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Abstract

This work gives an account and applications of recently developed meth-

ods in the investigation of small gaps between prime numbers that extended

the state of the art, namely the Goldston-Pintz-Yıldırım method and the

Maynard-Tao method. We give brief expositions of the ideas involved in each

in Chapters 2 and 4 respectively, and apply the Goldston-Pintz-Yıldırım

method to prime elements in totally real number fields in Chapter 3 and

the Maynard-Tao method to the problem of finding uniform gaps between

primes in arithmetic progressions over a range of moduli in chapters 5 and 6.
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Remark on notation

We use c and C to denote constants which need not be the same in each

instance, so we will freely write things like (log x)C
∑

n≤x n
−1 � (log x)C .

If we need to track them, we will employ subscripts or superscripts.
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CHAPTER 1

Introduction

In the last decade, the study of small gaps between prime numbers has

seen breakthrough results owing to the developments of new methods. The

present work aims to give some applications of these methods.

An outstanding problem in the study of the distribution of primes is

the twin prime conjecture, to the effect that there are infinitely many prime

pairs pn, pn+1 (with pn denoting the n-th prime) such that pn+1 − pn = 2.

Though probably dating back to antiquity, the assertion first appears in

print in a work of de Polignac from 1849 [25], in a generalized form:

Polignac’s Conjecture. Every even number can be expressed in an

infinitude of ways as the difference of two consecutive primes.

Such a number, of course, has to be even, since one of any two numbers

with odd difference has to be even, and can’t be a prime unless it’s exactly

2, which occurs only once. Generalising this trivial obstruction to more than

two numbers, one is led to make the following definition.

Definition. A set H = {h1, . . . , hk} of k integers is called an admissible

k-tuple if H does not cover all residue classes (mod p) for any prime p.

Clearly, this condition needs to be checked only for primes up to k. With

this definition Dickson conjectured in 1904 [5] the following generalization

of Polignac’s conjecture.

Dickson’s Conjecture. If a k-tuple H = {h1, . . . , hk} is admissible,

then there are infinitely many integers n such that the numbers n + hi,

i = 1, . . . , k, are simultaneously prime.

1



2 1. INTRODUCTION

Hardy and Littlewood refined this to conjecture an asymptotic formula

for the number of such prime tuples up to x. For an admissible k-tuple H

and a given prime p, write νH(p) to denote the number of residue classes

(mod p) occupied by elements of H. Define the singular series

(1.1) S(H) =
∏
p

(
1− νH(p)

p

)(
1− 1

p

)−k
.

With these Hardy and Littlewood [13] made the following conjecture.

Hardy-Littlewood prime tuple Conjecture. Let H be an admis-

sible k-tuple. Then

(1.2) #{n ≤ x : n+ hi is prime for all hi ∈ H} ∼ S(H)

∫ x

2

du

(log u)k
.

Even the weakest of these assertions remained virtually unassailable for

a long time, so efforts were directed towards obtaining suitably weakened

forms of such statements. Since we are looking for primes that are close,

failing to obtain a result of the form

(1.3) lim inf
n→∞

(pn+1 − pn) ≤ c

for some absolute constant c (this assertion was called the Bounded Gap

Conjecture, and is now a theorem), the natural thing to do is to consider,

with a slowly increasing function g(n), the quantity

(1.4) lim inf
n→∞

pn+1 − pn
g(pn)

≤ c.

The first natural g(n) to consider is the average distance between primes

around n, which by the Prime Number Theorem is log n, so that we trivially

have

(1.5) ∆ := lim inf
n→∞

pn+1 − pn
log pn

≤ 1.

Thus the investigation of small gaps between primes was launched in search

of results of the form ∆ ≤ c < 1. The first such result is due to Hardy and

Littlewood [14] who in 1926 showed ∆ ≤ 2/3 conditionally on the General-

ized Riemann Hypothesis. Again on GRH, Rankin [28] established ∆ ≤ 3/5
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in 1940. That same year, Erdős [4] provided the first unconditional result

∆ ≤ 1 − c, with an unspecified but effective constant c. Bombieri and

Davenport [1] made a breakthrough in 1966 by substituting the Bombieri-

Vinogradov Theorem for GRH and obtained ∆ ≤ (2 +
√

3)/8 = 0.4665 . . . .

The next two decades saw only small incremental improvements over this

result. Finally, Maier [19] in 1988 used his matrix method to improve Hux-

ley’s [17] estimate ∆ ≤ 0.4425 . . . by a factor e−γ , where γ is Euler’s constant,

to obtain ∆ ≤ 0.2484 . . . .

In 2005, D. A. Goldston, J. Pintz and C. Y. Yıldırım made the break-

through of settling the so-called Small Gap Conjecture when they proved

that ∆ = 0 [11]. They were subsequently able to refine this [12] to the even

stronger assertion

(1.6) lim inf
n→∞

pn+1 − pn
(log pn)1/2(log log pn)2

<∞.

Conditionally, assuming the Elliott-Halberstam conjecture, the method ac-

tually yields the Boounded Gap Conjecture in the form

(1.7) lim inf
n→∞

(pn+1 − pn) ≤ 16.

We shall give an overview of their method (abbreviated “the GPY method”

in the sequel) in Chapter 2, and proceed to apply it to prove the existence

of “close” primes in totally real number fields in Chapter 3.

The GPY method was refined by Zhang [29] in 2013 to obtain an uncon-

ditional proof of the Bounded Gap Conjecture, with the bound 70 000 000

(through a collaborative online Polymath project [26], the method was opti-

mized to reduce this bound to 4680). Zhang obtained his result by proving

a strengthening of the Bombieri-Vinogradov Theorem which manages to go

beyond the level 1/2 for a class of certain smooth moduli. That such a

theorem would imply the Bounded Gaps Conjecture was previously proved

by Motohashi and Pintz [24].
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Soon after Zhang, another refinement of the GPY method in a differ-

ent direction was devised independently by Maynard [20] and Tao (unpub-

lished). This approach involves a more general choice of sieve weights, and

produces not only smaller gaps (namely 600, later optimized to 246 in a

Polymath project [27]) between two primes, but can also show the existence

of any number of primes within a bounded length interval infinitely often,

while the best result concerning pn+2 − pn obtainable by previous methods,

including Zhang’s, was

(1.8) lim inf
n→∞

pn+2 − pn
log pn

= 0,

and even this was conditional on the Elliott-Halberstam Conjecture.

We will briefly discuss the Maynard-Tao method in Chapter 4 and then

apply it to primes in arithmetic progressions in chapters 5 and 6.



CHAPTER 2

The GPY method

The aim of this chapter is to give an overview of the ideas involved in the

GPY method. The method can be regarded as a sieving process in that it

relies on estimating a sum of certain appropriately chosen weight functions

over a given set of numbers, with the aim of detecting two primes among

n+h1, . . . , n+hi for some n in the set. The basic idea is to find a non-negative

function w(n), such that for a given admissible k-tuple H = h1, . . . , hk, there

holds

(2.1)
∑

X<n≤2X

#{1 ≤ i ≤ k : n+ hi prime } w(n) >
∑

X<n≤2X

w(n),

which implies that there’s at least one n ∈ (x, 2x] with at least two of the

numbers n + hi prime. Such a function should clearly be concentrated on

those n for which the numbers n + hi are prime. Taking a cue from the

classical theory of π(x) = #{p ≤ x} leading to the Prime Number Theorem,

which goes through a consideration of
∑

n≤x Λ(n) with the von Mangoldt

function

(2.2) Λ(n) =

log p, if n = pm for some prime p,

0, otherwise,

the most natural weight to consider would be

(2.3) Λ(n;H) := Λ(n+ h1) . . .Λ(n+ hk).

In fact in its original formulation the Hardy-Littlewood Conjecture predicts∑
n≤X Λ(n,H) ∼ X

(logX)k
(S(H) + o(1)), from which one can derive (1.2)

with little effort.

5



6 2. THE GPY METHOD

No effective way to handle
∑

n≤x Λ(n,H) directly is known. However,

motivated by the elementary identity

(2.4) Λ(n) =
∑
d|n

µ(d) log
n

d
,

one can expect the truncation

(2.5) ΛR(n) :=
∑
d|n
d≤R

µ(d) log
R

d

to be a useful approximation to Λ(n) and in turn to approximate Λ(n;H)

by

(2.6) ΛR(n+ h1) . . .ΛR(n+ hk).

Indeed, Goldston and Yıldırım, in a series of papers [8–10] devised methods

to handle sums of the form
∑

n≤X ΛR(n + h1) . . .ΛR(n + hk) and applied

their results to the problem of prime tuples to obtain

(2.7) ∆ = lim inf
n→∞

pn+1 − pn
log pn

≤ 1

4
.

A different kind of approximation was needed to obtain ∆ = 0. The gener-

alized von Mangoldt function

(2.8) Λk(n) =
∑
d|n

µ(d)
(

log
n

d

)k
vanishes when n has more than k distinct prime factors (the notational

conflict between Λk and ΛR is tolerable within the expository nature of the

present chapter). Defining the polynomial

(2.9) P (n;H) = (n+ h1)(n+ h2) . . . (n+ hk),

we have Λk(P (n;H)) 6= 0 if {n+hi}i is a prime tuple; there will be overcounts

due to prime powers but the contribution of those can be expected to be
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negligible. Implementing also the smoothed truncation from (2.5) as well,

we can hope to detect prime tuples with the weights

(2.10) ΛR(n;H) =
1

k!

∑
d|P (n,H)
d≤R

µ(d)

(
log

R

d

)k
.

This however is also not enough to obtain ∆ = 0. The final crucial idea is to

compromise and look for at most k+ ` primes dividing P (n;H) with ` < k.

Thus we arrive at

(2.11) ΛR(n;H, `) =
1

(k + `)!

∑
d|P (n,H)
d≤R

µ(d)

(
log

R

d

)k+`

.

Returning to (2.1) we take w(n) to be ΛR(n;H, k + `)2, and also counting

the primes among n+ hi weighted by

(2.12) θ(n+ hi) =

log(n+ hi), if n+ hi is prime,

0, otherwise,

we arrive at the expression

(2.13) S =
∑

X<n≤2X

(
k∑
i=1

θ(n+ hi)− log 3X

)
ΛR(n;H, `)2.

Showing that this is positive amounts to showing the existence of two primes

among the numbers n+hi for some n ∈ (X, 2X]. Thus one needs to be able

to estimate sums of the form

(2.14)
∑

X<n≤2X

ΛR(n;H, `)2

and

(2.15)
∑

X<n≤2X

ΛR(n;H, `)2θ(n+ hi).

Such sums can be handled in an analytic fashion, by expressing them in

terms of contour integrals of zeta-functions, or through purely sieve-theoretic

arguments; we shall see an application of the first approach in Chapter 3 and
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the second in Chapter 6. Eschewing the technicalities for now, the results

turn out to be

(2.16)
∑

X<n≤2X

ΛR(n;H, `)2 ∼ 1

(k + 2`)!

(
2`

`

)
S(H)X(logR)k+2`

and

(2.17)
∑

X<n≤2X

ΛR(n;H, `)2θ(n+ hi)

∼ 1

(k + 2`+ 1)!

(
2`+ 2

`+ 1

)
S(H)X(logR)k+2`+1,

so that we have

(2.18) S ∼
(

2k

k + 2`+ 1

2`+ 1

`+ 1
logR− log 3X

)
× 1

(k + 2`)!

(
2`

`

)
S(H)X(logR)k+2`.

Now we need to scratch the surface of how (2.15) is handled in order to

expose the relationship of the method with the distribution of primes in

arithmetic progressions. Expanding the square in (2.15) and rearranging

the sum, we get

∑
X<n≤2X

ΛR(n;H, `)2θ(n+ hi)

=
∑

X<n≤2X

θ(n+ hi)
∑

[d1,d2]|P (n;H)
d1,d2≤R

µ(d1)µ(d2)

(
log

R

d1

)k+`(
log

R

d2

)k+`

=
∑

d1,d2≤R
µ(d1)µ(d2)

(
log

R

d1

)k+`(
log

R

d2

)k+` ∑
X<n≤2X

[d1,d2]|P (n;H)

θ(n+ hi).

(2.19)

Since [d1, d2] is squarefree, the condition [d1, d2] | P (n;H) in the innermost

sum is equivalent to the condition that p | P (n;H) for each prime p | [d1, d2],

or what is the same, that n (mod p) lies in the set Ω(p) := {−hi (mod p) :

i = 1, . . . , k} for each p | [d1, d2]. By the Chinese Remainder theorem, we

can extend the definition of Ω to squarefree integers multiplicatively, so that
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n (mod d) ∈ Ω(d) if and only if n (mod p) ∈ Ω(p) for all p | d. With this

notation, we can write the innermost sum as (ignoring an inconsequential

shift by hi),

(2.20)
∑

b∈Ω([d1,d2])
(b+hi,[d1,d2])=1

∑
x<n≤2X

n≡b+hi (mod [d1,d2])

θ(n).

Now the inner sum here is a weighted count of primes between X and 2X

lying in an arithmetic progression. It is natural to expect that the primes

in (X, 2X] will be more or less evenly distributed among the ϕ(q) reduced

residue classes modulo q, specifically, that for (a, q) = 1,

(2.21)
∑

x<n≤2X
n≡a (mod q)

θ(n) ∼ X

ϕ(q)
.

The Prime Number Theorem for Arithmetic Progressions grants us this

uniformly for q up to (logX)C , beyond which the error term becomes larger

than the main term. However, in our case, the modulus [d1, d2] runs up

to R2, and we’d like to be able to take R much larger than a power of

(logX). However, even though we can’t approximate the desired counts of

primes uniformly for each modulus over a larger range, we can control their

deviation from the expected value on average, by using an estimate of the

form

(2.22)
∑
q≤Q

max
(a,q)=1

∣∣∣ ∑
x<n≤2X

n≡a (mod q)

θ(n)− X

ϕ(q)

∣∣∣� X

(logX)A
.

We say that the primes have level of distribution ϑ if an estimate of the

form (2.22) holds with Q = Xϑ−ε for all ε and A. The Bombieri-Vinogradov

Theorem states that primes have level of distribution 1/2, and the Elliott-

Halberstam Conjecture predicts level of distribution 1. Thus, if primes have

level of distribution ϑ, then in order to replace the inner sum in (2.20) by

X/ϕ([d1, d2]) within acceptable error, we must have [d1, d2] ≤ Xϑ−ε, which

in turn forces us to take R at most X
ϑ
2
−ε. Thus, if we return to (2.18), we
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see that the left hand side is positive if

(2.23)
k

k + 2`+ 1

2`+ 1

`+ 1
ϑ > 1.

As k, `→∞ with ` = o(k), the left hand side has limit 2ϑ, thus the method

fails by a hair’s breadth to detect bounded gaps between primes. However

we can deduce conditionally that if primes have level of distribution ϑ for

any ϑ strictly greater than 1/2, then there are bounded gaps between primes.

In order to salvage ∆ = 0 unconditionally, one last modification is

needed. We average over all k-tuples with diameter ≤ H for some parameter

H, and consider

(2.24)
∑

X<n≤2X

 ∑
1≤h0≤H

θ(n+ h0)− log 3X

 ∑
1≤h1,...,hk≤H

distinct

ΛR(n;H, `)2.

Note that this time in the first sum we consider n + h0 for all h0 ∈ [1, H]

and not only the components of a given tuple. So we also need the estimate,

for h0 /∈ H,

(2.25)
∑

X<n≤2X

ΛR(n;H, `)2θ(n+ h0)

∼ 1

(k + 2`)!

(
2`

`

)
S(H ∪ {h0})X(logR)k+2`.

This differs from (2.16) only in that we have S(H∪{h0}) in place of S(H),

thus by appealing to Gallagher’s average result [6],

(2.26)
∑

1≤h1,...,hk≤H
distinct

S(H) = (1 + o(1))Hk, (H →∞),

the sums of type (2.25) produce a term with an extra factor of H, so that

when we put everything together, the positivity of the whole expression

relies on whether or not

(2.27)
H

logX
+

k

k + 2`+ 1

2`+ 1

`+ 1
ϑ > 1,
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instead of (2.23). For any ε > 0, if H = ε logX and ϑ = 1/2, the inequality

(2.27) is satisfied by taking k and ` = o(k) large enough, thus establishing

(2.28) lim inf
n→∞

pn+1 − pn
log pn

= 0.





CHAPTER 3

An application of the GPY method to number

fields

1. Introduction

In this chapter, we generalize the work of Goldston, Pintz and Yıldırım

to totally real number fields. We show

(3.1) lim inf
ω0,ω1∈OK prime

ω0 6=ω1

∣∣∣N(ω1 − ω0)

logNω0

∣∣∣ = 0.

We follow closely the exposition in their paper with Motohashi [7] which

contains a simplified and more condensed proof of the result. A key ingredi-

ent is Hinz’s generalization of the Bombieri-Vinogradov theorem to number

fields [16], which gives the level of distribution 1/2 only in the totally real

case, whence our restriction. His result in the totally real case is reproduced

here as Lemma 3.10. The method requires the analogue of Gallagher’s com-

putation of the singular series [6], which is proved in Lemma 3.12. We shall

also prove some estimates for the Dedekind zeta-function ζK that will be

needed to evaluate contour integrals.

Throughout K denotes a totally real number field of degree κ over the

rationals with ring of integers OK . Ideals of OK are denoted by Gothic

letters, and p denotes a prime ideal. For Re s > 1, the Dedekind zeta-

function of the field K is given by

(3.2) ζK(s) =
∑

a⊆OK

1

(Na)s
,

13



14 3. AN APPLICATION OF THE GPY METHOD TO NUMBER FIELDS

and there admits the Euler product expansion

(3.3) ζK(s) =
∏
p

(
1− 1

(Np)s

)−1

.

Ry will denote the set of integers α ∈ OK such that

(3.4) 0 < α(i) ≤ yi, i = 1, . . . , κ,

where y = (y1, . . . , yκ). We shall write y for y1y2 · · · yκ, and, multiplying by

a totally positive unit if necessary (see, for instance, [15, p. 62]) we may

assume without loss of generality that yi � y1/κ. We shall sometimes write

ARy instead of RAy for ease of legibility. The lower-case letter c denotes a

positive constant which need not be the same at every instant; when we need

to keep track of a particular constant, we employ subscripts. In this chapter,

the arithmetic functions µ, Λ, φ, etc. are the number field generalizations

of their classical counterparts.

All implicit constants depend on K.

2. Lemmata

Lemma 3.1. Let K be a totally real number field of degree κ and discrim-

inant D, and let a be an ideal of OK . Denote by R the subset of integers α

of OK satisfying

(3.5) 0 < α(i) ≤ yi, i = 1, . . . , κ,

and put y = y1y2 . . . yκ. Then for any γ ∈ OK , there holds

(3.6)
∑
α∈R

α≡γ (mod a)

1 =
y√
|D|Na

+O

(( y

Na

)1− 1
κ

)
.

Proof. Consider the canonical image of OK in the Minkowski space

which in our case is Rκ. We may fix a fundamental parallelepiped of the

lattice formed by the image of a, and view the space as tiled with a-translates

of it. Since every translate of the fundamental parallelepiped contains the

image of exactly one number from every equivalence class (mod a), our
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problem amounts to counting the parallelepipeds entirely contained in R =

{(x1, . . . , xκ) : 0 ≤ xi ≤ yi}, up to an error the number of parallelepipeds

intersecting the boundary, for the congruence class representative in those

intersecting parallelepipeds may or may not lie in R.

Now fix ideal class representatives A1, . . . ,Ah of K, not necessarily in-

tegral ideals, where h is the class number of K. Fix also a fundamental

parallelepiped associated to each Aj . For any one of those representatives,

say Aj , a certain number, say N , of the Aj-translates of the fundamental

parallelepiped will intersect the boundary of R. Call them P1, . . . , PN and

denote by vi for i = 1, . . . , N the volume of R ∩ Pi. Then the volume

(3.7) y −
N∑
i=1

vi

is comprised of all the parallelepipeds entirely contained in R, and only

them. Since each has volume
√
|D|NAj , their number is

(3.8)
1√
|D|NAj

(
y −

N∑
i=1

vi

)
,

and thus the number of integers ofK in R which are congruent to γ (mod Aj)

is

(3.9)
y√
|D|NAj

− 1√
|D|NAj

N∑
i=1

vi +O(N).

The second term is also clearly

(3.10)
1√
|D|NAj

N∑
i=1

vi ≤
1

NAj

N∑
i=1

NAj ≤ N,

so it suffices to estimate N .

Let Dj be the diameter of our fundamental parallelepiped. If we expand

and shrink R by an amount 2Dj in all directions along basis vectors and form

R+ and R− respectively, every parallelepiped that intersects the original

boundary will lie entirely outside R− and entirely inside R+. Since the
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volume of R+ is
∏
i(yi + 2Dj) = y + Oj

(
y1− 1

κ

)
, and likewise for R−, the

intermediate region has volume Oj

(
y1− 1

κ

)
, and hence

(3.11) N = Oj

 y1− 1
κ√

|D|NAj

 = Oj

( y

NAj

)1− 1
κ

 .

Now let a be any ideal of OK . We need the same parallelepiped count

as before. We have a = βAj for some β ∈ K and some j. As before, by

multiplying with a unit if necessary, we may suppose β(i) � N(β)1/κ. Now

the parallelepiped grid of a is simply that of Aj dilated in the xi axis by

a factor of β(i). But counting Ai parallelepipeds scaled by β(i)’s which are

contained in or intersects the boundary of R is the same thing as counting

original parallelepipeds which are contained in or intersects R scaled by(
β(i)
)−1

’s. So our count is identical to the special case but with (β(i))−1yi

in place of yi, which by the above is

(3.12)
y/N(β)√
|D|NAj

+Oj

(y/N(β)

NAj

)1− 1
κ

 =
y√
|D|Na

+Oj

(( y

Na

)1− 1
κ

)
.

Since there are finitely many possibilities for the ideal class j, we may choose

the weakest implicit constant and the proof is complete. �

Lemma 3.2. We have, with the classical notation s = σ + it,

(3.13) ζK(s)� τ2−1/n−σ.

uniformly for |t| ≥ 1, σ ≥ 1 − 1/κ + δ. Here τ denotes |t| + 4 and δ is an

arbitrary positive constant.

Proof. Let r(n) be the number of ideals with norm n, and let M(x) =∑
n≤x r(n). It is well known that M(x) = ρKx + O(x1−1/κ), where ρK is
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the residue of ζK(s) at s = 1. Put E(x) = M(x)− ρKx. Then for σ > 1,

ζK(s) =
∑
n≤x

r(n)n−s +

∫ ∞
x

u−sdM(u)

=
∑
n≤x

r(n)n−s + ρK

∫ ∞
x

u−sdu+

∫ ∞
x

u−sdE(u)

=
∑
n≤x

r(n)n−s + ρK
x1−s

s− 1
+ u−sE(u)

∣∣∣∞
x

+ s

∫ ∞
x

E(u)u−s−1du,

(3.14)

so

(3.15) ζK(s) =
∑
n≤x

r(n)n−s + ρK
x1−s

s− 1
+ x−sE(x) + s

∫ ∞
x

E(u)u−s−1du.

In particular, since E(1) = 1− ρK , with x = 1 the above gives,

(3.16) ζK(s) =
ρKs

s− 1
+ s

∫ ∞
1

E(u)u−s−1du.

This furnishes an analytic continuation of ζK to the half plane σ > 1− 1/κ.

We can estimate the integral in (3.15) trivially,

(3.17)

∫ ∞
x

E(u)u−s−1du�
∫ ∞
x

u−σ−1/κdu =
x1−1/κ−σ

σ − 1 + 1/κ
.

Now

(3.18)∑
n≤x

r(n)n−s �
(

max
n≤x

r(n)

)∑
n≤x

n−σ �
(

max
n≤x

r(n)

)(
1 +

∫ x

1
u−σdu

)
uniformly for σ ≥ 0. Clearly r(n) is multiplicative. Suppose p factors in OK
as p = pe11 . . . p

eg
g with Npi = pfi . Then

#{a ⊂ OK : Na = pm} = #{(k1, . . . , kg) : k1f1 + . . .+ kgfg = m}

≤ #{(a1, . . . , ag) : a1 + . . .+ ag = m}

= #{(d1, . . . , dg) : d1 . . . dg = pm}

= τg(p
m)

≤ τκ(pm),

(3.19)
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so that r(n)� nε for any positive ε. Thus

(3.20)
∑
n≤x

r(n)n−s � xε
(

1 +

∫ x

1
u−σdu

)
.

Now if 0 ≤ σ ≤ 1 − 1/ log x, the integral is ≤ x1−σ/(1 − σ). If |σ − 1| ≤

1/ log x, then u−σ � u−1 uniformly for 1 ≤ u ≤ x, so that the integral is

� log x. If σ ≥ 1 + 1/ log x, then the integral is <
∫∞

1 u−σdu = 1/(σ − 1).

Thus

(3.21)
∑
n≤x

r(n)n−s � xε(1 + x1−σ) min
(
|σ − 1|−1, log x

)
uniformly for 0 ≤ σ ≤ 2. Using this and (3.17) in (3.15) with x = τ yields

the desired result. �

We reproduce here Lemma 6.3 of [23].

Lemma 3.3. Suppose that f(z) is analytic in a domain containing the

disc |z| ≤ 1, that |f(z)| ≤ M in this disc, and that f(0) 6= 0. Let r and R

be fixed, 0 < r < R < 1. Then for |z| ≤ r we have

(3.22)
f ′

f
(z) =

K∑
k=1

1

z − zk
+O

(
log

M

|f(0)|

)
where the sum is extended over all zeros zk of f for which |zk| ≤ R. (The

implicit constant depends on r and R but is otherwise absolute.)

Now we apply this to ζK(s).

Lemma 3.4. If |t| ≥ 2 and 1− 1/κ+ δ < σ < 2, we have

(3.23)
ζ ′K
ζK

(s) =
∑′ 1

s− ρ
+O (log τ) ,

where
∑′ denotes summation over those zeros ρ of ζK(s) with |ρ − (3/2 +

it)| ≤ 1/2 + 1/κ− δ.

Proof. We apply Lemma 3.3 to the function f(z) = ζK(z+ (3/2 + it)),

with R = 1/2 + 1/κ − δ and r = 1/2 + 1/κ − 2δ, in which case f(0) � 1
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by the absolute convergence of the Euler product and f(z)� τ2 by Lemma

3.2. �

We note here that de la Valée-Poussin’s classical argument for the non-

vanishing of the Riemann zeta-function on the line σ = 1 applies verbatim

to ζK(s).

Lemma 3.5. For σ > 1,

(3.24) Re

(
−3

ζ ′K
ζK

(σ)− 4
ζ ′K
ζK

(σ + it)−
ζ ′K
ζK

(σ + 2it)

)
≥ 0.

Lemma 3.6. The function ζK(s) does not vanish on the line σ = 1.

Now we are in a position to establish a zero-free region for ζK(s).

Proposition 3.7. There is a constant c depending on K such that the

function ζK(s) does not vanish in the region

(3.25) σ ≥ 1− c

log τ
.

Proof. Suppose ρ0 = β0 + iγ0 is a zero of ζK(s) with 1 − 1/κ + δ <

β0 < 1, |γ0| > 2. Since Re ρ < 1 for any zero ρ of ζK(s), we have Re 1
s−ρ > 0

whenever σ > 1. Thus, using Lemma 3.4 with s = 1 + ε + iγ0 and s =

1 + ε+ 2iγ0 respectively, we obtain

(3.26) Re−
ζ ′K
ζK

(1 + ε+ iγ0) ≤ − 1

1 + ε− β0
+ c1 log(|γ0|+ 4)

and

(3.27) Re−
ζ ′K
ζK

(1 + ε+ 2iγ0) ≤ c1 log(|2γ0|+ 4).

Also, by virtue of the simple pole of ζK(s) at s = 1, we have

(3.28) −
ζ ′K
ζK

(1 + ε) =
1

ε
+O(1).

Using these in Lemma 3.5, we obtain

(3.29)
3

ε
− 4

1 + ε− β0
+ c2 log(|γ0|+ 4) ≥ 0.
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We take ε = 1/(2c2 log(|γ0|+ 4)), whence

(3.30) 7c2 log(|γ0|+ 4) ≥ 4

1 + ε− β0
,

or,

(3.31) 1 +
1

2c2 log(|γ0|+ 4)
− β0 ≥

4

7c2 log(|γ0|+ 4)
,

so we have

(3.32) β0 ≤ 1− 1

14c2 log(|γ0|+ 4)
.

Choosing c small enough so as to exclude the finitely many zeros with

γ ≤ 2, we obtain the desired result. �

Proposition 3.8. Let c be the constant in Proposition 3.7. Then for

σ > 1− c/(2 log τ) and |t| ≥ 2, we have

|
ζ ′K
ζK

(s)| � log τ,(3.33)

|log ζK(s)| ≤ log log τ +O(1),(3.34)

and

(3.35)
1

ζK(s)
� log τ.

Proof. It is plain that for σ > 1,

(3.36) |
ζ ′K
ζK

(s)| ≤ −
ζ ′K
ζK

(σ)� 1

σ − 1
.

Let s1 = 1 + 1/ log τ + it. So

(3.37)
ζ ′K
ζK

(s1)� log τ.

Then from Lemma 3.4 we deduce that

(3.38)
∑′

ρ

Re
1

s1 − ρ
� log τ,
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where the sum is taken over those zeros ρ for which |ρ − (3/2 + it)| ≤

1/2 + 1/κ − δ. If 1 − c/(2 log τ) ≤ σ ≤ 1 + 1/ log τ , then again by Lemma

3.4 we have

(3.39)
ζ ′K
ζK

(s)−
ζ ′K
ζK

(s1) =
∑′

ρ

(
1

s− ρ
− 1

s1 − ρ

)
+O(log τ).

We have |s− ρ| � |s1 − ρ| so it follows that

(3.40)
1

s− ρ
− 1

s1 − ρ
� 1

|s1 − ρ|2 log τ
� Re

1

s1 − ρ
,

whence we obtain (3.33). Now we know that for σ > 1, ζK(σ) ≤ ρK/(σ −

1) +O(1). So if s1 = 1 + 1/ log τ + it,

|log ζK(s1)| ≤
∑

a6=OK

Λ(a)

logN(a)
N(a)−1−1/ log τ

= log ζK

(
1 + 1

log τ

)
≤ log log τ +O(1).

(3.41)

Then if s is in the indicated region,

(3.42) log ζK(s)− log ζK(s1) =

∫ s

s1

ζ ′K
ζK

(w)dw = O(1)

by (3.33), and (3.34) follows. Then (3.35) follows from (3.34) by exponenti-

ation. �

3. Main results

Let y be a parameter tending to infinity. We have four other parameters

H,R, k and ` obeying the following restrictions.

(3.43) H � log y � logR ≤ log y,

and

(3.44) integers k, ` > 0 are arbitrary but bounded.

Implicit constants may depend on these k and `.

Let

(3.45) H = {h1, h2, . . . , hk} ⊆ H,
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where H = H1/κR(1,...,1) and the hi are distinct. For a prime ideal p of OK ,

we put

(3.46) Ω (p) = {distinct residue classes among −h(mod p), h ∈ H},

and write α ∈ Ω (p) as a shorthand for α(mod p) ∈ Ω (p) for α ∈ OK . We

say that H is admissible if |Ω (p)| < Np for every prime ideal p, and assume

this unless otherwise stated.

We extend Ω multiplicatively, so that α ∈ Ω (a) for a square-free ideal a

if and only if α ∈ Ω (p) for all p | a. This is equivalent to

(3.47) P (α;H) ∈ a, P (α;H) = (α+ h1)(α+ h2) · · · (α+ hk).

We put, with µ denoting the usual generalization of the Möbius function

to ideals,

(3.48) λR(a;n) =

0, if Na > R,

1

n!
µ(a) (logR/Na)n , if Na ≤ R,

and

(3.49) ΛR(α;H, n) =
∑

α∈Ω(a)

λR(a;n) =
1

n!

∑
P (α;H)∈a
Na≤R

µ(a) (logR/Na)n .

With these we shall evaluate

(3.50)
∑

α∈21/κRy\Ry

ΛR(α;H, k + `)2,

which, on expanding out the square, equals

(3.51)
∑
a1,a2

λR(a1; k + `)λR(a2; k + `)
∑

α∈Ω(a1),α∈Ω(a2)

α∈21/κRy\Ry

1.

Now the condition α ∈ Ω (a1) , α ∈ Ω (a2) on the inner sum is equivalent to

α ∈ Ω (a1 ∩ a2), thus that sum can be written as

(3.52)
∑

h∈Ω(a1∩a2)

∑
α≡h (mod a1∩a2)

α∈21/κRy\Ry

1.
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The inner sum is amenable to Lemma 3.1, so we have

(3.53)
∑

α≡h (mod a1∩a2)

α∈21/κRy\Ry

1 =
y√

|D|N(a1 ∩ a2)
+O

( y

N(a1 ∩ a2)

)1− 1
κ

 .

Hence, we have

∑
α∈21/κRy\Ry

ΛR(α;H,k + `)2 =
y√
|D|
T

+O

y1− 1
κ (logR)2k+2`

∑
Na1,Na2≤R

|Ω(a1 ∩ a2)|
N(a1 ∩ a2)1−1/κ

 ,

(3.54)

where

(3.55) T =
∑
a1,a2

|Ω (a1 ∩ a2)|
N(a1 ∩ a2)

λR(a1; k + `)λR(a2; k + `).

Now ∑
Na1,Na2≤R

|Ω(a1 ∩ a2)|
N(a1 ∩ a2)1−1/κ

�
∑

Na≤R2

a squarefree

τk(a)τ3(a)

(Na)1−1/κ

�
∑

Na≤R2

τ3k(a)

(Na)1−1/κ

� R2/κ(logR)3k,

(3.56)

since
∑

a τ3k(a)(Na)−1+1/κ−s = ζ3k
K (s + 1 − 1/κ) which has a pole of order

3k at s = 1/κ. Thus,

(3.57)
∑

α∈21/κRy\Ry

ΛR(α;H, k + `)2 =
y√
|D|
T +O

(
y1−1/κR2/κ(logR)c

)
.

We can express λR(a, n) as

(3.58) λR(a, n) =
µ(a)

2πi

∫
(1)

(
R

Na

)s ds

sn+1
,

where (α) denotes the line Re s = α. Thus

(3.59) T =
1

(2πi)2

∫
(1)

∫
(1)
F (s1, s2; Ω)

Rs1+s2

(s1s2)k+`+1
ds1ds2,
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where

F (s1, s2; Ω) =
∑
a1,a2

µ(a1)µ(a2)
|Ω (a1 ∩ a2)|

N(a1 ∩ a2)(Na1)s1(Na2)s2

=
∏
p

(
1− |Ω(p)|

Np

(
1

(Np)s1
+

1

(Np)s2
− 1

(Np)s1+s2

))(3.60)

in the region of absolute convergence. We put

G(s1, s2; Ω) = F (s1, s2; Ω)

(
ζK(s1 + 1)ζK(s2 + 1)

ζK(s1 + s2 + 1)

)k
=
∏
p

(
1− |Ω(p)|

Np

(
1

(Np)s1
+

1

(Np)s2
− 1

(Np)s1+s2

))

×
(

1− 1

(Np)s1+s2+1

)k(
1− 1

(Np)s1+1

)−k(
1− 1

(Np)s2+1

)−k
.

(3.61)

In particular, we have the singular series

(3.62) S(H) = G(0, 0; Ω) =
∏
p

(
1− |Ω(p)|

Np

)(
1− 1

Np

)−k
.

Suppose min(Re s1,Re s2, 0) = σ0 > −c. For Np ≥ 2κH, we have |Ω(p)| = k,

for if p | hi − hj then Np | |
∏
τ (hτi − hτj )| ≤ 2κH. Taking logarithms of only

those factors in the above product yields

∑
p

Np≥2κH

(
log

(
1− k

Np

(
1

(Np)s1
+

1

(Np)s2
− 1

(Np)s1+s2

))

+ k log

(
1− 1

(Np)s1+s2+1

)
− k log

(
1− 1

(Np)s1+1

)
− k log

(
1− 1

(Np)s2+1

))

= −
∑
p

Np≥2κH

∞∑
m=1

1

m

(
km
(

1

(Np)s1+1
+

1

(Np)s2+1
− 1

(Np)s1+s2+1

)m

+ k

(
1

(Np)s1+s2+1

)m
− k

(
1

(Np)s1+1

)m
− k

(
1

(Np)s2+1

)m)
.

(3.63)
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Now the m = 1 term in the inner sum cancels to zero, so the last double

series in absolute value is

�
∞∑
m=2

km

m

∑
p

N(p)≥2κH

(Np)−m(2σ0+1)

=

∞∑
m=2

km

m

∑
n≥2κH

r∗(n)n−m(2σ0+1)

=

∞∑
m=2

km

m

∑
n≥2κH

n−m(2σ0+1)+ε,

(3.64)

where r∗(n) is the number of prime ideals with norm n, so that r∗(n) ≤

r(n) � nε. Then provided that 2σ0 + 1 > 1/2 and H is large enough, the

above is

�
∞∑
m=2

km

m

(2κH)−m(2σ0+1)+ε+1

m(2σ0 + 1)− ε− 1

�
∞∑
m=2

1

m2
� 1.

(3.65)

Thus, the part of the product in question is uniformly bounded. Logarithm

of the factors k2 < Np < 2κH is

= −
∑
p

k2<Np<2κH

∞∑
m=1

1

m

(
|Ω(p)|m

(
1

(Np)s1+1
+

1

(Np)s2+1
− 1

(Np)s1+s2+1

)m

+ k

(
1

(Np)s1+s2+1

)m
− k

(
1

(Np)s1+1

)m
− k

(
1

(Np)s2+1

)m)
.

(3.66)

The m ≥ 2 terms above are � 1 as before, and the m = 1 term is

(3.67)

�
∑
p

k2<Np<2κH

(Np)−2σ0−1 � H−2σ0
∑
p

Np<2κH

(Np)−1 � H−2σ0 log logH.

Bounding the remaining k2 terms is trivial, so we obtain

(3.68) G(s1, s2; Ω)� exp
(
c(log y)−2σ0 log log log y

)
.
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Now we write (3.59) as

(3.69) T =
1

(2πi)2

∫
(1)

∫
(1)
G(s1, s2; Ω)

×
(

ζK(s1 + s2 + 1)

ζK(s1 + 1)ζK(s2 + 1)

)k Rs1+s2

(s1s2)k+`+1
ds1ds2.

We put U = exp
(√

log y
)
, and shift the s1 and s2 contours to the vertical

lines c0(logU)−1 + it and c0(2 logU)−1 + it, c0 being half the constant of

Proposition 3.7, and truncate them to |t| ≤ U and |t| ≤ U/2, and denote

the results by L1 and L2 respectively. We have

(3.70)∫
(c0(2 logU)−1)

∫
(c0(logU)−1)

=

∫
L2

∫
L1

+

∫
|t2|>U/2

σ2=c0(2 logU)−1

∫
L1

+

∫
(c0(2 logU)−1)

∫
|t1|>U

σ1=c0(logU)−1

.

Now using (3.68), and the fact that ζK(1 + δ + it), ζK(1 + δ + it)−1 � 1/δ,

we have

∫
|t2|>U/2

σ2=c0(2 logU)−1

∫
L1

G(s1, s2; Ω)

(
ζK(s1 + s2 + 1)

ζK(s1 + 1)ζK(s2 + 1)

)k Rs1+s2

(s1s2)k+`+1
ds1ds2

� exp (c log log log y)
(√

log y
)3k

∫
|t2|>U/2

σ2=c0(2 logU)−1

∫
L1

|ds1||ds2|
|s1s2|k+`+1

� exp (c log log log y)
(√

log y
)4k+`+1

exp
(

3
2

√
log y

) ∫
|t2|>U/2

σ2=c0(2 logU)−1

|ds2|
|s2|k+`+1

�
exp (c log log log y)

(√
log y

)4k+`+1
exp

(
3
2

√
log y

)
exp

(
(k + `)

√
log y

)
� exp

(
−c
√

log y
)
.

(3.71)
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Similarly,

∫
(c0(2 logU)−1)

∫
|t1|>U

σ1=c0(logU)−1

G(s1, s2;Ω)

(
ζK(s1 + s2 + 1)

ζK(s1 + 1)ζK(s2 + 1)

)k

× Rs1+s2

(s1s2)k+`+1
ds1ds2

� exp (c log log log y)(
√

log y)3k exp
(

3
2

√
log y

)
×

∫
(c0(2 logU)−1)

∫
|t1|>U

σ1=c0(logU)−1

|ds1||ds2|
(|s1s2|k+`+1)

.

(3.72)

Also,

(3.73)

∫
|t1|>U

σ1=c0(logU)−1

|ds1|
|s1|k+`+1

� U−k−`

and

(3.74)

∫
(c0(2 logU)−1)

|ds1|
|s1|k+`+1

� (logU)k+`+1,

and we obtain the same bound as before. Thus

T =
1

(2πi)2

∫
L2

∫
L1

G(s1, s2; Ω)

(
ζK(s1 + s2 + 1)

ζK(s1 + 1)ζK(s2 + 1)

)k Rs1+s2

(s1s2)k+`+1
ds1ds2

+O
(

exp
(
−c
√

log y
))

.

(3.75)

Now we shift the L1 contour to L3: −c0(logU)−1+it, |t| < U . We encounter

singularities at s1 = 0 and s1 = −s2. Now∫
L2

∫
L3

G(s1, s2; Ω)

(
ζK(s1 + s2 + 1)

ζK(s1 + 1)ζK(s2 + 1)

)k Rs1+s2

(s1s2)k+`+1
ds1ds2

� exp
(
−c
√

log y
)(3.76)
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as well, thus we have

(3.77) T =
1

(2πi)2

∫
L2

(
Res

s1=−s2
+ Res
s1=0

)
ds2 +O

(
exp

(
−c
√

log y
))

.

Now,

(3.78)

Res
s1=−s2

=
1

2πi

∫
C(s2)

G(s1, s2; Ω)

(
ζK(s1 + s2 + 1)

ζK(s1 + 1)ζK(s2 + 1)

)k Rs1+s2

(s1s2)k+`+1
ds1,

with the circle C(s2): |s1 + s2| = (log y)−1. So G(s1, s2; Ω) � (log log y)c;

ζK(s1 + s2 + 1)� log y; Rs1+s2 � 1. Also, since |s2| � |s1| � |s2|, we have

(s1ζK(s1 + 1))−1 � log(|s2|+ 2)(|s2|+ 1)−1. Thus,

(3.79) Res
s1=−s2

� (log y)k−1(log log y)c
(

log(|s2|+ 2)

|s2|+ 1

)2k

|s2|−2`−2.

Using this in (3.77), we obtain

(3.80) T =
1

(2πi)2

∫
L2

(
Res
s1=0

)
ds2 +O

(
(log y)k+`−1/2(log log y)c

)
.

Now we put

(3.81) Z(s1, s2) = G(s1, s2; Ω)

(
(s1 + s2)ζK(s1 + s2 + 1)

s1ζK(s1 + 1)s2ζK(s2 + 1)

)k
.

This is regular around (0, 0). Then

(3.82) Res
s1=0

=
Rs2

`!s`+1
2

(
∂

∂s1

)`
s1=0

{
Z(s1, s2)

(s1 + s2)k
Rs1
}
.

We use this in (3.80) and shift the s2-contour to L4: −c0(logU)−1 + it,

|t| ≤ U/2. Now using Cauchy’s theorem,

(3.83)

(
∂

∂s1

)`
s1=0

{
Z(s1, s2)

(s1 + s2)k
Rs1
}

=
1

2πi

∫
C1

Z(w, s2)

w`+1(w + s2)k
Rwdw,

where C1 is the circle around 0 with radius c0(2 logU)−1. Thus on C1,

(w+s2)−1 �
√

log y; Rw � exp
(
− c0

2

√
log y

)
; Z(w, s2)� (log log y)c. From
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this we see that the integral over L4 is � exp(−c
√

log y). Thus,

T = Res
s2=0

Res
s1=0

+O((log y)k+`)

=
1

(2πi)2

∫
C3

∫
C2

Z(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 +O((log y)k+`),

(3.84)

where C2 and C3 are the circles |s1| = η, |s2| = 2η, with a small η > 0. We

write s1 = s, s2 = sξ. Then the double integral is equal to

(3.85)
1

(2πi)2

∫
C4

∫
C2

Z(s, sξ)Rs(ξ+1)

(ξ + 1)kξ`+1sk+2`+1
dsdξ,

where C4 is the circle |ξ| = 2. This is equal to

(3.86)
Z(0, 0)

2πi(k + 2`)!
(logR)k+2`

∫
C4

(ξ + 1)2`

ξ`+1
dξ +O

(
(log y)k+2`−1(log log y)c

)
.

We note that Z(0, 0) = S(H)/ρkK and obtain

Lemma 3.9. If (3.43) and (3.44) hold, and R ≤ y1/2/(log y)C , where C

is a sufficiently large constant depending only on k and `,∑
α∈21/nRy\Ry

ΛR(α;H, k + `)2 =
S(H)

ρkK(k + 2`)!

(
2`

`

)
y√
|D|

(logR)k+2`

+O
(
y(log y)k+2`−1(log log y)c

)
.

(3.87)

Now we quote here a result generalizing the Bombieri-Vinogradov The-

orem to number fields [16]. Henceforth we denote by ω prime elements of

K.

Lemma 3.10. Let y1, . . . , yκ be positive real numbers, and write y for the

product y1 . . . yκ. Then for any constant A > 0,

(3.88)
∑

Nq≤y1/2/(log y)B

max
xi≤yi

max
(γ,q)=1

∣∣∣∣∣π(Rx; q, γ)− Ix
φ(q)

∣∣∣∣∣� y

(log y)A

where B is some constant depending on A,

(3.89) π(Rx; q, γ) =
∑
ω∈Rx

ω≡γ (mod q)

1.
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and

(3.90) Ix =
1

2κ−1hR

xi∫
· · ·
∫

2

du1 . . . duκ
log(u1 . . . uκ)

.

Here h is the class number and R the regulator of K.

If we put

(3.91) π∗(Rx; q, γ) =
∑

ω∈21/κRx\Rx

ω≡γ (mod q)

1,

then the lemma clearly entails

(3.92)
∑

Nq≤y1/2/(log y)B

max
xi≤yi

max
(γ,q)=1

∣∣∣∣∣π∗(Rx; q, γ)− I21/κx − Ix
φ(q)

∣∣∣∣∣� y

(log y)A
.

Now suppose that ϑ is an absolute constant 0 < ϑ < 1 such that for any

A > 0 we have

(3.93)
∑

Nq≤yϑ
max
xi≤yi

max
(γ,q)=1

∣∣∣∣∣π∗(Rx; q, γ)− I21/κx − Ix
φ(q)

∣∣∣∣∣� y

(log y)A
.

In particular, we may take ϑ to be any number less than 1/2 by the preceding

discussion.

Now let $(α) be be the characteristic function of the prime elements in

OK . We shall evaluate

(3.94)
∑

α∈21/κRy\Ry

$(α+ h)ΛR(α;H, k + `)2

with an arbitrary algebraic integer h ∈ H. We note that this is equal to

(3.95)
∑

α∈21/κRy\Ry

$(α+ h)ΛR(α;H \ {h}, k + `)2

if h ∈ H.

Assume that R ≤ yϑ/2 and h /∈ H. Expanding out the square in (3.94),

we obtain

(3.96)
∑
a1,a2

λR(a1; k + `)λR(a2; k + `)
∑

α∈21/κRy\Ry

α∈Ω(a1∩a2)

$(α+ h),
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which in turn equals

∑
a1,a2

λR(a1; k + `)λR(a2; k + `)

×
∑

b∈Ω(a1∩a2)

δ((b+ h, a1 ∩ a2))π∗(Ry; a1 ∩ a2, b+ h)

+O(y1−1/κ(log y)c),

(3.97)

where δ(x) is the unit measure placed at x = 1. To see how the error

term arises, note that if S is the set 21/κRy \Ry and ∆ denotes symmetric

difference, the change in the inner sum introduces an error

(3.98)
∑
a1,a2

λR(a1; k + `)λR(a2; k + `)
∑

α∈(S+h)∆S
α∈Ω(a1∩a2)

$(α+ h).

Since the volume of the set we sum over is � y1−1/κ log y, this is majorized

by

(3.99) y1−1/κ(logR)2k+2`+1
∑

Na1,Na2≤R

|Ω(a1 ∩ a2)|
N(a1 ∩ a2)

,

and we deal with this sum as we did for the error term in (3.54), this time

we obtain only a log-power since the exponent of N(a1 ∩ a2) is −1 in this

case. Now the main term of (3.97) is equal to

∑
a1,a2

λR(a1; k + `)λR(a2; k + `)
∑

b∈Ω(a1∩a2)

δ((b+ h, a1 ∩ a2))
I21/κy − Iy
φ(a1 ∩ a2)

+O

(∑
a1,a2

λR(a1; k + `)λR(a2; k + `)

×
∑

b∈Ω(a1∩a2)

δ((b+ h, a1 ∩ a2))

(
π∗(Ry; a1 ∩ a2, b+ h)−

I21/κy − Iy
φ(a1 ∩ a2)

))
.

(3.100)

In the error term consider those a1, a2 satisfying

(3.101) |Ω(a1 ∩ a2)| ≤ τk(a1 ∩ a2) < (log y)A/2,
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in which case we have |{a1, a2 : a1 ∩ a2 = a}| = τ3(a) < (log y)
A log 3
2 log k . Then

using (3.93), their contribution is

(3.102) � y

(log y)A/3
.

Now for square-free a,

φ(a)

Na
=
∏
p|a

(
1− 1

Np

)
≥
∏
p|Na

(
1− 1

p

)κ

=

(
φ(Na)

Na

)κ
�
(

1

(log logNa)κ

)
.

(3.103)

Also,

(3.104) π∗(Ry; a, γ) = π(R21/κy; a, γ)− π(Ry; a, γ)�
I21/κy − Iy

φ(a)

by the main theorem of [21], and by a trivial induction Iy � y/ log y, so,

(3.105) π∗(Ry; a, γ)� y

φ(a) log y
� y

Na
.

Thus the contribution of the terms in the error not satisfying (3.101) is

(3.106) � y(logR)2(k+`)
∑

Na1,Na2≤R

τk(a1 ∩ a2)

(log y)A/2
|Ω(a1 ∩ a2)|
N(a1 ∩ a2)

.

Now

(3.107)
∑

Na1,Na2≤R

τk(a1 ∩ a2)|Ω(a1 ∩ a2)|
N(a1 ∩ a2)

�
∑

Na≤R2

τ2
k (a)τ3(a)

Na
.

Accordingly, we consider

∑
a

τ2
k (a)τ3(a)

(Na)1+s
=
∏
p

∞∑
n=0

τ2
k (pn)τ3(pn)

(Np)n(1+s)

=
∏
p

(
1 +

3k2

(Np)1+s
+O

(
(Np)−2σ−2

))
= ζK(1 + s)3k2

∏
p

(
1 +O

(
(Np)−2σ−2

))
,

(3.108)
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and using Perron’s formula, we see that

(3.109)
∑

Na≤R2

τ2
k (a)τ3(a)

Na
� (logR)c.

Putting everything together, we obtain

∑
a1,a2

λR(a1; k + `)λR(a2; k + `)

×
∑

b∈Ω(a1∩a2)

δ((b+ h, a1 ∩ a2))π∗(Ry; a1 ∩ a2, b+ h)

= (I21/κy − Iy)T ∗ +O

(
y

(log y)A/3

)
,

(3.110)

where

(3.111) T ∗ =
∑
a1,a2

λR(a1; k + `)λR(a1; k + `)

φ(a1 ∩ a2)

∑
b∈Ω(a1∩a2)

δ((b+ h, a1 ∩ a2)).

It remains to evaluate T ∗. The inner sum in (3.111) is equal to

(3.112)
∏

p|a1∩a2

 ∑
b∈Ω(p)

δ((b+ h, p))

 =
∏

p|a1∩a2

(|Ω+(p)| − 1),

where Ω+ corresponds to the set H+ = H ∪ {h}. As before, we have

T ∗ =
1

(2πi)2

∫
(1)

∫
(1)

∏
p

(
1− |Ω

+(p)| − 1

Np− 1

×
(

1

(Np)s1
+

1

(Np)s2
− 1

(Np)s1+s2

))
Rs1+s2

(s1s2)k+`+1
ds1ds2.

(3.113)

We consider the function

∏
p

(
1− |Ω

+(p)| − 1

Np− 1

(
1

(Np)s1
+

1

(Np)s2
− 1

(Np)s1+s2

))

×
(
ζK(s1 + 1)ζK(s2 + 1)

ζK(s1 + s2 + 1)

)k
.

(3.114)
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If H+ is admissible, then the singular series is S(H+) and the estimation of

the integrals is analogous to the previous case. Thus we obtain

T ∗ =
S(H+)

ρkK(k + `)!

(
2`

`

)
(logR)k+2` +O

(
(log y)k+2`−1(log log y)c

)
.(3.115)

On the other hand, if H+ is not admissable, then the Euler product vanishes

at s1 = 0 and s2 = 0 to the order equal to the number of prime ideals with

|Ω+(p)| = Np, in which case we necessarily have Np ≤ k + 1. The number

of such ideals is bounded. Thus the effect of the vanishing factors in the

product is only to annhiliate the main term, while the estimation of the

error terms remain intact.

Finally, if h ∈ H, the preceding discussion applies with the translation

k 7→ k − 1, ` 7→ `+ 1.

Thus, we obtain

Lemma 3.11. Suppose (3.43), (3.44) and (3.93) hold, then for R ≤ yϑ/2,

we have

∑
α∈21/κRy\Ry

$(α+ h)ΛR(α;H, k + `)2

=



S(H ∪ {h})
ρkK(k + 2`)!

(
2`

`

)
(I21/κy − Iy)(logR)k+2`

+O
(
y(log y)k+2`−2(log log y)c

)
, if h /∈ H,

S(H)

ρk−1
K (k + 2`+ 1)!

(
2(`+ 1)

`+ 1

)
(I21/κy − Iy)(logR)k+2`+1

+O
(
y(log y)k+2`−1(log log y)c

)
, if h ∈ H.

(3.116)

Now we use our lemmata to obtain our main theorem. First we need a

lemma concerning the average size of S(H). The proof follows Gallagher’s

[6, §2] computation for the rational case.
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Lemma 3.12. For fixed k, there holds

(3.117)
∑
H⊆H
|H|=k

S(H) ∼

(
H√
|D|

)k

as H →∞, where in the sum the permutations of elements of H are counted.

Proof. Put

(3.118) DH =
∏
i<j

(hi − hj).

Then 1 ≤ |Ω(p)| ≤ k, with equality at the right unless p | DH. Now

S(H) =
∏
p

(
1− |Ω(p)|

Np

)(
1− 1

Np

)−k
=
∏
p

(
1 +

(Np)k − |Ω(p)|(Np)k−1 − (Np− 1)k

(Np− 1)k

)
=
∏
p

(1 + a(p, |Ω(p)|)) .

(3.119)

The product converges by the discussion preceding the bound (3.68) for

G(s1, s2,Ω). Also, we have the bounds

(3.120) a(p, |Ω(p)|)�

(Np− 1)−2, if |Ω(p)| = k,

(Np− 1)−1, if |Ω(p)| < k.

Since when H is fixed, the |Ω(p)| are determined, we can write aH(p) for

the sake of brevity. We extend aH multiplicatively to square-free ideals, so

that

(3.121) S(H) =
∑
a

aH(a).

By the bounds in (3.120),

(3.122)
∑
Na>x

|aH(a)| ≤
∑
Na>x

µ2(a)cω(a)

φ2(a)
φ((a, DH)),

where c is an implicit constant coming from (3.120), which we may assume

is an integer, and ω(a) is the number of distinct prime divisors of a (there’s
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no risk of ambiguity with our use of ω to denote primes due to the presence

of an argument). Put a = de with d | DH and (e, DH) = 1. Then the right

hand side of the above equals

(3.123)
∑
d|DH

µ2(d)cω(d)

φ(d)

∑
Ne>x/Nd
(e,DH)=1

µ2(e)cω(e)

φ2(e)
.

We first deal with the inner sum. We have

(3.124)
∑

Ne>x/Nd
(e,DH)=1

µ2(e)cω(e)

φ2(e)
�

∞∑
n=n0

∑
2n<Ne<2n+1

µ2(e)cω(e)

φ2(e)
,

where n0 =
[

log(x/Nd)
log 2

]
. Then provided

(3.125)
∑

n<Ne<2n

µ2(e)cω(e)

φ2(e)
� (log n)C

n
,

we get

∞∑
n=n0

∑
2n<Ne<2n+1

µ2(e)cω(e)

φ2(e)
�

∞∑
n=n0

nC

2n
� nC0

2n0
� Nd

x
(log x)C .(3.126)

Now we show (3.125). We have

∑
n<Ne<2n

µ2(e)cω(e)

φ2(e)
<
∑

Ne<2n

Ne

n

µ2(e)cω(e)

φ2(e)

=
1

n

∑
Ne<2n

Neµ2(e)cω(e)

φ2(e)
,

(3.127)

thus showing

(3.128)
∑
Ne<x

Neµ2(e)cω(e)

φ2(e)
� (log x)C
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suffices. We form the corresponding Dirichlet series.

∑
e

Neµ2(e)cω(e)

φ2(e)(Ne)s
=
∏
p

∞∑
n=0

(Np)nµ2(pn)cω(pn)

φ2(pn)(Np)ns

=
∏
p

(
1 +

cNp

(Np− 1)2(Np)s

)

=
∏
p

(
1 +

c

(Np)s+1

(
Np

Np− 1

)2
)

=
∏
p

(
1 +

c

(Np)s+1
+O

(
1

(Np)2+σ

))
= ζcK(s+ 1)

∏
p

(
1 +O((Np)−2−σ + (Np)−2−2σ+ε)

)
.

(3.129)

The product is bounded for σ > −1/4, say, hence Perron’s formula gives us

(3.128). Thus (3.123) is

(3.130) � (log x)C

x

∑
d|DH

µ2(d)cω(d)Nd

φ(d)
,

and we have ∑
d|DH

µ2(d)cω(d)Nd

φ(d)
=

∏
pj‖DH

∑
d|pj

µ2(d)cω(d)Nd

φ(d)

=
∏
p|DH

(
1 + C +

C

Np− 1

)
≤ c′ω(DH) � (NDH)ε � Hε,

(3.131)

so we obtain

(3.132) S(H) =
∑
Na≤x

aH(a) +O

(
(Hx)ε

x

)
.

We sum this over all H ⊆ H with |H| = k and get

(3.133)
∑
H⊆H
|H|=k

S(H) =
∑
Na≤x

∑
H⊆H
|H|=k

aH(a) +O

(
Hk (Hx)ε

x

)
.
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The inner sum here can be rewritten

(3.134)
∑
ν

∏
p|a

a(p, |Ω(p)|)
(∑′

1 +O(Hk−1)
)
.

Here ν runs over “vectors” (. . . , |Ω(p)|, . . .)p|a with 1 ≤ |Ω(p)| ≤ Np, and∑′
1 is the number of k-tuples h1, . . . , hk ∈ H of not necessarily distinct

integers which, for each prime ideal p | a occupy exactly |Ω(p)| residue classes

modulo p. The error term arises because we dropped the restriction that

the hi be distinct.

For each p | a, there are
( Np
|Ω(p)|

)
ways of choosing the |Ω(p)| to be occu-

pied, and once these are chosen, σ(k, |Ω(p)|) ways of assigning one of them

to each hi, where σ(r, |Ω(p)|) is the number of surjective maps from a set of

k elements into a set of |Ω(p)| elements. Then using the Chinese Remainder

Theorem and appealing to Lemma 3.1, we see that

(3.135)∑′
1 =

( H√
|D|Na

)k
+O

((
H

Na

)k−1/κ
)∏

p|a

(
Np

|Ω(p)|

)
σ(k, |Ω(p)|).

Thus the inner sum in (3.133) is

(3.136)

(
H√
|D|Na

)k
A(a) +O

((
H

Na

)k−1/κ

B(a)

)
+O(Hk−1C(a)),

where

A(a) =
∑
ν

∏
p|a

a(p, |Ω(p)|)
(

Np

|Ω(p)|

)
σ(k, |Ω(p)|),

B(a) =
∑
ν

∏
p|a

|a(p, |Ω(p)|)|
(

Np

|Ω(p)|

)
σ(k, |Ω(p)|),

C(a) =
∑
ν

∏
p|a

|a(p, |Ω(p)|)|.

(3.137)
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Rearranging, we get

A(a) =
∏
p|a

(
Np∑
ν=1

a(p, ν)

(
Np

ν

)
σ(k, ν)

)
,

B(a) =
∏
p|a

(
Np∑
ν=1

|a(p, ν)|
(
Np

ν

)
σ(k, ν)

)
,

C(a) =
∏
p|a

(
Np∑
ν=1

|a(p, ν)|

)
.

(3.138)

Now for Na > 1, we show that A(a) = 0. Plugging in the explicit expression

for a(p, ν), the p-factor becomes

(3.139) (Np− 1)−k

((
(Np)k − (Np− 1)k

) Np∑
ν=1

(
Np

ν

)
σ(k, ν)

− (Np)k−1
Np∑
ν=1

ν

(
Np

ν

)
σ(k, ν)

)
,

and using the combinatorial identities [6, (i) and (ii) of §3]

(3.140)

n∑
ν=1

(
n

ν

)
σ(r, ν) = nr

and

(3.141)

n∑
ν=1

ν

(
n

ν

)
σ(r, ν) = nr+1 − (n− 1)rn,

the sums are (Np)k and (Np)k+1 − (Np − 1)kNp respectively, so the fac-

tor vanishes. In the same manner, using the weaker bound in (3.120),

namely that a(p, ν) � (Np − 1)−1, we find that the p-th factor in B(a)

is � (Np)k/(Np− 1), whence

(3.142) B(a) ≤ cω(a) (Na)k

φ(a)
.

Likewise, the p-th factor in C(a) is � Np/(Np− 1), so

(3.143) C(a) ≤ cω(a) Na

φ(a)
.
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Thus we see that (3.133) is (H/
√
|D|)k plus an error term, which is

(3.144) � Hk−1/κ
∑
Na≤x

cω(a) Na

φ(a)
+Hk (Hx)ε

x
.

To deal with the sum, we again form the corresponding Dirichlet series with

a view to using Perron’s formula. We have

∑
a

cω(a) Na

φ(a)(Na)s
=
∏
p

(
1 +

cNp

Np− 1

(
(Np)−s + (Np)−2s + · · ·

))

=
∏
p

(
1 +

(
1 +

1

Np− 1

)(
c(Np)−s + c(Np)−2s + · · ·

))

=
∏
p

(
1 + c(Np)−s +O

(
1

(Np)σ+1
+

1

(Np)2σ−ε

))

= ζcK(s)
∏
p

(
1 +O

(
1

(Np)σ+1
+

1

(Np)2σ−ε

))
,

(3.145)

and Perron’s formula yields that the sum in question is� x(log x)c � x1+ε.

Thus (3.144) is

� Hk−1/κx1+ε +Hk(xH)ε/x

� Hk− 1
2κ

+ε
(3.146)

upon choosing x = H1/2κ. This completes the proof. �

Now we are in a position to prove our main theorem. We shall evaluate

(3.147)
∑
H⊆H
|H|=k

∑
α∈21/κRy\Ry

(∑
h∈H

$(α+ h)− 1

)
ΛR(α;H, k + `)2

to see that it is positive, for if this is the case, then there is an algebraic

integer α ∈ 21/κRy \Ry such that

(3.148)
∑
h∈H

$(α+ h)− 1 > 0.

Hence

(3.149) min
ω0,ω1∈α+H
ω0 6=ω1

|N(ω1 − ω0)| ≤ H.



3. MAIN RESULTS 41

Assume R = yϑ/2, so that lemmata 3.9 and 3.12 hold. We also note that

a simple induction (where the assumption that yi � y1/κ is relevant) shows

that

(3.150) Iy =
y

2κ−1hR log y
(1 + o(1)) .

Then using these we see that (3.147) is asymptotically equal to

∑
H⊆H
|H|=k

∑
α∈21/κRy\Ry

{∑
h/∈H

+
∑
h∈H

}
$(α+ h)ΛR(α;H, k + `)2

− 1

(
√
|D|)k+1ρkK(k + 2`)!

(
2`

`

)
yHk(logR)k+2`,

with an error of size o(yHk(log y)k+2`+1), and using lemmata 3.11 and 3.12

together with (3.150) this is asymptotically equal in the same sense to

1

2κ−1(
√
|D|)k+1hRρkK(k + 2`)!

(
2`

`

)
y

log y
Hk+1(logR)k+2`

+
k

2κ−1(
√
|D|)khRρk−1

K (k + 2`+ 1)!

(
2(`+ 1)

`+ 1

)
y

log y
Hk(logR)k+2`+1

− 1

(
√
|D|)k+1ρkK(k + 2`)!

(
2`

`

)
yHk(logR)k+2`

=

(
H

2κ−1
√
|D|hRρK

+
k

2κ−1hR(k + 2`+ 1)
· 2(2`+ 1)

`+ 1
logR

− 1√
|D|ρK

log y

)
× 1

(
√
|D|)kρk−1

K (k + 2`)!

(
2`

`

)
y

log y
Hk(logR)k+2`,

(3.151)

so it suffices to show that the expression in the parentheses is positive. Recall

that the analytic class number formula in the totally real case is given by

(3.152) ρK =
2κ−1hR√
|D|

.

Thus with further simplication (3.147) is positive provided

(3.153)
H

log y
≥
(

1 + ε− k

k + 2`+ 1
· 2(2`+ 1)

`+ 1
· ϑ

2

)
2κ−1hR

√
D.
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Choosing ` = [
√
k], we get

(3.154) lim inf
ω0,ω1∈OK
ω0 6=ω1

∣∣∣N(ω1 − ω0)

logNω0

∣∣∣ = 2κ−1hR
√
D inf

ϑ<1/2
max{0, 1− 2ϑ} = 0,

hence we obtain our

Theorem 3.13. Let K be a totally real number field. Then

(3.155) lim inf
ω0,ω1∈OK prime

ω0 6=ω1

∣∣∣N(ω1 − ω0)

logNω0

∣∣∣ = 0.



CHAPTER 4

The Maynard-Tao method

The aim of this chapter is to give an informal outline of the workings

of the Maynard-Tao modification of the GPY method. As in Chapter 2, we

will by no means aim for rigour, since the the technical details of the method

will be demonstrated through application in the next chapter.

To understand the effect of the modification, we take a step back and

reformulate the latter in more general terms. Recall that in the GPY method

we were interested in establishing the positivity of an expression of the form

(4.1) S =
∑

X<n≤2X

(
k∑
i=1

θ(n+ hi)− log 3X

) ∑
d|P (n;H)

λ(d)

2

,

where λ(d) was given by

(4.2) λ(d) =


µ(d)

(k + `)!

(
log

R

d

)k+`

, if d ≤ R,

0, otherwise.

Here, for purposes of generality, we leave λ(d) unspecified, but assume that

it is supported on square-free integers d ≤ R. Expanding the square and

rearranging, we find that (4.1) equals

(4.3)

S =
∑
d1,d2

λ(d1)λ(d2)

(
k∑
i=1

∑
X<n≤2X

[d1,d2]|P (n;H)

θ(n+ hi)− (log 3X)
∑

X<n≤2X
[d1,d2]|P (n;H)

1

)

The second sum counts the number of n ∈ (X, 2X] that fall into one of

the νH([d1, d2]) residue classes (mod [d1, d2]), so the contribution (within

43
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acceptable error) of the inner sum is

(4.4) X(log 3X)
∑
d1,d2

D=[d1,d2]

λ(d1)λ(d2)
νH(D)

D
.

The first sum, on the other hand, can be approximated for each residue

class n (mod [d1, d2]) ∈ Ω([d1, d2]) by X/φ([d1, d2]) only when n + hi runs

over residue classes relatively prime to [d1, d2], or what is the same, if n ∈

Ω([d1, d2]) but n 6≡ −hi (mod p) for any p | [d1, d2]. So we must have n ∈

Ωi(p) = Ω(p)\{−hi (mod p)} for each p | [d1, d2] by the Chinese Remainder

Theorem. Thus |Ωi(D)| = ν∗H(D) where ν∗H(D) is the multiplicative function

defined on primes by ν∗H(p) = νH(p)− 1. With these, the first (double) sum

contributes

(4.5) Xk
∑
d1,d2

D=[d1,d2]

λ(d1)λ(d2)
ν∗H(D)

φ(D)
,

and our expression becomes

(4.6)

X

(
k

∑
d1,d2

D=[d1,d2]

λ(d1)λ(d2)
ν∗H(D)

φ(D)
− (log 3X)

∑
d1,d2

D=[d1,d2]

λ(d1)λ(d2)
νH(D)

D

)
.

We have dealt with sums of type (4.4) and (4.5) in Chapter 3 using ana-

lytic methods by approximating them with integrals of zeta-functions. It is

also possible to deal with them using elementary sieve-theoretic arguments.

We have the following reciprocity law: Let L(d) and Y (r) be sequences of

numbers supported on square-free integers. If

(4.7) L(d) = µ(d)
∑
d|n

Y (n) for all d ≥ 1,

then

(4.8) Y (r) = µ(r)
∑
r|m

L(m) for all r ≥ 1.

This is easily seen by plugging in the definition and rearranging the sums.

Also, it is clear that if L(d) is supported on d ≤ R, then Y (r) is supported
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on r ≤ R. Now put

(4.9) L(d) =
λ(d)νH(d)

d
.

Then since νH((d1, d2))νH(D) = νH(d1)νH(d2), we can write the sum in

(4.4) as

S1 =
∑
d1,d2

D=[d1,d2]

λ(d1)λ(d2)
νH(D)

D

=
∑
r,s

Y (r)Y (s)
∑

d1,d2≤R
d1|r, d2|s

µ(d1)µ(d2)
(d1, d2)

νH((d1, d2))
.

(4.10)

The inner sum is multiplicative, and for a prime dividing only one of r and

s, it is easily worked out to be zero. Since r and s are square-free, it follows

that the inner sum is non-vanishing only when r = s, in which case for a

prime divisor p of r its value is seen to be 1 − 1 − 1 + p/νH(p). Letting ω

be the multiplicative function defined on primes by ω(p) = p − νH(p), we

obtain

(4.11) S1 =
∑
r

Y (r)2 ω(r)

νH(r)
=
∑
r

y(r)2νH(r)

ω(r)
,

where we have put Y (r) = y(r)νH(r)/ω(r). Now for a multiplicative func-

tion g(n), if g(p) is “sufficiently close” to a constant k on primes, we have

(4.12)
∑
n≤x

g(n)

n
∼ Gk(g(n), 0)

(log x)k

k!
,

where

(4.13) Gk(g(n), s) =
∏
p

(
1 +

g(p)

p1+s
+

g(p2)

p2(1+s)
+ . . .

)(
1− 1

p1+s

)k
,

and the condition that g(n) is “sufficiently close” to k is essentially that

Gk(g(n), s) converges at s = 0. To see why this is so, consider the associated
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Dirichlet series,

∞∑
n=1

g(n)

n1+s
=
∏
p

(
1 +

g(p)

p1+s
+

g(p2)

p2(1+s)
+ . . .

)

=
∏
p

(
1 +

g(p)

p1+s
+

g(p2)

p2(1+s)
+ . . .

)(
1− 1

p1+s

)k
ζ(1 + s)k

= Gk(g(n), s)ζ(1 + s)k,

(4.14)

and if Gk(g(n), s) is bounded in a region σ > −δ, Perron’s formula will pick

up the main term asserted in (4.12). Now we assume that in (4.11), y(r) is

given by

(4.15) y(r) = F

(
log r

logR

)
,

where F (t) is some measurable function supported on [0, 1]. Then we can

use (4.12) and summation by parts to deduce that

(4.16)

S(H)S1 = S(H)
∑
r

νH(r)

ω(r)
F

(
log r

logR

)2

∼ (logR)k
∫ 1

0
F (t)2 tk−1

(k − 1)!
dt,

where

S(H) = G

(
νH(n)n

ω(n)
, 0

)−1

=
∏
p

(
1 +

νH(p)

p− νH(p)

)−1(
1− 1

p

)−k

=
∏
p

(
1− νH(p)

p

)(
1− 1

p

)−k
.

(4.17)

Using the same reciprocity law with

(4.18) L∗(d) =
λ(d)ν∗H(d)

φ(d)

and

(4.19) Y ∗(r) =
y∗(r)ν∗H(r)

ω(r)
,
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one obtains

S2 =
∑
d1,d2

D=[d1,d2]

λ(d1)λ(d2)
ν∗H(D)

φ(D)

=
∑
r

y∗(r)2ν∗H(r)

ω(r)
.

(4.20)

We can work out y∗(r) in terms of F using the reciprocity law as follows.

We have

y∗(r) =
ω(r)

ν∗H(r)
Y (r) =

ω(r)

ν∗H(r)
µ(r)

∑
r|d

L∗(d)

=
ω(r)

ν∗H(r)
µ(r)

∑
r|d

ν∗H(d)

νH(d)

d

φ(d)
L(d)

=
ω(r)

ν∗H(r)
µ(r)

∑
r|d

ν∗H(d)

νH(d)

d

φ(d)
µ(d)

∑
d|n

y(n)νH(n)

ω(n)

=
r

φ(r)

∑
r|n

y(n)

ω(n/r)

∑
d
r
|n
r

µ(d/r)
ν∗H(d/r)d/r

φ(d/r)
νH(n/d).

(4.21)

Now the summand of the inner sum is multiplicative, so working it out prime

by prime we see that it equals ω(n/r)/φ(n/r). Hence

y∗(r) = r
∑
r|n

y(n)

φ(n)
=

r

φ(r)

∑
m≤R/r
(m,r)=1

y(mr)

φ(r)

∼ (logR)

∫ 1

log r
logR

F (t)dt,

(4.22)

since with k = 1 and

(4.23) g(n) =

n/φ(n), if (n, r) = 1,

0, otherwise,

the product G1(g(n), 0) = φ(r)/r. Using this in (4.12) and summing by

parts yields

(4.24) S∗(H)S2 ∼ (logR)k+1

∫ 1

0

(∫ 1

t
F (u)du

)2
tk−2

(k − 2)!
dt,
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with

S∗(H) : = Gk−1

(
ν∗H(n)n

ω(n)
, 0

)−1

=
∏
p

(
1 +

νH(p)− 1

p− νH(p)

)−1(
1− 1

p

)−(k−1)

=
∏
p

(
p− 1

p− νH(p)

)−1(p− 1

p

)(
1− 1

p

)−k

=
∏
p

(
1− νH(p)

p

)(
1− 1

p

)−k
= S(H).

(4.25)

With these, we find that (4.6) is asymptotically

(4.26)
X(logR)k

S(H)

(
k(logR)

∫ 1

0

(∫ 1

t
F (u)du

)2
tk−2

(k − 2)!
dt

− (log 3X)

∫ 1

0
F (t)2 tk−1

(k − 1)!
dt

)
.

In other words, recalling that we can take R as large as Xϑ/2, the positivity

of S hinges on the positivity of

(4.27)
ϑ

2
ρk(F )− 1,

where ρk(F ) is the ratio

(4.28) k

∫ 1

0

(∫ 1

t
F (u)du

)2
tk−2

(k − 2)!
dt

/∫ 1

0
F (t)2 tk−1

(k − 1)!
dt.

In fact it is easy to see that we can more generally find m + 1 primes if

we can show ϑ
2ρk(F ) > m. Choosing F (t) = (1 − t)k+`/(k + `)! here yields

ρk(F ) = 4 − o(1) as k, ` → ∞ with ` = o(k), corresponding to the results

discussed in Chapter 2, i.e., we only just fail to produce bounded gaps with

level of distribution ϑ = 1/2, but any level > 1/2 suffices. Moreover, it can

be shown that for any polynomial F (t), the inequality ρk(F ) < 4 holds, so

that the results obtained are essentially the limit of the method.
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The novelty introduced by the Maynard-Tao method is that instead of

weights of type

(4.29)

 ∑
d|P (n;H)

λ(d)

2

,

they consider

(4.30)

 ∑
di|n+hi, i=1,...,k

λd1,...,dk

2

,

where d1 . . . dk ≤ R. With these “higher dimensional” weights, all the sieve

manipulations go through in an analogous fashion, and one can again use

a change of variables yr1,...,rk to diagonalize the sums over λ’s, and in turn

put

(4.31) yr1,...,rk = F

(
log r1

logR
, . . . ,

log rk
logR

)
,

with F (t1, . . . , ti) ∈ R where R is the set of Riemann-integrable functions

supported on the set {(t1, . . . , tk) ∈ [0, 1]k :
∑
ti ≤ 1}. Skipping all the

technicalities (the method will be sufficiently exposed through application

in Chapter 6), the effect of this modification is to replace ρk(F ) by

(4.32) ρ′k(F ) =
k
∫ (∫

F (t1, . . . , tk)dtk
)2
dtk−1 . . . dt1∫

F (t1, . . . , tk)2dtk . . . dt1

The freedom to optimise over a much larger space of functions has a very

dramatic effect. It is possible to choose F to satisfy not only ρ′k(F ) >

4, but in fact Maynard demonstrates the existence of F = Fk such that

ρ′k(F )
k→∞−−−→∞, so that one can find not just two but any number of primes

within a bounded distance of each other, and that with any positive level

of distribution ϑ > 0, a consequence much stronger than the previously

available results.





CHAPTER 5

A Bombieri-Vinogradov type theorem

In this chapter we prove a Bombieri-Vinogradov type theorem tailored

to the problem of finding prime tuples in an arithmetic progression. In order

to find bounds in terms of the moduli that are uniform over as large a range

of the moduli as possible, we will have to restrict ourselves to arithmetic pro-

gressions in which primes are reasonably well-distributed, i.e. progressions

to moduli whose associated Dirichlet L-functions don’t vanish too close to

s = 1. We first recall relevant facts about the zeros of Dirichlet L-functions

and set some notation.

For the imaginary part γ of a zero of an L-function, we shall denote |γ|+1

by γ̃ for the sake of brevity. We first recall some basic facts concerning zero-

free regions of L-functions [3, §14]. There is a constant c0 (the bounds cited

below are known in fact for different constants, but we take c0 to be the

minimum of those to simplify notation) such that an L-function L(s, χ) to

the modulus q has no zero β + iγ in the region

(5.1) β ≥ 1− c0

log qγ̃
,

except possibly a single real zero, which can exist for at most one real char-

acter χ (mod q). We call a modulus to which there’s such a primitive char-

acter an exceptional modulus, and the corresponding zero an exceptional

zero. Exceptional moduli are of the form q = 2νp1 . . . pm, where ν ≤ 3 and

p1 < p2 < . . . < pm are distinct odd primes, whence, by the Prime Number

Theorem, we have pm �
∑

p≤pm log p� log q. On the other hand we have,

for the real zeros, the unconditional bound

(5.2) β < 1− c0

q1/2(log q)2
.

51
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Also, if χ1 and χ2 are distinct real primitive characters to moduli q1 and q2

respectively and the corresponding L-functions have real zeros β1 and β2,

then the Landau-Page theorem states that these zeros must satisfy

(5.3) min(β1, β2) < 1− c0

log q1q2
.

We shall have to confine ourselves to L-functions which don’t have a

zero in the region

(5.4) β ≥ 1− c∗ log logX

logX
, γ̃ ≤ exp

(
c]
√

logX
)

for a parameter X and given constants c∗ and c]. This is a consequence of

(5.2) when q �
(

logX
(log logX)2

)2
. We suppose that X is large enough in terms

of c] and c∗ such that

(5.5) c] ≤ c0

4c∗

√
logX

log logX

holds, and argue that there’s at most one modulus ≤ exp
(
2c]
√

logX
)

to

which there’s a primitive character whose L-function vanishes in the region

(5.4). By (5.1), no non-exceptional zeros exist in the region stated, so we

only need to consider real zeros. Suppose there are two such moduli q1 and

q2, with corresponding real zeros β1 and β2. Then using (5.3) we have,

1− c∗ log logX

logX
< 1− c0

log q1q2

≤ 1− c0

4c]
√

logX
,

(5.6)

which is impossible by (5.5). We denote this possibly existing unique mod-

ulus by q0 and the greatest prime dividing q0 by p0, or set p0 = 1 in case

q0 does not exist. We note that q0 �
(

logX
(log logX)2

)2
, whence p0 � log logX.

We put

(5.7) Pf =

1, if f(X)� (logX)C ,

p0, otherwise.

Our main parameter X is large enough and f(X) is a given increasing

function of X with f(X)� X
5
12
− 5

6
ϑ for some positive number ϑ < 1/2. The



5. A BOMBIERI-VINOGRADOV TYPE THEOREM 53

modulus M of the arithmetic progression does not exceed f(X) and is not

a multiple of any number in a set Z of exceptions whose size Zf satisfies

(5.8) Zf =


0, if f(X)� (logX)C ,

1, if f(X)� exp
(
c
√

logX
)
,

O
(
(log logX)C

)
, otherwise.

We denote characters modulo q, M , and qM by ψ, ξ, and χ respectively.

A summation
∑∗

χ over characters with an asterisk in the superscript denotes

that the summation is over primitive characters only.

We first quote here a zero-density result [18, Theorem 10.4 and the

following remark] which we will need in our proof.

Theorem 5.1. Let m be given and N(1− δ, T, χ) be the number of zeros

β + iγ of L(s, χ) in the region 1− δ ≤ β, |γ| ≤ T . Put

(5.9) N(1− δ,m,Q, T ) =
∑
q≤Q

(q,m)=1

∑∗

ψ (mod q)

∑
ξ (mod m)

N(1− δ, T, ψξ).

Then for δ < 1/2 and any ε > 0, we have

(5.10) N(1− δ,m,Q, T )�
(

(mQT )2δ + (mQ2T )c(δ)δ
)

(logmQT )A,

for some constant A, where

(5.11) c(δ) = min

(
3

1 + δ
,

3

2− 3δ

)
.

We estimate the number of the moduli we will have to exclude in the

following proposition.

Proposition 5.2. Let c∗ and c] be given constants. There is a set Z

of exceptions with |Z| � (logX)C such that if X is large enough, then

for all M ≤ f(X) that is not a multiple of any number in Z and all

q ≤ exp
(
c]
√

logX
)

with (q,Mp0) = 1, the L-functions L(s, ψξ), where

ψ (mod q) is primitive and ξ is any character (mod M), have no zeros in

the region 1− c∗ log logX
logX ≤ β ≤ 1, |γ| ≤ exp

(
c]
√

logX
)
. The set Z can have
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elements ≤ exp
(
c]
√

logX
)

only if q0 exists, in which case those elements

are all multiples of p0.

Proof. Suppose that M is a modulus such that for some character ξ

(mod M) and a primitive character ψ (mod q), L(s, ψξ) has a zero in the

region indicated. Then ψξ must be induced by a character of the form ψξ∗,

where ξ∗ (mod m) is a primitive character modulo m |M . We estimate the

number of such m. Let

(5.12)

Z = {m ≤ f(X) : there exist q ≤ exp
(
c]
√

logX
)

and χ (mod mq)

with (q,mp0) = 1 and χ primitive, such that L(β + iγ, χ) = 0

for some β > 1− c∗ log logX
logX }

be the set of exceptions whose size we wish to bound. We divide the ranges

1 ≤ m ≤ f(X), 1 ≤ q ≤ exp
(
c]
√

logX
)
, and γ̃ ≤ exp

(
c]
√

logX
)

into

dyadic segments [Mλ/2,Mλ), [Qµ/2, Qµ) and [Tν/2, Tν) respectively. Then,

(5.13) #Z ≤
∑
λ,µ,ν

∑
m≤Mλ

∑
q≤Qµ

(q,mp0)=1

∑∗

χ (mod qm)

N(1− c∗ log logX
logX , Tν , χ).

Using Theorem 5.1 with m = 1 and MλQµ in place of Q, the above is

(5.14) �
∑
λ,µ,ν

(M2
λQ

2
µTν)

12c∗ log logX
5 logX (logQµTν)C � (logX)C ,

where C and the implicit constant depend on c∗ and c]. Now suppose that X

is large enough to satisfy (5.5). Then if m ∈ Z with m ≤ exp
(
c]
√

logX
)
, so

that mq ≤ exp
(
2c]
√

logX
)
, then by the discussion in Section 1, L(s, χ) = 0

with primitive χ (mod mq) implies mq = q0, and since p0 - q, we have

p0 | m. �

Remark. If f(X) ≤ exp
(
c
√

logX
)

for some constant c, then choosing

c] to be such a constant, one sees that Z can be taken to be at most a

singleton.
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Remark. We see that asymptotically almost all moduli remain after

exceptions, because the excluded moduli number at most� f(X)
(log logX) , since

p0 ≥ log logX.

Using this proposition, we prove the following theorem. We indulge in

a slight notational conflict between the Chebyshev function ψ(X) and the

character ψ(n) (mod q), which should be tolerable given the context. The

functions ψ(X; q, a) and ψ(X,χ) are distinguished by their arguments.

Theorem 5.3. Let A be a given positive number. There exists a positive

number B such that for all M ≤ f(X), except those that are multiples of

numbers in a set of size Zf , we have

(5.15) ∑
q≤X1/2

M6/5
(logX)−B

(q,Mp0)=1

max
(a,qM)=1

∣∣∣ψ(X; qM, a)− ψ(X)

ϕ(qM)

∣∣∣� X

ϕ(M)
(logX)−A,

where the implicit constants depend on A.

Proof. Let c∗ be a constant to be specified later in terms of A, and

pick c] arbitrarily (or, in case f(X) ≤ exp
(
c
√

logX
)

for some c, pick c]

according to the first remark following Proposition 5.2), so that Proposition

5.2 furnishes us with a set Z of size Zf . Then if M is not a multiple of any

number in Z, q ≤ exp
(
c]
√

logX
)

and (q,Mp0) = 1 then no L(s, ψξ) with

ψ primitive has a zero in the region β ≥ 1− c∗ log logX
logX , γ̃ ≤ exp

(
c]
√

logX
)
.

We put Ω = X1/2M−6/5(logX)−B for the sake of brevity. We have

(5.16) ψ(X; qM, a) =
1

ϕ(qM)

∑
χ (mod qM)

χ(a)ψ(X,χ)

and

(5.17) |ψ(X,χ0)− ψ(X)| ≤
∑
n≤X

(n,qM)>1

Λ(n)� (log qM)(logX),
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so it suffices to consider, within acceptable error,

(5.18)
∑
q≤Ω

(q,Mp0)=1

max
(a,qM)=1

∣∣∣ 1

ϕ(qM)

∑
χ (mod qM)

χ 6=χ0

χ(a)ψ(X,χ)
∣∣∣.

Since (M, q) = 1, we can factorize χ as ψξ, where ψ and ξ are characters to

the moduli q and M respectively, so that (5.18) is

(5.19)
∑
q≤Ω

(q,Mp0)=1

max
(a,qM)=1

∣∣∣ 1

ϕ(qM)

∑
ψ (mod q)
ξ (mod M)
ψξ 6=χ0

ψξ(a)ψ(X,ψξ)
∣∣∣.

We replace each character ψ with the primitive character ψ∗ inducing it.

This leads to an error of

(5.20)∑
q≤Ω

(q,Mp0)=1

1

ϕ(qM)

∑
ψ (mod q)
ξ (mod M)

∑
n≤X

(n,q)>1

Λ(n)� X1/2

M6/5
exp

(
−c]
√

logX
)

(logX)2,

and this is acceptable. Using the explicit formula for ψ(X,χ) in the form

(5.21) ψ(X,χ) = −
∑

|γχ|≤X1/2

βχ>1/2

Xρχ

ρχ
+O(X1/2(logX)2),

we are left to bound

(5.22)
1

ϕ(M)

∑
q≤Ω

(q,Mp0)=1

1

ϕ(q)

∑
ξ (mod M)

∑
ψ (mod q)

∑
|γψ∗ξ|≤X1/2

βψ∗ξ>1/2

Xβψ∗ξ

|ρψ∗ξ|
.

We rearrange the sum according to the moduli of the primitive characters

ψ∗ that occur, hence after relabelling the dummy variables so that q is now

the modulus of ψ∗, we have

X

ϕ(M)

∑
q≤Ω

(q,Mp0)=1

∑
ξ (mod M)

∑∗

ψ (mod q)

∑
|γψξ|≤X1/2

βψξ>1/2

X−(1−βψξ)

|ρψξ|
∑
k≤Ω/q

(k,Mp0)=1

1

ϕ(kq)

�X(logX)2

ϕ(M)

∑
q≤Ω

(q,Mp0)=1

∑
ξ (mod M)

∑∗

ψ (mod q)

∑
|γψξ|≤X1/2

βψξ>1/2

X−(1−βψξ)

q|ρψξ|
.

(5.23)
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We divide the ranges for q and γ̃ into dyadic segments, and the range for β

into segments of length (logX)−1 as follows.

(5.24) q ∈ [Qµ/2, Qµ), γ̃ ∈ [Tν/2, Tν), 1−β ∈ [δλ− (logX)−1, δλ),

where 2 ≤ Qµ = 2µ < 2Ω, 2 ≤ Tν = 2ν < 2X1/2 and (logX)−1 ≤ δλ =

λ(logX)−1 ≤ 1/2. So our expression is

(5.25) � X(logX)5

ϕ(M)
sup

(λ,µ,ν)

N∗(1− δλ,M,Qµ, Tν)

QµTν
X−δλ ,

where

(5.26)

N∗(1− δλ,M,Qµ, Tν) =
∑

Qµ/2<q≤Qµ
(q,Mp0)=1

∑∗

ψ (mod q)

∑
ξ (mod M)

N(1− δλ, Tν , ψξ).

Thus we need to show, for all triples (λ, µ, ν), dropping the subscripts for

economy of notation, the upper bound

(5.27) N∗(1− δ,M,Q, T )� QTXδ(logX)−A−5.

To this end we use the Theorem 5.1, which for our ranges of Q and T yields,

(5.28) N∗(1− δ,M,R, T )�
(

(MQT )2δ + (MQ2T )c(δ)δ
)

(logX)C
′
,

where C ′ is an absolute constant.

Since for 0 ≤ δ ≤ 1/2, we have

(5.29)
(MQT )2δ

QT
(logX)C

′ �M2δ(logX)C
′
,

the contribution of the first term on the right hand side of (5.28) is accept-

able if δ ≥ 2
15 , say. So we only need to show

(5.30)
(MQ2T )c(δ)δ

QT
� Xδ(logX)−(A+C′+5)

for 0 ≤ δ ≤ 1/2, and

(5.31)
(MQT )2δ

QT
� Xδ(logX)−(A+C′+5)

for 0 ≤ δ ≤ 2
15 .
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If 1
4 ≤ δ ≤ 1

2 , we have c(δ) = 3
1+δ . Here 6δ/(1 + δ) − 1 ≤ 2δ, 3δ/(1 +

δ)− 1 ≤ 0 and 3δ/(1 + δ) ≤ 12
5 δ, so

(MQ2T )
3δ
1+δ

QT
� (MQ2)

3δ
1+δ

Q

�M
12
5
δ

(
X1/2

M
6
5 (logX)B

)2δ

� Xδ(logX)−2δB

� Xδ(logX)−(A+C′+5),

(5.32)

if B ≥ 2(A+ C ′ + 5).

If 2
15 ≤ δ ≤ 1

4 , we have c(δ) = 3/(2 − 3δ). Here also 3δ/(2 − 3δ) ≤ 12
5 δ,

0 ≤ 6δ/(2− 3δ)− 1 ≤ 4
5δ and 3δ/(2− 3δ)− 1 ≤ 0, so

(MQ2T )
3δ

2−3δ

QT
� (MQ2)

3δ
2−3δ

Q

�M
12
5
δ

(
X1/2

M
6
5 (logX)B

) 4
5
δ

�M
36
25
δX

2
5
δ(logX)−

4
5
δB,

(5.33)

and this is � Xδ(logX)−(A+C′+5) if M � X5/12 and B ≥ 75
8 (A+ C ′ + 5).

Now suppose δ ≤ 2
15 . Then 6δ/(2− 3δ)− 1 ≤ −1

2 and 3δ/(2− 3δ) ≤ 2δ,

so

(5.34)
(MQ2T )

3δ
2−3δ

QT
�M2δ(QT )−1/2,

as well as

(5.35)
(MQT )2δ

QT
�M2δ(QT )−1/2.

Now if M � X
5
12 and QT ≥ exp

(
c]
√

logX
)
, the right hand side is

(5.36) ≤M2δ exp
(
− c]

2

√
logX

)
� Xδ(logX)−(A+C′+5).
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Otherwise, if QT ≤ exp
(
c]
√

logX
)
, we use the fact that δ ≥ c∗ log logX

logX by

our assumption on M , and we have

≤
(
M2

X

)δ
≤ exp

(
−c
∗

5
log logX

)
≤ (logX)−(A+C′+5),

(5.37)

provided c∗ ≥ 5(A+ C ′ + 5). �

Remark. Note that when M indeed reaches X5/12, the sum is vacuous

and the theorem is trivial. We will apply it with M � X
5
12
− 5

6
ϑ for some

positive ϑ to get “level of distribution” ϑ.

For the shorter range M ≤ (logX)C , we can simply use the classical

Bombieri-Vinogradov theorem (see, for instance, [3, §28]) with A + C in

place of A, and gain a factor of φ(M) without any further modifications.

Theorem 5.4. Let A be a given positive number and let M � (logX)C

be an integer. Then there is a positive number B such that

(5.38) ∑
q≤X1/2(logX)−B

(q,M)=1

max
(a,qM)=1

∣∣∣ψ(X; qM, a)− ψ(X)

ϕ(qM)

∣∣∣� X

ϕ(M)
(logX)−A,

where the implicit constant depends on A and C.

We would like to express these results in a unified fashion. To that end,

given an increasing function f(X) of X such that f(X) � X
5
12
− 5

6
ϑ with

ϑ > 0, we introduce the following notation.

(5.39) ef =


1
2 , if f(X) ≤ exp

(
C
√

logX
)
,

ϑ, otherwise.

With this we have

Theorem 5.5. Let A be given positive numbers and f(X) an increasing

function of X satisfying f(X) � XC with C < 5/12. Then for all M ≤
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f(X), except multiples of numbers in a set of size at most Zf , and all δ > 0,

we have

(5.40)
∑

q≤Xef−δ

(q,MPf )=1

max
(a,qM)=1

∣∣∣ψ(X; qM, a)− ψ(X)

ϕ(qM)

∣∣∣� X

ϕ(M)
(logX)−A.

Now we are in a position to prove our main results.



CHAPTER 6

Bounded gaps between primes in arithmetic

progressions

In this chapter we apply the Maynard-Tao method to the problem of

finding primes in arithmetic progressions in tuples with diameter that is

bounded uniformly in terms of the moduli. We first fix some notation and

describe our set-up.

1. Notation and setup

We retain the notation introduced in Chapter 5, so that X is our main

parameter, and f(X), Zf , Pf and ef are as described. Put x = X/M and let

W =
∏
p≤D0

p be the product of primes not exceeding D0 = log log logX,

and in turn putW ′ = W/(W,PfM) and V = W ′M . Also putR = N
1
2
ϑ−δ for

some small positive δ. Let H = {h1, . . . , hk} be an admissible k-tuple with

diam(H) < D0M such that hi ≡ a (mod M), i = 1, . . . , k for a given residue

class a (mod M) coprime to M . The weights λd1,...,dk are supported on

(
∏
i di, V Pf ) = 1,

∏
i di < R, and µ(

∏
i di)

2 = 1 (the last condition implies,

of course, that (di, dj) = 1). We also choose ν0 such that (Mν0 +hi,W
′) = 1

for i = 1, . . . , k (this is possible because H is admissible).

With these, we will consider the sum

(6.1) S(ρ) =
∑

x≤n<2x
n≡ν0 (mod W ′)

( k∑
i=1

χP(nM + hi)− ρ
)( ∑

di|nM+hi

λd1,...,dk

)2

,

where χP is the characteristic function of primes. Clearly, the positivity of

S(ρ) implies that for at least one n ∈ [x, 2x), the inner sum is positive, and

this establishes the existence of at least bρ+ 1c primes among the numbers

61
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nM+hi, i = 1, . . . , k, but nM lies in [X, 2X) and each nM+hi is congruent

to a (mod M) by the condition on H.

2. Results

Our main theorem is the following.

Theorem 6.1. Let k be a given integer, ϑ < 1/2, and f(X)� X
5
12
− 5

6
ϑ

an increasing function of X. Further, let Sk be the set of all piecewise

differentiable functions Rk → R supported on the set Rk = {(x1, . . . , xk) ∈

[0, 1]k :
∑k

i=1 xi = 1}, and put

(6.2) Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
,

where

Ik(F ) =

∫ 1

0
· · ·
∫ 1

0
F (t1, . . . , tk)

2dt1 . . . dtk,(6.3)

J
(m)
k (F ) =

∫ 1

0
· · ·
∫ 1

0

(∫ 1

0
F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1dtk.(6.4)

Then, if X is large enough, then for all M ≤ f(X), except those which

are multiples of numbers in a set of size Zf , all residue classes a (mod M)

coprime to M , and all admissible k-tuples H = {h1, . . . , hk} such that hi ≡ a

(mod M), i = 1, . . . , k, there is a multiple nM of M with nM ∈ [X, 2X]

such that at least rk = dϑMk/2e of the numbers nM + hi, i = 1, . . . , k are

primes.

We can instantiate this to some concrete cases to deduce certain facts.

We denote by p′n the n-th prime that is congruent to a (mod M). First

note that if f(X) ≤ exp
(
c
√

logX
)

for some c, we can apply the theorem

with ϑ as close to 1/2 as we like, and the set of exceptions will be empty

or a singleton according as f(X) � (logX)C for some C or not. In either

case taking k = 105 suffices to produce two primes, by Proposition 4.3 of

Maynard [20], and if we use the refinement M54 > 4.002 from the Polymath

project [27, Theorem 23], an admissible 54-tuple, which exists with diameter
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270 [27, Theorem 17], is sufficient. To produce r primes with arbitrary r, we

use the boundMk > log k+O(1) [27, Theorem 23] to see that a de4r+Ce-tuple

suffices. From any admissible tuple {hi}i we can obtain a tuple {Mhi + a}i
whose members are all congruent to a (mod M), with diameter dilated by

M . Using the admissible tuple {Mpπ(k)+1+a, . . . ,Mpπ(k)+k+a} of diameter

�Mk log k when r is large, we have the following theorems.

Theorem 6.2. Let C be a given positive constant. Then if X is suffi-

ciently large, for all M � (logX)C and all a with (a,M) = 1, there is a

p′n ∈ [X, 2X] such that

(6.5) p′n+1 − p′n ≤ 270M.

Theorem 6.3. Let c be a given positive constant. Then if X is suffi-

ciently large, for all M � exp
(
c
√

logX
)

except those that are a multiple of

a single number, and all a with (a,M) = 1, there is a p′n ∈ [X, 2X] such

that

(6.6) p′n+1 − p′n ≤ 270M.

Theorem 6.4. Let r be a positive integer and C be a given positive

constant. Then if X is sufficiently large, for all M � (logX)C and all a

with (a,M) = 1, there is a p′n ∈ [X, 2X] such that

(6.7) p′n+r − p′n � re4rM.

Theorem 6.5. Let r be a positive integer and c be a given positive con-

stant. Then if X is sufficiently large, for all M � exp
(
c
√

logX
)

except

those that are a multiple of a single number, and all a with (a,M) = 1,

there is a p′n ∈ [X, 2X] such that

(6.8) p′n+r − p′n � re4rM.

When M is allowed to grow as large as a power of X our tuple lengths

have to grow and our bounds get much weaker. Suppose M � X
5
12
−η for
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some positive η. In that case Theorem 6.1 applies with ϑ = 6η/5, so that

to find r + 1 primes we need k such that

(6.9)
3ηMk

5
> r.

We again use the fact that

(6.10) Mk > log k +O(1)

when k is sufficiently large to see that if k ≥ Ce
5r
3η for some absolute con-

stant C, (6.9) is satisfied. We take k = dCe
5r
3η e, take the admissible tuple

{Mpπ(k)+1 + a, . . . ,Mpπ(k)+k + a} of diameter Mk log k, and obtain

Theorem 6.6. Let η be given with 0 < η < 5/12, and let r be a positive

integer. Then if X is sufficiently large, for all M � X
5
12
−η except those

that are multiples of numbers in a set of size � (logX)C , and all a with

(a,M) = 1, there is a p′n ∈ [X, 2X] such that

(6.11) p′n+r − p′n �
(
r

η

)
e

5r
3ηM.

In order to prove Theorem 6.1, we write

(6.12) S(ρ) = S2 − ρS1,

where

(6.13) S1 =
∑

x≤n<2x
n≡ν0 (mod W ′)

( ∑
di|nM+hi

λd1,...,dk

)2

,

and

S2 =
k∑

m=1

S
(m)
2

=

k∑
m=1

∑
x≤n<2x

n≡ν0 (mod W ′)

χP(nM + hm)

 ∑
di|nM+hi

λd1,...,dk

2

,

(6.14)

so that we can estimate S(ρ) by the following proposition.
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Proposition 6.7. Let k be a given integer and let X be a parameter

that is large enough. Let λd1,...,dk be defined in terms of a fixed piecewise

differentiable function F by

(6.15)

λd1,...,dk =

( k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri∀i

(ri,V )=1∀i

µ
(∏k

i=1 ri
)2∏k

i=1 ϕ(ri)
F
( log r1

logR
, . . . ,

log rk
logR

)
,

whenever (
∏k
i=1 di, V Pf ) = 1, and let λd1,...,dk = 0 otherwise. Moreover, let

F be supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}. Then we

have

S1 = (1 + o(1))
ϕ(V Pf )kX(logR)k

V (V Pf )k
Ik(F ),(6.16)

S2 = (1 + o(1))
ϕ(V Pf )kX(logR)k+1

V (V Pf )k logX

k∑
m=1

J
(m)
k (F ),(6.17)

provided Ik(F ) 6= 0 and J
(m)
k (F ) 6= 0 for each m, where Ik(F ) and J

(m)
k (F )

are given by (6.3) and (6.4) respectively.

From this, Theorem 6.1 immediately follows.

Proof of Theorem 6.1. Let Sk and Mk be as in Theorem 6.1. Then

for any δ > 0, we can find F0 ∈ Sk such that
∑k

m=1 J
(m)
k (F0) > (Mk −

δ)Ik(F0). With this F0, we have, by (6.12) and Proposition 6.7

S(ρ) =
ϕ(V Pf )kX(logR)k

V (V Pf )k

(
logR

logN

k∑
m=1

J
(m)
k (F0)− ρIk(F0) + o(1)

)

≥
ϕ(V Pf )kX(logR)k

V (V Pf )k
Ik(F )

((ϑ
2
− δ
)(
Mk − δ

)
− ρ+ o(1)

)
.

If ρ = ϑMk/2 − δ′, then with δ sufficiently small, we have S(ρ) > 0 for all

large enough X, implying that at least bρ + 1c of the nM + hi are prime.

Since bρ+ 1c = dϑMk/2e for δ′ small enough, we obtain our result. �
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3. Proof of Proposition 6.7

This section consists of lemmata that establish Proposition 6.7. They

follow the corresponding results in [20] mutatis mutandis. In [20], the pa-

rameter W features in a dual role: first in that the weights λd1,...,dk are

supported for (
∏
di,W ) = 1, and second in the “W -trick”, i.e. in restricting

n to n ≡ ν0 (mod W ). In our case we have V Pf in the first role and W ′ in

the second.

Lemma 6.8. Let

(6.18) yr1,...,rk =

(
k∏
i=1

µ(ri)ϕ(ri)

) ∑
d1,...,dk
ri|di∀i

λd1,...,dk∏k
i=1 di

,

and let ymax = supr1,...,rk |yr1,...,rk |. Then we have

(6.19) S1 =
X

V

∑
u1,...,uk

y2
u1,...,uk∏k
i=1 ϕ(ui)

+O

(
y2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
.

Proof. We start by rearranging the sum on the right hand side of (6.13)

to obtain

(6.20) S1 =
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

x≤n<2x
n≡ν0 (mod W ′)
[di,ei]|nM+hi

1.

Now when W ′, [d1, e1], . . . [dk, ek] are pairwise coprime, the inner sum is over

a single residue class modulo q = W ′
∏
i[di, ei] by the Chinese Remainder

Theorem, otherwise it is empty, in the case p | (W ′, [di, ei]) because of the

condition (W ′,Mν0 + hi) = 1, and in the case p | ([di, ei], [dj , ej ]) because it

would imply p | hi − hj , but hi − hj = fM for some f < D0 since hi and hj

lie in the same residue class modulo M , but p - M and p can’t be a prime

less than D0 by the support of λ. Since f < D0 by the diameter of H, we

deduce that there’s no contribution when ([di, ei], [dj , ej ]) > 1.
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Thus the inner sum is x/q +O(1), and we have

(6.21) S1 =
X

V

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

+O
( ∑′

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |
)
,

where
∑′

denotes the coprimality restrictions. The error term is plainly

(6.22) � λ2
max

(∑
d<R

τk(d)

)2

� λ2
maxR

2(logX)2k,

where λmax = supd1,...,dk λd1,...,dk . To deal with the main term, we use the

identity

(6.23)
1

[di, ei]
=

1

diei

∑
ui|di,ei

ϕ(ui)

and rewrite it as

(6.24)
X

V

∑
u1,...,uk

(
k∏
i=1

ϕ(ui)

) ∑′

d1,...,dk
e1,...,ek
ui|di,ei∀i

λd1,...,dkλe1,...,ek∏k
i=1 diei

.

By the support of λ, we may drop the requirement that W ′ is coprime

to [di, ei]. Also by the support of λ, terms with (di, dj) > 1 with i 6= j

have no contribution. Thus our restrictions boil down to (di, ej) = 1 for

i 6= j. We may remove this requirement by multiplying our expression with∑
si,j |di,ej µ(si,j) for all i, j. Then our main term becomes

(6.25)

X

V

∑
u1,...,uk

(
k∏
i=1

ϕ(ui)

) ∑
s1,2,...,sk−1,k

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

) ∑
d1,...,dk
e1,...,ek
ui|di,ei∀i

si,j |di,ej∀i 6=j

λd1,...,dkλe1,...,ek∏k
i=1 diei

.

We may restrict si,j to be coprime to ui, uj , si,a and sb,j for all a 6= i and

b 6= j since these have no contribution by the support of λ. We denote

the summation with these restrictions by
∑∗. We introduce the change of
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variable

(6.26) yr1,...,rk =

( k∏
i=1

µ(ri)ϕ(ri)

) ∑
d1,...,dk
ri|di∀i

λd1,...,dk∏k
i=1 di

.

Thus yr1,...,rk is supported on r =
∏
i ri < R, (r, V Pf ) = 1 and µ(r)2 = 1.

This change is invertible and we have

(6.27)
∑

r1,...,rk
di|ri∀i

yr1,...,rk∏k
i=1 ϕ(ri)

=
λd1,...,dk∏k
i=1 µ(di)di

.

Hence any choice of yr1,...,rk with the above mentioned support will yield a

choice of λd1,...,dk . We note here that Maynard’s estimate of λmax in terms

of ymax = supr1,...,rk yr1,...,rk holds verbatim and we have

(6.28) λmax � ymax(logX)k.

So our error term (6.22) is O(y2
maxR

2(logX)4k). Using our change of vari-

ables we obtain

S1 =
X

V

∑
u1,...,uk

(
k∏
i=1

ϕ(ui)

) ∑∗

s1,2,...,sk−1,k

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

)

×
( k∏
i=1

µ(ai)µ(bi)

ϕ(ai)ϕ(bi)

)
ya1,...,akyb1,...,bk +O

(
y2
maxR

2(logX)4k
)
,

(6.29)

where aj = uj
∏
i 6=j sj,i and bj = uj

∏
i 6=j si,j . Since there’s no contribution

when aj or bj are not squarefree, we may rewrite µ(aj) as µ(uj)
∏
i 6=j µ(sj,i),

and similarly for ϕ(aj), µ(bj) and ϕ(bj). This gives us

S1 =
X

V

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

ϕ(ui)

) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

ϕ(si,j)2

)
ya1,...,akyb1,...,bk

+O
(
y2
maxR

2(logX)4k
)
.

(6.30)
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There is no contribution from si,j with 1 < si,j < D0 because of the re-

stricted support of y. The contribution when si,j > D0 is

� y2
maxX

V

( ∑
u<R

(u,V Pf )=1

µ(ui)
2

ϕ(ui)

)k( ∑
si,j>D0

µ(si,j)
2

ϕ(si,j)2

)(∑
s>1

µ(s)2

ϕ(s)2

)k2−k−1

�
y2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0
.

(6.31)

Our previous error of y2
maxR

2(logX)4k can be absorbed into this error, and

the terms with si,j = 1 give us our desired main term. �

Lemma 6.9. Let S
(m)
2 be as defined in (6.14), and let

(6.32) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di∀i
dm=1

λd1,...,dk∏
i ϕ(di)

,

where g is the totally multiplicative function defined on primes by g(p) =

p− 2. Let y
(m)
max = supr1,...,rk |y

(m)
r1,...,rk |. Then for any fixed A > 0, we have

S
(m)
2 =

X

ϕ(V ) logX

∑
u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

+O

(
(y

(m)
max)2ϕ(V Pf )k−1X(logX)k−2

ϕ(V )(V Pf )k−1D0

)
+O

(
y2
maxX

ϕ(M)(logX)A

)
.

(6.33)

Proof. We first rearrange the sum to obtain

(6.34) S
(m)
2 =

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

x≤n<2x
n≡ν0 (mod W ′)
[di,ei]|nM+hi

χP(nM + hm).

In the inner sum, when W ′, [d1, e1], . . . , [dk, ek] are pairwise relatively prime,

the conditions determine n modulo q = W ′
∏
i[di, ei], because (M, [di, ei]) =

1 by the support of λ. In turn, nM + hm is determined modulo qM =

V
∏
i[di, ei]. Note that here (q, Pf ) = 1. Also, if ([di, ei], nM +hm) > 1 with

i 6= m, then p | |hi − hm| = fM for some p | [di, ei] and f < D0 by the
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diameter of H, and since di and ei are relatively prime to both M and W

by the support of λ, this is not possible. So nM + hm is relatively prime to

the modulus if and only if dm = em = 1. Thus we can write

∑
x≤n<2x

n≡ν0 (mod W ′)
[di,ei]|nM+hi

χP(nM + hm) =
∑

X+hm≤n<2X+hm
n≡b (mod qM)

χP(n)

=
PX

ϕ(V )
∏
i ϕ([di, ei])

+ E(X, qM) +O(1),

(6.35)

where

(6.36) E(X, qM) =
∣∣∣ ∑

X≤n<2X
n≡b (mod qM)

χP(n)− PX
ϕ(qM)

∣∣∣,
PX is the number of primes in [X, 2X], and the O(1) term arises from

ignoring the shift by hm in the sum. Thus the main term becomes

(6.37)
PX
ϕ(V )

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏
i ϕ([di, ei])

where
∑′ denotes that W ′, [d1, e1], . . . , [dk, ek] are pairwise relatively prime.

As before, there is no contribution when (W ′, [di, ei]) > 1 or (di, dj) > 1,

and we remove the conditions (di, ej) = 1 by multiplying our expression by∑
si,j |di,ej µ(si,j). We also use the identity (valid for squarefree di and ei),

(6.38)
1

ϕ([di, ei])
=

1

ϕ(di)ϕ(ei)

∑
ui|di,ei

g(ui),

where g is the totally multiplicative function defined on primes by g(p) =

p− 2. The main term then becomes

(6.39)

PX
ϕ(V )

∑
u1,...,uk

( k∏
i=1

g(ui)
) ∑
s1,2,...,sk−1,k

( ∏
1≤i,j≤k
i 6=j

µ(si,j)
) ∑
d1,...,dk
e1,...,ek
ui|di,ei∀i

si,j |di,ej∀i 6=j
dm=em=1

λd1,...,dkλe1,...,ek∏
i ϕ(di)ϕ(ei)

.
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We again restrict si,j to be coprime to ui, uj , si,a and sb,j for all a 6= i and

b 6= j as before, and make the change of variable

(6.40) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di∀i
dm=1

λd1,...,dk∏
i ϕ(di)

.

This is invertible, and y
(m)
r1,...,rk is supported on (

∏
i ri, V Pf ) = 1,

∏
i ri < R,

µ(
∏
i ri)

2 = 1 and rm = 1. Then the main term becomes

(6.41)

PX
ϕ(V )

∑
u1,...,uk

( k∏
i=1

µ(ui)
2

g(ui)

) ∑∗

s1,2,...,sk−1,k

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

g(si,j)2

)
y(m)
a1,...,ak

y
(m)
b1,...,bk

,

where aj = uj
∏
i 6=j sj,i and bj = uj

∏
i 6=j si,j for each 1 ≤ j ≤ k. Because

of the restricted support of y, there is no contribution from terms with

(si,j , V Pf ) > 1. So we only need to consider si,j = 1 or si,j > D0. The

contribution when si,j > D0 is

� (y
(m)
max)2X

ϕ(V ) logX

( ∑
u<R

(u,V Pf )=1

µ(u)2

g(u)

)k−1(∑
s

µ(s)2

g(s)2

)k(k−1)−1 ∑
si,j>D0

µ(si,j)
2

g(si,j)2

�
(y

(m)
max)2ϕ(V Pf )k−1X(logX)k−2

ϕ(V )(V Pf )k−1D0
.

(6.42)

The contribution from si,j = 1 gives us the main term which is

(6.43)
PX
ϕ(V )

∑
u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

.

By the prime number theorem, PX = X/ logX + O(X/(logX)2)), and the

error here contributes

(6.44)

(y
(m)
max)2X

ϕ(V )(logX)2

( ∑
u<R

(u,V Pf )=1

µ(u)2

ϕ(u)

)k−1
�

(y
(m)
max)2ϕ(V Pf )k−1X(logX)k−3

ϕ(V )(V Pf )k−1
,

which can be absorbed in the error term from (6.42).
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Now we turn to the contribution of the error terms in (6.35), which is

(6.45) �
∑

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek | (E(X, qM) + 1) .

From the support of λ, we see that we only need to consider square-free q

with q < W ′R2 and (q,MPf ) = 1. Since for a square-free integer q there are

at most τ3k(q) choices of d1, . . . , dk, e1, . . . , ek for which q = W ′
∏
i[di, ei],

we see that the error is

(6.46)

� λ2
max

∑
q<W ′R2

(q,MPf )=1

µ(q)2τ3k(q)E(X, qM) + λ2
max

∑
q<W ′R2

(q,MPf )=1

µ(q)2τ3k(q).

Now the second term is � λ2
maxW

′R2 log(W ′R2)3k−1. For the first term

we use the Cauchy-Schwarz inequality and the trivial bound E(X, qM) �

X/ϕ(qM) to see that it is

(6.47)

� λ2
max

ϕ(M)1/2

( ∑
q<W ′R2

(q,MPf )=1

µ(q)2τ2
3k(q)

X

ϕ(q)

)1/2( ∑
q<W ′R2

(q,MPf )=1

µ(q)2E(X, qM)

)1/2

.

The first sum is � X log(W ′R2)3k. Now for X large enough, W ′R2 ≤

Xef−δ, so that Theorem 5.5 applies to yield that the second sum is �
X

ϕ(M)(logX)−A for A arbitrarily large. Thus the total contribution is

(6.48) � y2
maxX

ϕ(M)(logX)A
,

and this completes the proof. �

Lemma 6.10. If rm = 1,

(6.49) y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)
+O

(
ymaxϕ(V Pf ) logX

V PfD0

)
.
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Proof. We assume that rm = 1. We substitute (6.27) into (6.40) and

obtain

(6.50) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di∀i
dm=1

( k∏
i=1

µ(di)di
ϕ(di)

) ∑
a1,...,ak
di|ai∀i

ya1,...,ak∏k
i=1 ϕ(ai)

.

Swapping summations over d and a, we have

(6.51) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
a1,...,ak
ri|ai∀i

ya1,...,ak∏k
i=1 ϕ(ai)

∑
d1,...,dk

di|ai,ri|di∀i
dm=1

k∏
i=1

µ(di)di
ϕ(di)

.

The inner sum can be directly computed when ai is squarefree, which is the

only case that matters by the support of y. We have∑
di|ai,ri|di

µ(di)di
ϕ(di)

=
µ(ri)ri
ϕ(ri)

∑
di|

ai
ri

µ(di)di
ϕ(di)

=
µ(ri)ri
ϕ(ri)

∏
p|ai
ri

−1

p− 1

=
µ(ri)ri
ϕ(ri)

µ(ai/ri)

ϕ(ai/ri)
=
µ(ai)ri
ϕ(ai)

.

(6.52)

Hence

(6.53) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
a1,...,ak
ri|ai∀i

ya1,...,ak∏k
i=1 ϕ(ai)

∏
i 6=m

µ(ai)ri
ϕ(ai)

.

By the support of y, we need only consider aj with (aj , V Pf ) = 1. This

implies aj = rj or aj > D0rj . The total contribution from aj 6= rj when

j 6= m is

� ymax

(
k∏
i=1

g(ri)ri

)( ∑
aj>D0rj

µ(aj)
2

ϕ(aj)2

)

×

( ∑
am<R

(am,V Pf )=1

µ(aj)
2

ϕ(aj)

) ∏
1≤i≤k
i 6=j,m

(∑
ri|ai

µ(ai)
2

ϕ(ai)2

)

�

(
k∏
i=1

g(ri)ri
ϕ(ri)2

)
ymaxϕ(V Pf ) logR

V PfD0
�

ymaxϕ(V Pf ) logX

V PfD0
.

(6.54)



74 6. BOUNDED GAPS BETWEEN PRIMES IN ARITHMETIC PROGRESSIONS

Thus we find that

(6.55) y(m)
r1,...,rk

=

(
k∏
i=1

g(ri)ri
ϕ(ri)2

)∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)

+O

(
ymaxϕ(V Pf ) logX

V PfD0

)
.

Since the product is 1 +O(D−1
0 ), we have the result. �

Lemma 6.11. Let yr1,...,rk be given in terms of a piecewise differentiable

function F supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi = 1} by

(6.56) yr1,...,rk = F
( log r1

logR
, . . . ,

log rk
logR

)
whenever r =

∏
i ri is squarefree and satisfies (r, V Pf ) = 1. Put

(6.57) Fmax = sup
(t1,...,tk)∈[0,1]k

|F (t1, . . . , tk)|+
k∑
i=1

|∂F
∂ti

(t1, . . . , tk)|.

Then

(6.58) S1 =
ϕ(V Pf )kX(logR)k

V (V Pf )k
Ik(F )

+O
(F 2

maxϕ(V Pf )kX(logX)k−1 log logX

V (V Pf )kD0

)
,

where

(6.59) Ik(F ) =

∫ 1

0
· · ·
∫ 1

0
F (t1, . . . , tk)

2dt1 . . . dtk.

Proof. We use (6.56) in our expression for S1 from Lemma 6.8 and

obtain

S1 =
X

V

∑
u1,...,uk

(ui,uj)=1,∀i 6=j
(ui,V Pf )=1∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F
( log u1

logR
, . . . ,

log uk
logR

)2

+O

(
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
.

(6.60)



3. PROOF OF PROPOSITION 6.7 75

Now if (ui, uj) > 1 for some i 6= j and (ui, V Pf ) = (uj , V Pf ) = 1, then there

is a prime p | (ui, uj) with p - V Pf , so a fortiori p - W and p > D0. Thus

the cost of dropping the condition (ui, uj) = 1 is an error of size

� F 2
maxX

V

∑
p>D0

∑
u1,...,uk<R
p|ui,uj

(ui,V Pf )=1∀i

k∏
i=1

µ(ui)
2

ϕ(ui)

� F 2
maxX

V

∑
p>D0

1

(p− 1)2

( ∑
u<R

(u,V Pf )=1

µ(u)2

ϕ(u)

)k
�

F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0
.

(6.61)

Thus we are left to evaluate

(6.62)
∑

u1,...,uk
(ui,V Pf )=1∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F
( log u1

logR
, . . . ,

log uk
logR

)2
.

This differs from the corresponding sum in Maynard’s work only in that we

have a V Pf , which does not have as small prime factors, in place of W . We

put,

(6.63) γ(p) =

1, if p - V Pf ,

0, otherwise.

Then we can use Lemma 6.1 of [20] with κ = 1,

L� 1 +
∑
p|V Pf

log p

p
�
( ∑
p≤logR

+
∑
p|MPf
p>logR

) log p

p

� log logR+
logMPf

logR
� log logX,

(6.64)

and A1 and A2 suitable constants. The lemma then yields

∑
u1,...,uk

(ui,V Pf )=1∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F
( log u1

logR
, . . . ,

log uk
logR

)2
=
ϕ(V Pf )k(logR)k

(V Pf )k
Ik(F ) +O

(F 2
maxϕ(V Pf )k(logX)k−1 log logX

(V Pf )kD0

)

(6.65)
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with

(6.66) Ik(F ) =

∫ 1

0
· · ·
∫ 1

0
F (t1, . . . , tk)

2dt1 . . . dtk,

and the proof is complete. �

Lemma 6.12. Let yr1,...,rk , F , and Fmax be as in Lemma 6.11. Then

(6.67)

S
(m)
2 =

ϕ(V Pf )kX(logR)k+1

V (V Pf )k logX
J

(m)
k (F ) +O

(
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
,

where

(6.68)

J
(m)
k (F ) =

∫ 1

0
· · ·
∫ 1

0

(∫ 1

0
F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk.

Proof. From Lemma 6.9, we want to evaluate the sum

(6.69)
∑

u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

.

First we estimate y
(m)
r1,...,rk . Recall that the weights y

(m)
r1,...,rk are supported

on (
∏
i ri, V Pf ) = 1, µ(

∏
i ri)

2 = 1, (ri, rj) = 1 when i 6= j and rm = 1.

Then substituting (6.56) into our expression for y
(m)
r1,...,rk from Lemma 6.10,

we obtain

y(m)
r1,...,rk

=
∑

(u,V Pf
∏
i ri)=1

µ(u)2

ϕ(u)
F
( log r1

logR , . . . ,
log rm−1

logR , log u
logR ,

log rm+1

logR , . . . , log rk
logR

)
+O

(
Fmaxϕ(V Pf ) logX

V PfD0

)
.

(6.70)

From this it is plain that

(6.71) y(m)
max �

ϕ(V Pf )

V Pf
Fmax logX.

Now we use Lemma 6.1 of [20] again, with κ = 1,

(6.72) γ(p) =

1, if p - V Pf
∏k
i=1 ri,

0, otherwise.
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(6.73) L� 1 +
∑

p|V
∏
i ri

log p

p
�
( ∑
p≤logR

+
∑

p|MPf
∏
i ri

p>logR

) log p

p
� log logX,

and A1, A2 suitable constants to obtain

(6.74)

y(m)
r1,...,rk

= (logR)
ϕ(V Pf )

V Pf

( k∏
i=1

ϕ(ri)

ri

)
F (m)
r1,...,rk

+O

(
Fmaxϕ(V Pf ) logX

V PfD0

)
,

where

(6.75) F (m)
r1,...,rk

=

∫ 1

0
F
( log r1

logR
, . . . ,

log rm−1

logR
, tm,

log rm+1

logR
, . . . ,

log rk
logR

)
dtm.

This is valid if rm = 1, and r =
∏k
i=1 ri satisfies (r, V Pf ) = 1 and µ(r)2 = 1,

otherwise y
(m)
r1,...,rk = 0. Squared, (6.74) gives

(y(m)
r1,...,rk

)2 =(logR)2ϕ(V Pf )2

(V Pf )2

( k∏
i=1

ϕ(ri)
2

r2
i

)
(F (m)

r1,...,rk
)2

+O

(
(Fmax)2ϕ(V Pf )2(logX)2

(V Pf )2D0

)
.

(6.76)

Using this in the expression for S
(m)
2 from Lemma 6.9, we have

(6.77) S
(m)
2 =

ϕ(V Pf )2X(logR)2

ϕ(V )(V Pf )2 logX

∑
r1,...,rk

(ri,V Pf )=1
(ri,rj)=1∀i 6=j

rm=1

( k∏
i=1

µ(ri)
2ϕ(ri)

2

g(ri)r2
i

)
(F (m)

r1,...,rk
)2

+O

(
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
.

We drop the condition (ri, rj) = 1 as before, this time introducing an error

of size

�
F 2
maxϕ(V Pf )2X(logR)2

ϕ(V )(V Pf )2 logX

(∑
p>D0

ϕ(p)4

g(p)2p4

)( ∑
r<R

(r,V Pf )=1

ϕ(r)2

g(r)r2

)k−1

�
F 2
maxϕ(V Pf )k+1X(logX)k

ϕ(V )(V Pf )k+1D0
.

(6.78)
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Thus we are left to evaluate

(6.79)
∑

r1,...,rm−1,rm+1,...,rk
(ri,V Pf )=1

( k∏
i=1

µ(ri)
2ϕ(ri)

2

g(ri)r2
i

)
(F (m)

r1,...,rk
)2.

Again we apply Lemma 6.1 from Maynard with κ = 1, with

(6.80) γ(p) =

1− p2−3p+1
p3−p2−2p+1

, if p - V Pf ,

0, otherwise,

(6.81) L� 1 +
∑
p|V Pf

log p

p
� log logX,

and A1, A2 suitable constants. The singular series in this case is

(6.82) S =
ϕ(V Pf )

V Pf

(
1 +O

( 1

D0

))
,

and we obtain

(6.83) S
(m)
2 =

ϕ(V Pf )k+1X(logR)k+1

ϕ(V )(V Pf )k+1 logX
J

(m)
k (F )

+O

(
F 2
maxϕ(V Pf )k+1X(logX)k

ϕ(V )(V Pf )k+1D0

)
.

Now in the main term we have

ϕ(V Pf )

ϕ(V )(V Pf )
=

1

V
· V

ϕ(V )
·
ϕ(V Pf )

(V Pf )

=
1

V

∏
p|V

p

p− 1

∏
p|V Pf

p− 1

p

=
1

V

∏
p|Pf
p-V

p− 1

p
.

(6.84)

This last product is either vacuous, or consists of a single factor (1− p−1
0 ),

which is 1+O
(
(log logX)−1

)
. Thus we may replace (6.83), within acceptable

error, with

(6.85)

S
(m)
2 =

ϕ(V Pf )kX(logR)k+1

V (V Pf )k logX
J

(m)
k (F ) +O

(
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
,
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where we have replaced
ϕ(V Pf )

ϕ(V )(V Pf ) with 1/V in the error term as well. �

4. Discussion

There is a result due to Baker and Zhao [2] where they also consider

primes in arithmetic progressions, except they prove their result for cer-

tain smooth moduli (recall that a number is called y-smooth if it has no

prime factor exceeding y). The techniques they employ involve estimating

Dirichlet polynomials and appealing to a zero-free region described in terms

of the largest prime and the squarefree kernel of M to obtain the required

Bombieri-Vinogradov type theorem. Their result [2, Theorem 1] reads as

follows (with the notation adapted where applicable to avoid confusion).

Theorem (Baker-Zhao). Let η > 0, r ≥ 1, and let M = Xθ with

0 < θ ≤ 5/12− η, (a,M) = 1. Let

K(θ) =


4

1−2θ if θ < 2/5− ε,

40
9−20θ if θ ≥ 2/5− ε,.

Suppose that M satisfies

max{p : p |M} < exp

(
logX

B log logX

)
,
∏
p|M

p < Xδ, w -M

with

B =
C1

η
exp

(
4(r + 1)

K(θ)

)
, δ =

C3η

r + log(1/η)
exp

(
−4(r + 1)

K(θ)

)
for suitable absolute positive constants C1 and C3, and w denotes the possibly

existing unique exceptional modulus to which there’s a Dirichlet L-function

with a zero in the region β > c1/ logX. There are primes pn < . . . < pn+r

in (X/2, X], with pi ≡ a (mod M) such that

pn+r − pn < C2Mr exp (K(θ)r) .

Here C2 is a positive absolute constant.
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Recalling our Theorem 6.6,

pn+r − pn �
(
r

η

)
exp

(
5r

3η

)
M,

one immediately sees that the Baker-Zhao bound is stronger as r grows, and

also has the advantage of describing the moduli for which it holds (apart from

the possibility of being a multiple of the exceptional modulus if it exists). On

the other hand, as per the second remark following Proposition 5.2, the re-

sults of the present work holds for at least X5/12−η (1− c/ log logX) moduli

up to X5/12−η, while by Dickman’s Theorem (see, for instance, [23, The-

orem 7.2]), there are o(X5/12−η) integers with no prime divisors exceeding

exp
(

logX
B log logX

)
for which the Baker-Zhao result holds. Hence the present

result is valid for a much larger class of arithmetic progressions. With these

considerations the two can be regarded as complementary results concerning

uniform small gaps between primes in arithmetic progressions over a range

of moduli.
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