) = η(c2). That is, the l’s in each exponent are the same. We use the value of

m = (al2 − l)/2 and (5.3) to find

= p6 + p5 ∑
i,j,b

χ(x)bη(x)bωibl(ab+al+a+i)/2ω−jbl(ab+al+a+j)/2
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= p6 + p5 ∑
i,j,b

χ(x)bη(x)bωibl(ab+al+a+i)/2−jbl(ab+al+a+j)/2

Relabeling j = j + i

= p6 + p5 ∑
i,j,b

χ(x)bη(x)bωibl(ab+al+a+i)/2−(j+i)bl(ab+al+a+(j+i))/2

= p6 + p5 ∑
b
(χ(x)η(x))b ∑

j
ω−jbl(ab+al+a+j)/2 ∑

i
ω−ijbl

= p6 + p5 ∑
b
(χ(x)η(x))b ∑

j
ω−jbl(ab+al+a+j)/2 pδj,0

= p6 + p6
p−1

∑
b=1

(χ(x)η(x))b

= p6 + p6

(
−1 + ∑

b=0
(χ(x)η(x))b

)

= p6 + p6(−1 + pδχ(x),η(x)) = |G|δχ,η �

Enumerating the characters in Irr6(G) is slightly different than the other cases.

We would like ϕa1aa
2

to be the character of Ha1aa
2

which sends a1aa
2 to ω and ϕc2 the

character sending c2 to ω. However, for χ ∈ Irr6(G) the value on x must be of the

form χ(x) = ζrl+kp = ζrlωk (see equation (5.3)), which depends on χ(c2) for l and on

x for r. For this reason we must write ϕk,l
a1aa

2c2
to be the character sending c2 7→ ωl and

x 7→ ζrl+kp = ζrlωk. This definition allows us to enumerate the characters of Irr6(G) in

a similar style to the others:

Irr6(G) =

{
(ϕk,l

a1aa
2c2

)G
∣∣∣∣ l 6= 0

}
.

Note that the set also ranges over a.

We now have enough information to prove that G is transposable.
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5.3.2 Duality

For each set of characters, we have already determined the sets of conjugacy classes

that are in the kernel and those where the characters are zero. This information is

summarized in Table 5.1 where, in addition, c indicates that the elements are in the

center of the characters, and ∗ indicates some other relation. Table 5.2 recalls our

labeling of irreducible characters and conjugacy classes.

We define a bijection, called reversal, between conjugacy classes and characters

by “reversing the presentation.” Or, more explicitly, c2 ↔ ϕa1 , c1 ↔ ϕa2 , bi ↔ ϕb4−i ,

a2 ↔ ϕc1 , and a1 ↔ ϕc2 . Reversal between Cl6(G) and Irr6(G) is slightly different with

(a1aa
2)

bcc
2 corresponding to ϕc,b

a1a−a
2 c2

. Note the negation of a in this case.

Table 5.1: Known values of χ(g)

Cl0(G) Cl1(G) Cl2(G) Cl3(G) Cl4(G) Cl5(G) Cl6(G)

Irr0(G) 1 1 1 1 1 1 c
Irr1(G) 1 1 1 1 1 c c
Irr2(G) 1 1 1 1 c 0 0
Irr3(G) 1 1 1 c 0 ∗ 0
Irr4(G) 1 1 c 0 ∗ ∗ 0
Irr5(G) 1 c 0 ∗ ∗ ∗ 0
Irr6(G) c c 0 0 0 0 ∗

Proposition 5.3.6. Reversal defines the transpose of the character table.

Proof. We shall treat Irr6(G) specially and proceed by verifying the self-duality criteria:

χ(g)
√
|gG| = ϕg(hχ)

√
|(hχ)G| when χ ↔ h and g ↔ η. Entries in Table 5.1 that are 0

or 1 can be ignored.

Let χ ∈ Irr1(G) and K ∈ Cl5(G), and let η ∈ Irr5(G) and K′ ∈ Cl1(G) be their duals.
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Table 5.2: Representative characters and classes

Cl0(G) =
{
(c f

2)
G
}

Irr0(G) =
{

ϕi
a1

}
Cl1(G) =

{
(ce

1c f
2)

G
∣∣∣ e 6= 0

}
Irr1(G) =

{
ϕi

a1
ϕ

j
a2

∣∣∣ j 6= 0
}

Cl2(G) =
{
(bd

3)
G
∣∣∣ d 6= 0

}
Irr2(G) =

{
(ϕk

b1
)G
∣∣∣ k 6= 0

}
Cl3(G) =

{
(bc

2ce
1)

G
∣∣∣ c 6= 0

}
Irr3(G) =

{
(ϕ

j
a2 ϕl

b2
)G
∣∣∣ l 6= 0

}
Cl4(G) =

{
(bb

1bd
3ce

1)
G
∣∣∣ b 6= 0

}
Irr4(G) =

{
(ϕ

j
a2 ϕk

b1
ϕm

b3
)G
∣∣∣m 6= 0

}
Cl5(G) =

{
(aa

2bc
2bd

3ce
1)

G
∣∣∣ a 6= 0

}
Irr5(G) =

{
(ϕ

j
a2 ϕk

b1
ϕl

b2
ϕn

c1
)G
∣∣∣ n 6= 0

}
Cl6(G) =

{
((a1aa

2)
bcc

2)
G
∣∣∣ a 6= 0

}
Irr6(G) =

{
(ϕk,l

a1aa
2c2

)G
∣∣∣∣ l 6= 0

}

Then

χ(aa
2bc

1bd
3ce

1)
√
|K| = p(ϕi

a1
ϕ

j
a2)(aa

2bc
1bd

3ce
1) = pϕ

j
a2(aa

2)

= pωaj = pϕa
c1
(cj

1ci
2) = p(ϕe

a2
ϕd

b1
ϕc

b2
ϕa

c1
)G(cj

1ci
2)

= η(cj
1ci

2)
√
|K′|.

We treat the rest of the cases (except Irr6(G)) simultaneously. For all these cases
√
K = p, so we can ignore it in our calculations:

χ(g) = (ϕ
j
a2 ϕk

b1
ϕl

b2
ϕm

b3
ϕn

c1
)G(aa

2bb
1bc

2bd
3ce

1)

= ω ja+kb+lc+md+ne
p−1

∑
i=0

ωkai+lbi+mci+ndi+la( i
2)+mb( i

2)+nc( i
2)+ma( i

3)+nb( i
3)+na( i

4)

= ωen+dm+cl+bk+aj
p−1

∑
i=0

ωdni+cmi+bli+aki+cn( i
2)+bm( i

2)+al( i
2)+bn( i

3)+am( i
3)+an( i

4)

= (ϕe
a2

ϕd
b1

ϕc
b2

ϕb
b3

ϕa
c1
)G(an

2 bm
1 bl

2bk
3cj

1).
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Finally, we must deal with the cases of Irr0,6(G) and Cl0,6(G). The characters from

Irr6(G) are nonzero only on Cl6(G) and the center.

Suppose that χ ∈ Irr6(G), and let g ∈ Z(G). Then, from (5.2)

χ(g)
√
|gG| = (ϕk,l

a1aa
2c2

)G(ce
1c f

2)

= p2ϕl
c2
(c f−ae

2 )

= p2ω f l−ael

= p2ϕ
f
a1(al

1)ϕe
a2
(a−al

2 )

= (ϕ
f
a1 ϕe

a2
)(al

1a−al
2 ck

2)p2

= (ϕ
f
a1 ϕe

a2
)((a1a−a

2 )lck
2)
√∣∣((a1a−a

2 )lck
2)

G
∣∣.

Finally, we handle the case of χ ∈ Irr6(G) and g ∈ Cl6(G). Since the size of the

conjugacy classes will be the same before and after reversal, they are omitted from the

calculation. We also know that χ is zero except on conjugacy classes of the right form:

those for which the exponent a is the same. Thus, using equation (5.3)

χ(g) = (ϕk,l
a1aa

2c2
)G((a1aa

2)
bcc

2)

= ϕk
a1aa

2
(a1aa

2)
b ϕl

c2
(c2)

c
p−1

∑
i=0

ϕl
c2
(c2)

ib(ab+al+a+i)/2

= ζbrlωkb+lc
p−1

∑
i=0

ωibl(ab+al+a+i)/2 = ζ lrbωcl+bk
p−1

∑
i=0

ω−ilb(−al−ab−a−i)/2

= ζ lrbωcl+bk
p−1

∑
i=0

ωilb(−al−ab−a+i)/2

= ϕc
a1a−a

2
(a1a−a

2 )l ϕb
c2
(c2)

k
p−1

∑
i=0

ϕb
c2
(c2)

il(−al−ab−a+i)/2

= (ϕc,b
a1a−a

2 c2
)G((a1a−a

2 )lck
2). �
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