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Abstract

In this thesis we dewelop the theory of topological Hurewicz test pairs. The certral
idea of this method is to construct special Polish topologiesin sud a way that simply
structured sets,e.g.setsof low Borel class,are either \almost empty" or of secondcategory
in the correspnding special topology. Through this approad, which can be considered
asa generalizationof the Baire Category Theoremfor higher Borel classesyve are ableto
give a quartitativ e aspect, in Baire categorysenseto certain results related to Hurewicz
test sets. As an application of the theory, we prove someresults related to trans nite
corvergenceof Borel functions, to the problem of nding simple generatorsof analytic
idealsand to the problem of constructing Hurewicz test setsfor generalizedseparationof

analytic sets.
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Chapter 1

Classical results, motiv ating

problems

If an open set is nonempty it is of secondcategory This is probably the simplest for-
mulation of the Baire Category Theorem. The purposeof our thesisis to show that this
theorem can be extendedto the ertire Borel hierarchy: for elery0< »< ! ; wede nea
“ne topology suc that if a§2 setis just \a bit biggerthan nonempty” thenit is huge,i.e.
it is of secondcategoryin our ne topology. And we presen sometypical Baire Category
Theorem-like applications of this result: the intersectionof courtably many \fairly densé
§2 setsis residualin the ne topology, henceit is nonempty.

We remark that there is a quite classicalextensionof the dichotomy expressedy the
Baire Category Theorem for open sets. More than a half certury ago Witold Hurewicz

proved the following theorem, alsocalled Hurewicz-didhotomy, about setsfailing to be F,,.

Theorem 1.1. (W. Hurewicz) Let X be a Polish space and A C X be an analytic set. If

A is not F,, then there is a continuous injection of the Cantor set into X, "' 12 — X

5



6 CHAPTER 1. CLASSICAL RESULTS, MOTIVATING PROBLEMS

such that 2° \ ' T 1(A) is countable dense in 2%; that is ' (2*) N A is a relatively closed

subset of A homeomorphic to the irrationals.

If we add the well-known fact that any subsetN of the Cantor set2* homeomorphic
to the irrationals is newer F, we gave all the reasonswhy the pair (2¢;N) is called the
Hurewicz test for F, sets.

Theorem 1.1 hasbeenstrengthenedin many successig steps. In somesensehe most

generalexistencetheoremfor Hurewicz tests is the following (see[7]).

Theorem 1.2. (A. Lowveau, J. Saint Raymond) Let 3 < » < 11 and (X;¢) be a Polish
space. If Pe C 29 is | 2({2! ) but not §2(¢'2! ) and Ag; A1 C X is any pair of disjoint analytic
sets, then either Ag can be separated from A1 by a §(§)(C) set or there is a continuous one-
to-one map " 1 (2 ¢ ) — X with ' (Pg) C Ag and ' (29 \ P¢) C Ag.

The same conclusion holds for » = 2 if P, C 2% is the complement of a dense countable

set.

Thus we may call a | 2(¢2 ) but not §(¢a ) set P. a Hurewicz test for §2(¢2 ) sets,
in the sensethat either a setA C X is §2(¢'2! ), a fact which can be withessedby a
description of the construction of A from simpler sets, or A is not §2(g2! ), a property
which cannot be veri ed by cheking somedecompsition, but by Theorem1.2it canbe
witnessedby a cortinuousinjection ' : 2¥ — X satisfying' ' 1(A) = P,.

Theorem1.2turned out to bethe ideal starting point of our investigations. It allowsus
to isolate a simple reason,namely the image of the Hurewicztest ' (P¢) in ' (2) why the
analytic set Ay cannot be separatedfrom the other analytic set A; with one single §2 set.
But the aspect of dichotomy which was preser in the Baire Category Theoremfor open
setsis lacking, in particular Theorem 1.2 says nothing about how \crude" a separation

attempt isif oneinsistson §2 sets,or in other words, how well our Ap canbe approximated
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by §2 setslaying outside A;. It wasthe problem of Z-corvergert functions, raisedby T.

Natkaniecin [17], which shedlight on this failure. We start with the de nition.

De nition 1.3. Let , be a cardinal, (X;¢) and (Y;d) be Polish spaces. Consider an
ideal Z on , . We sgy that a sequencef functionsf,: X — Y (®< ) Z-converges to the

function f : X — Y, in notation f, —, f, if

(@<, f.(Ff(X)}eT
for every x € X.

The questionof T. Natkaniecis whether Z-corvergencekeepsthe Baire classer not,
that is under which condition on , and Z it is true that if f, is Baire-» (® < !) and
f, — f the limit function f must be also Baire-». Sincethe Baire classof a function
is in closerelation with the Borel classof its sublewel set it is not surprising that the
problem of Z-corverger functions is equivalert to nding somequartitativ e analogueof
Theorem1.2 It wasthe rst motivation for our investigations.

In some sensea particular caseof the problem of T. Natkaniec is the problem of
generalizedseparation. It is well known that analytic setshave the generalizedseparation
property, that is for every sequencgA;);.., of analytic setswith TKW A; = () thereis a

T
.., Bi = 0. But of what

(2

sequencgB;);.., of Borel setssatisfyingA; C B, (i< !) and
complexity must B; (i < ! ) be? That is, if »is xed, whencanead B; (i < !) be chosen
in 2? This can be regardedas an appraximation problem where the analytic sets A;
(i < 1) play the role of constrairt. One can ask whether there is a theorem providing
Hurewicz tests for generalizedseparationas Theorem 1.2 doesfor ordinary separation.
The last problem we mertion here has beenposedby A. Miller. S. Sole&i in [2]]

proved the following result.
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Theorem 1.4. (S. Solecki) Given a family of closed sets T and an analytic set A in some
Polish space X , either A can be covered by the union of countably many members of L or

A contains a nonempty | 9 set G with the property that F N G is meager in G for every

Fel

Obsene that this result hasthe feature of testing: if A can be coveredby the union
of courtably many menbers of Z this is witnessedby the courtable collection of closed
setsin 7 realizing the covering, while the cortrary, which is a priory unwitnessable,can
be veried by agood | 9 subsetof A and Baire category It is natural to askwhether this

holds for every Borel class(see[15).

Question 1.5. (A. Miller) For 2 < » < 11 let T be a ¥+ideal which is generated by its
| 2 members. Is it true that for every analytic set A C X, either A € T or there is a | g+1

set B C A such thatB €Z?

Theseproblemscan be treated within the theory of topological Hurewicz test pairs, a
conceptwe aim to dewelopin this thesis. Informally, it canbe summarizedas\sets of low
Borel classare sosimply structured comparingto setsof high Borel classthat even Baire
category can distinguish them in a suitable topology'. As an illustration, the precise
topologizedversion of Theorem 1.2 is the following result (see[10], Theorem 4 on page

159).

Theorem 1.6. Let (X;¢) be a Polish space. For every 2 < »< |4, there exist a | 2(52! )
set Pe € 2¥ and a Polish topology ép, on 2 which is finer than ¢ such that Pe is nowhere

dense and closed in the topology ¢p,, and if an analytic set A C X is

1. in §g(¢',), then whenever for a continuous one-to-one mapping"' : (2¥;¢éx ) — (X ¢)
we have that ' 1 1(A) N P¢ is of second category in Pe in the relative topology ép,|p,

then ' 1 Y(A) C 2¢ is of second category in the topology ép, ;



2. not in §g(¢',), then there is a continuous one-to-one mapping ' : (2;¢é2) — (X;¢)

such that ' (P¢) C A and ' T Y(A) C 2% is of first category in the topology ép, .

Moreover, if , < 2@ is a cardinal and in our model the union of a , number of meager
sets is meager in Polish spaces the first statement holds for every (not necessarily Borel)

set A which can be obtained as a union of a , number 0f§2(¢) sets.

This result extends Theorem 1.2 by providing the quartitativ e aspect we have been
looking for: the Baire categoryin the topology ¢ . We remark that S. Sole&i proved a
theorem where Baire category was usedto distinguish §2 setsfrom a given | 2 set (see
[22], Theorem 2.2). In his approad the topology ¢» remainshidden.

In the next chapters we will build up the theory of topological Hurewicz test pairs.
The basicde nitions and notations in Chapter 2 are followed by an introductory chapter,
Chapter 3, where we make the reader familiar with the techniquesand conceptsin the
» = 3 case. In particular we shav that the answer to a special form of the question of
A. Miller is consistertly negative. In Chapter 4 we cortinue with the general0< »< !,
case,we prove Theorem 1.6 in an extendedform and we construct | g coverings for §g
generatedideals. Given that Theorem 1.2 can essetially be extendedto the di®erence
hierarchy, we perform a partial extensionfor Theorem1.6in Chapter 5. Then in Chapter
6 we shaw that indeed,Z-corvergencekeepsthe Baire classof functions. In Chapter 7 we
construct a test allowing the determination of the minimal complexity of setsinvolved in
a generalizedseparationor reduction, and we concludethe thesiswith Chapter 8 where
we formulate someproblemswhich hopefully will be as motivating asthe onespresered

herel
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Chapter 2

De nitions and notation

2.1 Sequences and trees

Our terminology and notation follow [4]. Let (C; ¢-) denotethe Polish space2” with its
usual product topology. For two nite sequences;t ¢! <, wewrite sC t (s Ct, resp.)
if t is an extension(a proper extension,resp.) of s. The length of s is denotedby |s|. If

S= (SpS1:::Sp; 1) andi < !, then s™i standsfor the sequencesys; :::S,; 1i).

If T C!<“isasubtreeandsec! <“thenT, = {t €! <“: st € T}. The terminal

nodesof T are denotedby %(T).

Let »#; (i < !) be ordinals. We write #; — » if » is successoand#;+ 1= » (i< !)

orif »islimit, #, <#; (i <j <!) andsup_,# = »

For every ordinal » < ! ; we x onceand for all a sequencd#;);.., sud that #, — ».
To avoid complicatednotations, we do not indicate the dependenceof the sequenceon »,

it will be always clear which pair of ordinal and sequences considered.
The order topology on an ordinal » is denotedby o;.

11



12 CHAPTER 2. DEFINITIONS AND NOTATION

2.2 Re ning top ologies, basic open sets

In this note we will notoriously re ne Polish topologiesby turning courtably many closed
setsinto open sets. We do this as described in [4], that is the open sets of the anciert
topology together with their portion on the membersof our collection of closedsetssene
as a subbaseof the new, ner topology. We will usethat the topology obtained in this

way is alsoPolish.

De nition 2.1. Let (X;¢) be a Polish space,P = {P;:i <! } bea courtable collection
of | 9(¢) sets. Then ¢[P] denotesthat Polish topology re ning ¢ whereeah P; (i < ! ) is

turned successigly into an open set.

It is easyto seethat the resulting ner topology ¢[P] is independen from the enumer-
ation of P. This will be clearshortly whenwe X a baseof ¢[P]. We alsousethe notation
¢[P] whenthe courtable collection of not necessarilyl 9(¢) setsP can be erumeratedon

suc away that P, is | 9(¢[{P;: i < n})).

— . . . w
De nition  2.2. If ¢, (n < !) is a Polish topology on somebaseset X then  _ ¢,

denotesthe coarsesttopology on X which re nes ea ¢,, (n < !).

The resulting topology is also Polish and we will shortly x a courtable basefor it.

Before doing this we needa precisenotion of basicopen setsin our spaces.

De nition 2.3. Let (X;;¢) (i € 1) be Polish spacesjf a basisg; is xed in the spaces

(X;;¢) (i €1), which are meart to be the basicopen setsin (X;; &), then the basic open

Q

sets of (QmXZ—; 21 ¢;) arethe open setsof the form
Y Y
i2J i2InJ

whereJ C | is nite and G; € G; for everyi € J.
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If the basicopen setsG are xed in the Polish space(X;¢) and ¢[P] makessensefor
a courtable collection P of subsetsof X, then the basic open sets of ¢[P] are of the form
GNnFyn---NF, 10orGwith Ge G, F, € P (i <n), abasic¢[P]-opensetis saidto be
proper if it iS not ¢-open.

If the basicopen setsg,, are xed for the Polish topologies¢,, (n < !) then the basic

w T
open sets for  _ ¢, arethe setsof the form ,_ G, whereG, € G, (m<!; n; <

L (i<!)).

Obsene that the basicopen setsde ned on this way form a basisof Qm &, ¢[P] and
new ¢ rESpECtively. From now on wheneer a Polish space(X; ¢) appearswe assume
that a courtable basiscomprisedof basic¢-opensetsis xed; andthis is donewith respect
to the corvertion of De nition 2.3 if applicable. We take X to be basic ¢-open. Basic
open setsare assumedto be regular open. In zero dimensional spaceswe assumethat
our basic ¢-open setsare | 9(¢); note that our procedure of re nement results a zero
dimensional spacefrom a zero dimensionalone with | 9(¢[P]) basic ¢[P]-open sets. We
denote ambiguously our special collection of basic ¢-open setsalsoby ¢..

The interior (closure,resp.) of asetA C (X;¢) is denotedby int,.(A) (cl.(A), resp.).
We will newver have to X a special compatible metric on our Polish spacesbut we will
condition on the diameter of sets. In this casediam, denotesthe diameterin an arbitrary
“xed metric generating¢,. We assumethat diam,(X) < 1.

Werecallthat a | 9(¢) subsetG of the Polish space(X; ¢) is itself a Polish spacewith
the restricted topology ¢ (seee.g.[4], (3.11) Theorem). In particular, the notions related
to categoryin the topology ¢ make senserelative to G.

We will have to return to the topologieson the coordinates in product spaces. If
(X;3), (Y;¢) arearbitrary topologicalspacesand (X;S) = (X xY;%x ¢), then we de ne

Prx(S) = % The projection of product setsin product spacesis de ned analogously
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If Gx € X and Gy C Y, we sa that the set of product form G = Gy x Gy C X is

nontrivial on the X coordinate if Gx Z X.

2.3 Hierarc hies, separation, reduction

As usual, | 2(¢) (82(¢) resp.) (0 < » < !') stands for the »" multiplicativ e (additive
resp.) Borel classin the Polish space(X;¢), starting with | 9(¢) = closedsets,§9(¢) =
open sets. The dual classj of aclassji C2¥isdened by j = {ACX: X \A€ij}.

A setis called proper | 2((,) if it is| 2(5,) but not §2(¢',) (O< »<1y).

We derive the difference hierarchy asfollows. Every ordinal © can be uniquely written

as®+ n where®is limit andn <! . Wecall * ewven (odd, resp.) if n is even (odd, resp.).

De nition 2.4. Let0< # »< !, andlet (A,),<y be a sequenceof subsetsof a set X ,

suc that A, C A (" < < #). Then Dy((A,),<s) C X is dened by

[
X € Dy((Ay)y<9) < x€ A, andtheleast” < # with x € A,
n<y

has parity opposite to that of #.

With this operation in the Polish space(X;¢) we set

a

[ 0 ¢_© 0 - -0
Dﬂ §§(6) = Dﬁ((An)n<19): An € §§(('J); A77 g Ano( S < #)

— : [ ¢ i ¢
For xed 0 < » < 14, a setis called proper Dﬁl§2(¢) if it is D§I§2(¢) but not

ico, ¢
Dy 8¢(c) (O<#<1!y).
Next we give two de nition related to ideals.

De nition 2.5. Let0< "~ < !4, If (X;¢) is a Polish spaceand P C X, S,?(P) (PS(P),

resp.) denotesthe collection of §2((;) G 2((,), resp.) subsetsof P.
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De nition 2.6. Let Z be a ¥%ideal and 7 C Z. We say that Z is generated by F if for
S

ewvery G € 7 thereexistsF; € 7 (i < ! )sudhthat GC ,_ F;. Wesay that T is strongly

generated by F if for every G € 7 thereisan F € F sud that G C F.

We recall somede nitions related to separation.

De nition 2.7. Let X beanarbitrary set. For Ag; A; C X wesay that G C X separates
Ao from Ay if wehave Ag CG C X \ A;.

A classj C 2% hasthe separation property if for every Ag; A, € | thereisasetG ¢ j
sud that X \ G € | and G separatesA, from A;. A classj C 2X hasthe generalized
separation property if for every sequencéA;);-, C i with T <. Ai = 0 thereis a sequence
(Gi)icw € i sudrthat (X \ G)ic Ci,A; CG; (i<!)and Ti<w G; = 0.

A classi C 2% hasthe reduction property if for every A; A°c | there are B;B%¢ j
such that B C A, B°C A% AUA’=B UB%andB NB%= {.

Our | C 2% hasthe generalized reduction property if for every sequencegA;)ic., C i
there is a sequencgG;);«, C i suhthat G, C A, G,NG; =0 (;j <!;i%j)and

S S
Gi = . Az

<w
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Chapter 3

The » =3 case

As we announcedin the introduction, we start our work by constructing topological

Hurewicz test pairs for » = 3 and then we prove the corresmpnding theoremsfor | 9

generatedideals. From now on (X ¢) denotesa Polish space.

3.1 The II3 set of Lusin

We will investigatethe following object.

Denition 3.1. Let P C X. We call the pair {P; ¢p} al 3(¢) topological Hurewicz test

pair in X if
1. Pisa} 3(¢) set;
2. ¢p is a Polish topology re ning ¢;
3. P is a nowhere ¢p-dense} I(¢p) set;

4. for every | 9(¢) set A C X and basic ¢p-open set G with GNP # 0, if ANP is

ép|p-residualin GNP then A is ¢p-residualin G.

17



18 CHAPTER 3. THE »= 3 CASE

As we shall seelater, there exist ] 3(¢) topological Hurewicztest pairs in uncourtable
Polish spaces.We presen a construction providing sud setsin a sutciently large variety

for our purposes.First we de ne the topologiescorrespnding to P.
Denition  3.2. Considera! 9(¢) setP and x a presertation
[ R
P = P P'= P!
i<w JI<w
with | 9(¢) setsP/ C X (i;j < !). Set
Po=A{P/ii<nmj<!}(n<!), P={X\P:i<!}
Wedene ¢5 = ¢[P.] and ¢p = ¢5[P].
Claim 3.3. We have the following.
1. Pis | 3(¢p) and | (ép).
2. If G is basic ¢p-open and GNP Z () then G is in fact basic ¢5-open.
3. The topologies ép|lp and ¢5|p coincide.
4. If G is basic ¢5-open and GNX \P*Z @ (n <i <) then G is basic ([P,]-open.
5. If G is a ¢[Py]-open set then the topologies
éplen (Ti<n Pi)nsn_ ) P and ¢[Pn]l e (Ti<n Pi)nsn_ ) P
coincide.

Pro of. The rst statemert is obvious. Since¢p = ¢5[P], proper basic ¢p-open sets
do not intersect P, which shavs 2. Form this we immediately get 3.
By de nition, if a setis basic,s-openthen it is basic¢[P,]-open for somen < ! . But

a basic ¢[P;+1 ]-open but not ¢[P;]-open set GPsatises G°C P? (i < ! ), so4 follows.
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i ¢ S .
For 5, it is enoughto considerthe casewhen G N ! P\ PJ Z (. Let

<n n j<w

T _¢’S )
i<nP \ n: j<wP » S

T
H=Hon ,_, X \P™ whereH, is basic¢s-open,| <! andm, <! (k<1). Thenwe

iT ¢ S T .
haven < mj, (k< 1), soGN' ien PP\ L e P XA\P™. SinceHoNX \P7 7 )

. L i
H be a nonempty basic ¢p-open set which intersects G N

(n <j < 1), Hg is basic¢[P,]-open by 4. Thus

A\ I [ A\ I [
HNGnN p? \ Pi=HyNnGnN pi \ pJ

<n n. j<w <n n- j<w

whereHy is basic ¢[P,]-open, sothe statemert follows and the proof is complete¥

Using topologiesof De nition 3.2 we can formulate a sutcient condition for that
{P; ¢p} is atopologicalHurewicztest pair. Obsene that the requiremers concernmainly
the presenation of P insteadof P itself; in the next chapter we will discussthe advantages

and incorveniencef this.

Theorem 3.4. With the notation of Definition 3.2, suppose that P/ C P* (i <j < 1)

and P is ¢[P;]-dense and ¢[P;]-meager in X (i < 1), then
1. P is ¢5-residual;
2. {P;¢ép} is a ) 3(¢) topological Hurewicz test pair.

Pro of. For 1, it is enoughto show that P’ is ¢5-dense(i < !); being ¢5-open this
implies that ead P’ and henceP is ¢5-residual. We have that P’ is ¢[P;] denseand
cortains P7 (i <j < !). Soif G is a basic ¢5-open set then either G is ¢[P;]-open and
soP'NG ¥ ), or G is not ¢[P;]-open henceG C P*. This provesthe statemert.

For 2 we chedk the conditions of De nition 3.1 1 holds by the choice of P. By
De nition 3.2 the topology ¢» is Polish and re nes ¢, which proves?2.

For 3, by Claim 3.31 P is| 9(¢p) soit remainsto shav that P doesnot cortain any

nonempty basic ¢p-open set. Supposethat G C P and G is nonempty basic ¢p-open.



20 CHAPTER 3. THE »= 3 CASE

Then by Claim 3.32, G is basic ¢, -open hencebasic ¢[P,]-open for somen < ! . But P™
Is ¢[P,]-meager,soG < P"™ which cortradicts G C P C P".

For 4, let A C X be ] 9(¢), G be a basic ¢p-open setwith GNP # () and suppose
that ANP is ¢p|p-residualin GNP. Obsene that sinceA is| 3(¢), (} 3(e[P.]) (n < 1),
I 9(¢p), resp.), the notions \meager' and \nowheredensé coincidefor A in the topology
& (Pl (n <), ép, resp.).

By Claim 3.32, G is actually ¢;5-open. Sinceby 1, P is ¢5-residualin X and by Claim
3.33 the topologies¢p|p and ¢5|p coincide,we have that A is ¢5-residualin G. Suppose
that A is not ¢p-residual in G; that is we have a nonempty basic ¢p-open set G° C G
sud that A N GPis ¢p-meagerthus ¢--nowheredensein G° Soby passingto a nonempty
basic ¢p-open subsetwe can assumethat A N G°= (). SinceP’/ C Pi (i <j < !),
we have G°= G®n (X \ P") for somen < ! where G® C G is basic ¢5-open. Since
G®n (X \ P") # 0, from Claim 3.34 we get that G® s basic ¢[P,]-open. Now G® C G
implies that A is ¢5-residual hence¢s-densein G® Since¢[P,] is coarserthan ¢35, A is
¢[Pn]-denseso ¢[P,]-residualin G® Thus A and X \ P" are both ¢[P,]-residual in G®

which yields A N G®n (X \ P™) # 0, a cortradiction which completesthe proof ¥

The following theorem descrikesimportant additional properties of the construction
in Theorem3.4, and in fact the rst four statemerts canbe consideredasa reformulation.

The fth statemert points out an obvious fact.

Corollary 3.5. Let {P;¢ép} be a} 9(¢) topological Hurewicz test pair as in Theorem 3.4.
Then the following hold.

1. IfACX s} A¢) and ¢5-residual then A is ¢p-residual.
2. If A C X is 83(¢) and of ¢5-second category then A is of ¢p-second category.

8. If A CX is 83(¢) and of ép-second category then A is of ¢5-second category.
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4. If A CX s} Y(¢) and ¢p-residual then A is ¢5-residual.
5. P is a proper | (¢) set.

Pro of. Let A be} 9(¢) and ¢5-residual. By Theorem3.4.1, P is a ¢5-residual} 9(¢5)
setsoANP # fand ANP is ¢5|p-residualin P. By Claim 3.3.3 the topologies¢s | and
¢p|p coincide,sowe have that A NP is ¢p|p-residualin P. By Theorem3.4.2, De nition
3.14 applieswith G = X and we concludethat A is ¢p-residualin X, asrequired.

For 2, let A = SKWAZ- with | 9(¢) setA; (i < !). As in the proof of 1, if A is of
¢p-secondcategorythen there existsani < ! sud that A; NP is ¢5|p-residualin GNP
for somebasic ¢;5-openset G with GNP Z (. Sinceby Claim 3.3.3 the topologies¢s|p
and ¢p|p coincide, we have that A; N P is ¢p|p-residualin GNP. Thus G is a basic
¢p-opensetwith GNP # (), by Theorem3.4.2, De nition 3.1.4 appliesand givesthat A;
is ¢p-residualin G. Thus A is of ¢p-secondcategory asrequired.

Statemerts 3 and 4 follow from 1 and 2 by taking complemets.

Finally supposethat P is 83(¢). SinceP is ¢5-residualby Theorem3.4.1, from 2 we
getthat P is of ¢p-secondcategory But P is ¢p-nowheredenseby De nition 3.13. This

cortradiction completesthe proof.¥

We prove hereanother, a bit moretechnical lemmabut of the same® avor as Corollary

3.5

Lemma 3.6. Let {P;¢p} be a | 3(¢) topological Hurewicz test pair as in Theorem 3.4.
Let A C X be a ¢p-meager | 9(¢) set. If G is a basic ¢[P,]-open but not ¢[Py; 1]-open set

for somen <! put

ZXP(A) = clyp,(ANG):

Then Zé{’P(A) is ¢[Pn]-meager in G.
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Pro of. Supposethat Z""'(A) is of ¢[P,]-secondcategoryin G. Now the §9(¢) setP”

is ¢[P.]-meagerin G, sowe havethat A is of ¢[P,]-secondcategoryin G\P". SinceG is not
¢[Pri 1]-openand P/ C Pé(i <j < !), wehavethat G\P" = GmiTKnPiq:\Sn_ jew P
Thus from Claim 3.3.5 we obtain that the topologies¢p|gnen and ¢[P,]lgnpn coincide. So
A is of ¢p-secondcategoryin the ¢p-open G \ P", a cortradiction. This completesthe

proof.¥

Theorem1.2saysin particular that in (C; ¢-) from the point of view of Hurewicztests
ead proper | 3(¢c) setis the same,up to passingto a perfect subsetof C. Preciselywe

have the following.

Corollary 3.7. Let P;P°C C be proper | 3(¢c) sets. Then there are continuous one-to-

one maps ", ' % C — C such that' 1 Y(P) = P%and' 9 }(P%Y = P.

Theorem3.4shaowsthat afairly big family of | 9(¢-) setsP form atopologicalHurewicz
test with the natural re nement ¢p of ¢ but in consequencdhe reasoningis at least
notationally complicated. Soin view of Corollary 3.7 we can x one special | 3(¢c) set
for which the topologies¢s and ¢ becomesimple without loosingto much generality.
Sincethe method we apply had already beenusedby Lusin to build (probably the rst)
proper | 3(¢c) set, we denoteit by P, (seealso[9]). We carry out the construction in an
arbitrary perfect Polish space(X;¢).

For every nite sequencea € ! <¥, x anonemply perfectsetP, C X with the following

properties:

(3.1) P. = X;

(3.2) P NP ;=0 (se!=*i<j<l);

(3.3) P, C P, and P, is ¢|p-nowheredensein (P;; ¢lp) (t Cse ! <¥);

[
34 P s is ¢|n-densein (Pyi¢|n) (s€! =)

<w
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To have P, ; C P, (i < !), onesimply hasto take a courtable densesubsetD =
{d;;dy;:::} C P, and cover successigly every d; with a perfectsetP,_ ; which is nowhere
densein (P;; ¢o|p,) and disjoint from P,_; (j < i). Then (3.1-3.4) obviously hold. Once
this done, let
(3.5) P,={Ps:ise!l <“;|s|<n}(n<!);

P" = [ Ps(n<!);PL:\ P

s21 ¢ n<w

jsj=n
Obsene that this notation is in accordancewith De nition 3.2 From now on if we
take a Py in X then we assumethat the above construction has beencarried out, sud
that (3.1-3.5) hold. Obsene alsothat the conditionsof Theorem3.4aresatised: P’/ C P!
(i <j<1!)by (8.3, Piis¢[P;]-densein X by (3.4 and ¢[P;]-meagerin X by (3.3). So
{P.;¢ép } is a topological Hurewicz test pair, in particular Py, is a proper | 3(¢) set by
Corollary 3.55. Finally we formulate a corollary of Lemma 3.6, which gets particularly

simplefor {P.; ¢p }. We X anotation in advance.

De nition  3.8. For every A C X set ZXL(A) = cl.(ANP,) (se€! <*) and

[ -
z5M(A)= PLU ZXP(A) \ Pt

s2w<!

Corollary 3.9. The topologies ¢|p, and ([Pisj+1]|p, coincide (s € ! =¥). A basic ¢g -open
set is of the form G NP, where G basic ¢-open and S € | <¥.

Let A C X be a én -meager | 3(¢) set. Then
1. ZX(A) = ZH(A) (sel <),
2. ZSX’PL (A) s (;|ps-n0where dense in P, (s €1 <¥);

3. X\ ZXH(A) is ¢ -dense in X.
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Pro of. The coincidenceof the topologiesand the structure of basic ¢5 -open sets

follow from (3.2) and (3.3). This gives

ZXP(A) = cl(ANP,) = clyp,, ((ANP) = ZF T (A) (se! =);

jsji+1
which is 1.

By Lemma 3.6, Z; "t (A) is ¢[Pg+1]|n-meagerin P, (s € ! <¥), so since\meager"
and \nowheredensé coincidefor | (¢) sets,?2 follows from 1.

For 3, let G be a basic ¢; -open set, say G = G°N P, where GP is basic ¢-open and

se! <« By (3.2 and (3.3) we have P, N Z X (A) C ZXH (A) UPI*L | thus
GNX\Z¥t(A)= GNP\ (P,NZXM(A)) 2 GNP, \ (ZX (A) UPITY:

SinceZ X1 (A) is ¢|p,-nowheredensein P, by 2, and P!*I* is ¢| ».-meagerin P, by (3.3,

G°N P, \ (ZXM (A) UPIS*L) # (); which completesthe proof ¥

3.2 Generating ideals

The next stepis to shaw that if (X;¢) is a Polish spaceand P C X is a Borel but not
§J(¢) setthen the ¥zideal generatedby the §9(¢) subsetsof P canbe coveredby a ¥zideal
7 strongly generatedby some} 3(¢) subsetsof P sud that P e Z. This is surprising
becauseas we will seelater there are §3(¢-) setscortained by P;, which can be covered
only by ¢z |p -residual} §(¢c) subsetsof P;. Wethink that this is the best covering result
for §9-generatedidealswhich can be obtained in ZFC. We will return to this questionin

the last chapter.

Theorem 3.10. Let (X;¢) be an uncountable Polish space and P C X be a proper | 3(¢)
set. Then there is a mapping ©: SY(P) — PI(P) such that A C ©(A) and

P \[ OA) 7 0 (A A € S3(P) (i< 1)):

1<w
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Pro of. First we construct © = ©,, for (X;¢) = (C;¢c) and P = P;. For ewery
_ _ S . .
A € S3(PL) x apresetation A= . A;whereA;is| 5(é0) (j <!). Set
[
©,(A) = cl. (A; NPy (se! =),
J<isi

\
©,(A) = [ ©,(A) (n< 1): ©(A) = [ ©,(A):

jsji=n m<wm: n<w

It is clearthat ©.(A) is| 3(¢c); ©,(A) CP*CP™ (m<n<!)shows©.(A) C P,.

SinceA C P, C P" impliesA; C ©,(A) forj < n< !, wealsohave A C ©,(A). It
. _ _ S o

remainsto shaow that if A* € SS(;L) with its xed preseftation A* =, A (i < !)

then we can 'nd a point in P\ ._ ©.(A’). We do this by constructing inductively a

sequences, € ! <“, |s,| = n (n < !) and a basic¢--opensetG,, (n < !) sud that

(3.6) S, CSp+1 (N< 1),
(3.7) G,.NP, ZO(n<!);
(38) CITC (Gn+1) - Gn (n <! )!

[ i ¢
cc\ ©'A (n<!):

T n T
Then by (3.6), (3.7) and (3.8) we have
(3.9 gives

(3.9) Guia NP

Sn+1

T
wGnNPy, F0and  _ G,NP, CP so

n n

\ [ .
G,NPs, CPL\  O(A):

n<w 1<w

It remainsto make the construction. Setsy = (), Go = C. Supposethat s,, G,, are
already de ned; we nd our S,+1, G,+1. By (3.2, ©,(A) NP, = ©, (AY) (i <!). First
we obtain a basic ¢--opensetG C G, suh that GNP,, # ) andGNP, N©, (A) =0
(i <n). For this we shav that ©,, (A?) (i <n) is ¢-|p, -nowheredensein P, .

4 S . 4 4
We have ©;, (A") = cl. (ASNPy) (i <n). SinceA’ C Pr, A’ is aip -meager

J<isi
| 9(¢c) set(i <n; j < [s,]). Henceby Corollary 3.92, cl.. (A' NP, ) (i <n; j < s,|) is

éolp,, -nowheredensein P, So©;, (A) (i <n)is indeed ¢¢| p,, -Nnowheredensein P, .



26 CHAPTER 3. THE »= 3 CASE

We obtained that there is a basic¢--opensetG C G,, which satises GNP, # () and

S .
GNP,, CC\ , ,©,(A"). Wecanpassto abasic¢--opensubsetG,.; C cl,.(G,+1) C G
such that G,.; NP,, #Z ); then we have (3.8). By (3.4 wecan nd ans, C S,+; €! <¥,

ISh+1| = n+ 1 with P NG, # 0, thus (3.6), (3.7) and (3.9) hold. This choice

Sn 41
completesthe inductive step and the proof of the special case.
If (X;¢) and P are arbitrary, by Theorem 1.2 we can take a cortinuous one-to-one

map' : (C;éo) — (X;¢) sudthat ' i }(P) = P. For A € SJ(P) let
©(A) = (P\" (PL)U" (O "H(A))):

Since homeomorphismpresenesthe Borel classof sets, this de nition makes senseand

ful Tls the requiremens.¥

One may sa that the construction in Theorem 3.10is trivial if the §3(¢) subsetsof
P, (which areall ¢ |5 -meagerby Corollary 3.5.2) could be coveredby a ¢p |p -meager

! 9(¢c) subsetof P,. Then a categoryargumert would give that

Pr\ [ OA) 7 0 (A;A e S3(P) (i< !)):

<w
Howeer, this is not the case. The construction in the following claim has already been

usedby S. Solei in [2]] to prove Theorem 1.4.

Claim 3.11. There is a 83(éc) set A C Pyr such that if B is | 3(¢c) and A C B C Py

then B is ¢p | p -residual in Py

Pro of. In this proof B(x;") denotesthe ¢~-open ball certered at x € C with radius
"> 0. Fixave! <\ {0} and a basic¢--opensetV satisfyingV NP, #Z (). We de ne an

injection ' : ! <¥ — 1 <¥ amapj:! <Y — ! and basic ¢--open sets (U;);».<: with the
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following properties.

(3.10) U=V, 0)=yv

(3.11) sCt=="(s)c" ()

(3.12) Uy € cle (Us) S U\ Py o (Sit€! =9 t Cs);

(3.13) UsnU, =0 (s;te! =< [t = |s]);

(3.14) diam, (U,) < 21 9 (s e ! <¥);

(3.15) Us NP ji) 7 D (s€! =),

(3.16) VX € U, NPy jiop V"> 03i <1 (U ; CB(X") (se! <¥):
Supposethat the construction is done. Let A,y = ! n<w Sszw<! _isj=n Us- This setis

S T
| 3(¢c), weshow that A,y C Pr. By (3.13 wehave A,y = .. - Usi.- By (3.19,

(3.19 and (3.3 we have

\ ' ¢
Ua’jn = Ugjn N P@(an) e Py (3/46 ! w)

n<w nw

soindeedA,y C Py.

Next we shav that U; NPy ) € Cle (UsNALv) (se! =¥). Let x € U;NPys)_ o) -
By (3.16 there is a sequence(i;);<, € ! sud that U,_;, C B(x;1=l). By (3.12 and
(3.19 wehave A,y NU; #Z 0 (s € ! =), in particular A,y NU,_; #Z 0 (I < !') soindeed
X € cl . (UsNA,v).

Finally we shaw that ewvery §9(¢0) setH C C for which A, C H is of ¢5 -second
categoryin VNP,. LetH = SKw H,; whereH; is| 9(¢c) (i < !). By the Baire Category
Theoremin A, v, thereisani <! sud that H; N A,y is of ¢-|4,, -Secondcategoryin
A.,v, s& H; cortains a basic ¢¢|4,, -open set GN A, where G is basic ¢--open. By
(3.14 thereisans € ! =¥ sud that U, C G. By (3.15 we have U; N Py, jis5) 7 0. As

we have seenabove,

Us N Pogs)- jis) € Cle (UsNA,y) Ccl . (GNA,y) CH;:
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SincePys)- j(s) € P, by (3.10 and (3.1, H; and thusH is indeedof ¢ -secondcategory
inVnNP,.
Tohave A, x anerumeration {(v;;V;): i < ! } of the pairs (v; V) wherev € ! <“, V is

S
basic¢--openandV NP, # 0. SetA = A, v. If Bisa} (o) setcortaining A, say

1<w
B = TKW B; with B; 89(¢c) then as we have shawvn above, B; (i < !) is of ¢5 -second
category in every nonemply ¢ -openset. SoB; (i < !') and henceB is ¢ -residual.
Now if B C P; then B is (',;L |p residualin Py, by Claim 3.33 the topologiesg,;L |p and
ém |p. coincide,soB is ¢p |p -residualin Py, asstated.

Soit remainsto make the construction; we do this recursiwely. SetU. = V, "' (§) = v
andletj(0) < ! besudthat VNP,_ ;) 7 0; sudaj (D) existsby (3.4). Sowe have (3.10
3.15 for s = (). Supposethat we already have U,, ' (s) andj (s) fors € ! <¥, |s| < n sudh
that (3.11:-3.15 hold for |s|; |t| < n and (3.16 holdsfor |s| < n. For every s € | <~ with
|s| = n, using(3.3), wecan x acourtable setD, = {d,(i):i <!} € U;NPyu5 \Pyis) jis)
with the property that cl.. (D) = D Ucl,. (Us N Py js)). Then we can nd a basic -

open neighborhood U,_; of d (i) sud that
Us— i Pgo(s) ;/ ®1 Cl’rc (Us— Z) - Us\Pgo(s)f i(s) Us—imUs— j= @ (LJ <! i ?/J)

and diam, (U,_;) < 2" (i < 1), Then (3.123.149 hold for |s| < n+ 1 and (3.1
holdsfor |[s| <n. Dene ' (s) C' (s™i) to havePy,_ ) NU,_; Z 0 (i < !); this is possible
by (3.4). Then (3.11) holdsfor |s|;|t| < n+ 1. Again by (3.4), we canhavej(s™i) <!

sudh that Py - jiso ) NUs s Z 0 (i < !). Then also(3.15 holdsfor [s| < n+ 1. This

completesthe recursive step and the proof.¥

By assumingthe Continuum Hypothesiswe can cover the §3(¢-) subsetsof P, by
I 9(¢c) setssudh that Py, is not in the ¥ideal generatedby the covering sets. Combining
Theorem 3.4 with the previous examplewe seethat in this casethe covering | 9(¢) sets

cannot be the subsetsof P;: a| 9(¢0) subsetof P, shouldbe ¢p |5 -meagerin P, while
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we have constructeda §(¢) subsetof P;, which can be coveredonly by ¢p, |5 -residual
! 9(¢c) subsetsof Pr. For this covering by | 9(¢) sets, Theorem 1.2 is too \imprecise"
in the sensethat it does not care about the preseration of | g(g,) sets. We prove an

alternative for » = 3.

Lemma 3.12. Let (X;¢) be a Polish space, (Ps)saw<t be a family of | $(¢) subsets of
X satisfying (3.1-3.4). Let P,, P" (n < 1) and Py be as in (3.5). Let A be a fized
ép -meager | 9(¢) set. If x* € X \ ZXPL(A) and U C X is basic ¢-open with X* € U then
there is a ¢-compact set F C X such that x* € F C U\ A and (F N Py)s2u<t satisfies
(3.1-3.4) in the Polish space (F; ¢|r).

Proof. Let G = {G,: n < !} be an enumeration of the sets of the form G N P,
(s € ! <“;G basic¢-open). Let r € ! <“ pe sudh that x* € P, \ P"* We dene
recursiely atree T C! <*and 7 = {(V,;X,):se T}l sudhthat TN! "™ (n<!)is nite,
V; CX (seT)isabasici-openset, X, = {Xs ;:i<!; s €T} CX\P,(seT)is

_ S
a nite set,and with V" = V,, X" = X (n < 1) the following hold:

s2T,jsj=n s2T,jsj=n

(3.17) x*eX"CX™ (n<1);

(3.18) cl (V. ;) CV,CU(i<!;s;s7ieT)

(3.19) V,NnV,=0(s;teT; |s|=|t));

(3.20) diam.(V,) < 21 9 (s T):

(321) Vo, nXy={xe }(i<!;sTieT)

(3.22) cl(G,)NX"= () impliesG,NV™ =0 (n<!);

(38.23) if i <|r|is maximal such that x, € P,;, then V,;Ncl. | P, N A¢ =0 (seT)
(3.24) if x, € P, for somes € T;t € ! =¥ then X, NV, N (Py, \P™) Z 0 (m < [t));

[
(3.25) ifx,eP,forsomescT;te! <“thenX,NV,n P._,;Z0:

1<w
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Supposethat the construction is done, we show that

\ [
F= =l (X7

n<w n<w

ful Tls the requiremerts; here equality follows from (3.18, (3.20 and (3.21). By (3.18,
(3.19 and (3.20, F is compact,(3.17) and (3.18 imply that x* € F C U.

We show that F NA = (): If x € F then by (3.19 and (3.20 thereis a unique %e ! ¢
sud that x = Tn<w V.. Let i < |r| be maximal for which x,;, € P, for in nitely many
n<1!. By (3.2]) we havelim, 1 X,, = Xsox € P,. Fix ann < ! sud that i is
maximal for which x,;, € P,,. Then by (3.23, V,;, Ncl.(P,;, N A) = 0, in particular
x € P, \ A, asstated.

Now we prove that (3.1-3.4) holdsfor (F NP,),.<t in the Polish space(F; ¢|r). Since
(3.1) and (3.2 are automatic we only have to ched (3.3) and (3.4).

First weshow that F NP, = C|T(S new X"NPy). It isclearthat F NP, D C|T(S new XN
P.). For the reversecontainment it is enoughto show that whenexer GNF NP, #Z () for
somebasic¢-opensetG then GNX ™ NP, # () for somen < ! ; solet GNF NP, # (. By
regularity we can nd anotherbasic¢-opensetG® C cl,(GY C G sud that GINF NP, 7 0.
Let G, = G°NP,. SinceG, NV"! Z (), by (3.22 we have cl.(G,) N X™ # () hence
GNX"™NP, Z (), which provesthe statemert.

For (3.3), let s C t and supposethat GNF NP, #Z () for somebasic ¢-open setG. We
have to show that GNF NP, \ P, # (. By the preceding,x, € G NP, for someu € T,
soby (3.17), (3.18, (3.20 and (3.2, x, = X, € V, C G for someu C v € T. Then by
(3.29 for m = |s| < |t| we get X, NV, N (P, \P™?) # 0. SinceP, CP™ X, CF
andV, C G, wehave GNF N (P, \ P;) # 0, asrequired.

For (3.4), supposethat GNF N P; # () for somebasic¢-opensetG andt € ! <. We
haveto nd somei <! suchthat GNF NP._; # 0. Let x, € GN P;; asabove, we have

S
aucveT with x, = x, €V, CG. Thenby (3.25, X, NV, N P, ; # (0, sofrom

<w
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S
V,CGandX,CF wehaveGNFnN ,_ P, ;7 0 andwearedone.

We do the construction recursively suc that after the N step of the recursion(3.17
3.23 hold for n < N while (3.24 and (3.29 hold for x, € X ¥i'1, Put ) € T, setx. = x*
and let x* € V. C U be a basic ¢-open set such that V. N cl.(P, NA) = {J; this choice
is possiblesincex* e Z*X1 (A), which meansthat x* e cl.(P, N A). Sox.;V. meetthe
requiremerts.

Supposethat T N! & is dened, we have X Vi 1 and V¥ sud that (3.173.23 hold for
n <N, (3.29 and (3.25 hold for x, € X ¥i 1. We extend T up to level N + 1 and de ne
XN, VN1 such that (3.17-3.23 hold for n < N + 1, (3.24 and (3.29 hold for x, € X ¥
asfollows. Let s € T, |s| = N be arbitrary; sincex, € P, to satisfy (3.24 and (3.29

for x, we have to take only nitely many points. We shaw that we can pick ead of these

points x in V, sud that
(3.26) if i < |r|is maximal for which x € P,;, then x € cl.(P,;, N A).

Let x; € P, for somet € ! <“. For (3.249 let m < |t|, and let i < |r| be maximal
sudh that Py, C P,;,. We distinguish two cases.If P, = P,; then by Corollary 3.9.2,
cl-(Py,, NA)is (;|ij -nowheredensein Py, soby (3.3) we can pick a point in V; NPy, \
(P™t Ucl.(Py, NA)). If Py, C P, thenby (3.2 for everyy € Py, i is the maximal
for which 'y € P,j,. Sincex; € Py;,,, we have V; ncl.(P,;, NA) = 0 by (3.23. By (3.3) we
can pick a point x in V; NPy, \ P™?, sud that x e cl,.(P,; NA) follows from x € V..

For (3.29, if x, € Pi4*1 then x, € X, shavs (3.29. So supposethat x, € Piti*l,
By (3.4 wehaveaj < ! sud that V,nP._; # (. By Corollary 3.92, cl.(P. ; N A)
is ¢|p_ ;-nowhere densein P, ; sowe can pick a point x in V, NP, ; \ cl.(P_; NA).
Let i < |r| be maximal for which x € P,;,. If r|; = t7] then we have x € cl.(P,; N A).
If rl; # t7j then P, C P,;,. We show that for x,, aswell, i is the maximal sud that

Xs € Py, If P, = Py, then this follows from x e Pi4*1 while if P, C P,;, then we are
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doneby the maximality of i for x. Thusby (3.23, V; ncl.(P,; NA) = 0 sox € V; gives
x € cl.(P,y NA).

Index x, and the new points with s™i (i < n,) forsomen, <!, put s~i €T (i < ny)
and take pairwisedisjoint basic¢-opensetsx, ; € V,_; C cl. (Vs ;) C V, sud that (3.19,
(3.20, (3.22 and (3.23 hold; obsenethat (3.23 canbe satis ed by (3.26. Since(3.17),
(3.18, (3.21), (3.29 and (3.25 hold, this completesthe recursive step and the proof.¥

Instead of covering §9(¢) setsby | 9(¢) setswe dene §3(¢) setsavoiding them. The

sequenceof §9(¢) setsconstructedfor this must be specially nested.

De nition  3.13. Let (X;¢) beaPolish spaceand considerP, in X. Let0< 3 < I ;. Set
B°= {X}, while for 0< ®< 3, let B*= {B&:i <! } bea collection of pairwise disjoint
I 9(¢) subsetsof X . SetB* = SKW By (®< 3),B, = Ta«Ba. Let ¢[®)] = g,[quaBﬁ],
GO = iy B and cn (8] = e, 5] (® < 3). We say that (57, is

P -nested if
1. B CB* (®< ™ < 3);
2. B is ¢;5 [®]-densein X (®< 3);
3. B¢ is ¢[@]-compact(®< 3; i < !);

4. (P;NB,)s2.< satises (3.1-3.4) in the Polish space(B,; ¢[®]|s,) for every ® < 3 if

3 is successonnd for ® < 3 if 3 is limit.

Sincea compactPolish topology on a baseset hasno nortrivial compactPolishre ne-
ment, De nition 3.133 says in particular that on B¢ the topologies¢[ ] ( < ®) coincide.
In the sequelwe usethis property without further reference.Next we show that De nition

3.134 holdsfor limit ®= 3, aswell.
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Lemma 3.14. Let (B%),.. be a Py-nested sequence for some 3 < 11 and suppose that

A CB¢is| (¢l

B ) and ép 21| B, -meager. Then

~

. B¢ is ¢ [Bl-residual in X ;

IS

. 4f 3 is a limit ordinal then (Ps N B¢)s2w<t satisfies (3.1-3.4) in the Polish space
(Be; éBlls)s

o

B\ Z5 VB (A) s ¢ ]

B, -dense in B¢,
4. PLNB:Z 0.

Pro of. By De nition 3.131and2,B (®< 3)is ¢; [®]-denseand ¢5 [2]-open(®< 3).
Sincea ¢5 [2]-openbut not ¢5 [®]-opensetis cortained in B® (®< 2), B* (®< 3) isalso
¢ [Fl-dense.HenceB® (®< 2) and so By is ¢ [F]-residualin X, which is 1.

For 2, we have (3.1) and (3.2 automatically. To have (3.3), let t C s and supposethat
GNP, # () for somebasic¢[3]| 5. -openset. That is, G = GNB2NB, for somebasic¢-open
setG% ®< 3 andn < ! . But (3.3 holdsin B2, in particular U = BN G°NP; \ P, # 0.
Now U is a ¢5 [F]-openset, sogiventhat B, is ¢5 [*]-residualby 1, we have U N B¢ 7 0,
asrequired.

Tosee(3.4 x ans e ! <¥ and a basic¢[3]

B, -openset G with GNP, #Z (). As before,
we have that G = G°N B2 N B, for somebasic ¢-opensetG% ® < 3 andn < !'. Now

S
(3.4) holdsin B> henceB2® N G°n P, :#0,say U=B2NG°NP,; # () for some

i<w
i < 1. Again, U is a ¢5 [2]-open set, so given that B is ¢5 [F]-residual by 1, we have
U N B¢ # 0, which provesthe statemert.

We have 3 sincefor 2 limit by 2, for 3 successoby De nition 3.134, Corollary 3.9.3

holdsin the Polish space(B.; ¢[3]

B.)-
Finally by 2 for 3 limit and by De nition 3.134 for 3 successorTheorem3.4.1 applies

and we getthat P, NB. is ¢ [*]]s. -residualin Be; in particular, P,NB¢ # . This shaws
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4 and completesthe proof.¥

Now we have ewerything to prove the ideal generationtheorem. We remark that CH

is usedonly to assurethat the cardinality of the family of | 9(¢) setsis! ;.

Theorem 3.15. Assume CH. Let (X;¢) be a Polish space and P C X be a Borel not

83(¢) set. Then there is a Yaideal T such that
1. T is strongly generated by its | 9(¢) members;
2. S3(P) CZ;
3. Pel

Pro of. First we prove the special case(X;¢) = (C;éc), P = Pr. Using CH, let
{A,: ® < !} be an erumeration of PY(P;) suc that Ay = (). We shall construct a

P.-nestedsequenceB<) sud that

a<wi
(3.27) A.NB*=10 (®<!y):
Oncethis doneset

In = {GCC:3@<!1(BanNG= )}

or, sinceB,+.1 C B*C B, (®< ! ;) by De nition 3.131, equivalertly
Ip = {GCC:3I®< ! (B*NG=0)}:

By De nition 3.13 Zp is a ¥zideal. Also by De nition 3.131, Zp is strongly generated
by its | 9(¢c) menbers. By (3.27) it cortains PS (P.), henceSS (Pyr), as well. Finally
Lemma 3.144 implies that P, € Z, asrequired.

It remainsto make the construction. We proceedby induction; to start with, set

B° = {B§} with B§ = C. Supposethat B° is dened for ® < 3 sud that the sequence
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(B*)a<c is Pr-nestedand (3.27) hold. By De nition 3.134 if 3 is a successorand by

Lemma 3.142 if 3 is limit, {P, N B¢;én [F]

B. } IS a topological Hurewicz test pair; in

particular, P, N By is ¢n [°]

B meagerin B.. SinceA;NB, C P, NB.and, AN B, is

a ¢p [B1ls. -meager! 9(¢[3]]p.) set. Soby Lemma3.143 we can X a courtable set
Y={x,:n<!1}CBNZ#A' B (A NB)

sud that Y is ¢5 [®]|s -densein the Polish space(B¢; ¢5 [F]/5.). We dene recursively

BS (n < !) sud that SKn Bf ZBc(n<!), (BY)a<c+1 Is Pr-nestedand (3.27) hold.
Supposethat we already have Bf CB¢fori<n. Letm<! beminimal with x,, €

SKn B¢ and take a basic ¢ [2]| 5. -opensetU C B, sudh that X = X, € U C BC\SKn B¢

S — .. e oa :
andUuU ,_. Bf 7 B.. By Denition 3.134 if 3 is successoand by Lemma 3.142 if 3

(2

is limit, we canapply Lemma3.12in the polish space(X;¢) = (B¢; écl®]|s,) for x* = X,
U, (PsNB¢)s2w<t and A, NB,. Let BS C B be the resulting ¢¢[3]| 5. -compactset. This
de nes recursiwely B¢.

We have B¢ N A, = () sowe have to chedk the conditions of De nition 3.13 1 and 3
are obvious while 2 follows from Y C B¢ usingLemma3.141. If 3 is limit, 4 follows for
®= 3 from Lemma3.142. If 3 is a successothen we have 4 for ® = » by the induction
hypothesis. Now we chedk 4 for ® = »+ 1; (3.1) and (3.2 are automatic. To have (3.3,

let t C s and supposethat G NP, # ) for somebasic ¢-[3 + 1]

B .,-opensetG. Since
BCis¢p [+ 1lls.,,-openand ¢ [2 + 1]|Bz+1-dense,we can assumethat G is of the form
G°N B¢ for somebasic ¢--openset G and n < ! . But (3.3) holdsin B¢, in particular
BSNG°n P, \ P, # 0, asrequired.

Tosee(3.4 x ans e ! <“ and a basic ¢o[® + 1]/5,,,-open set G with GNP, 7 0;
as before, we can assumethat G = G°N B, for somebasic ¢--open setG°and n < ! .

S
Now (3.4) holdsin B$ henceB$ N G°n P, ; # () which provesthe statemen. This

<w

completesthe recursive step and the proof of the special case.
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For an arbitrary uncourtable Polish space(X;¢) and Borel not §9(¢) set P take a

cortinuousone-to-onemap ' : (C;¢0) — (X;¢) sud that ' i }(P) = P;. Let
T={GCX:3G%cIr(GN"'(C)C"' (GY}:

Sincehomeomorphismpresenesthe Borel classof setsand X \ ' (C) is ¢-open hence
I 9(¢), this ¥ideal is strongly generatedby its | 9(¢) members. If A C P is §3(¢) then
"i1(A) C Py is8%(¢c) so' 1 1(A) € Ip, and henceA € Z. This showvs SJ(P) C Z. Since

P, €Zp wehave P €7, which completesthe proof ¥

Let usturn badk to Question1.5. The analogousquestionfor strong generationis the

following.

Question 3.16. Let (X;¢) be a Polish space and let 0 < » < ! 1. If a ¥aideal T C 2%
is strongly generated by its | g(g,) members and a Borel set A C X is not in Z then does

there exists a §2+1 (¢) set B C A such thatB €T ¢

If » = 1 then the answer is obviously atrmativ e, sinceif B is a courtable ¢|4-dense
subsetof A then B € 7 is shovn by A C cl.(B).

Theorem3.15showns that for » = 2 the answer is consisterily negative. We think that
Question 3.16is independent. In particular, we belive that Theorem 3.10 givesthe best
constructible covering for the ideal S3(P). We will comebadk to this problemin Chapter

8.



Chapter 4

Topological Hurewicz test pairs

This chapter is dewted to the extensionsof the results of Chapter 4 we have for 4 < » <

I 1: the existenceof | gtopologicaIHurewicztest pairs and the ideal generationtheorem.

4.1 Distinguishing Borel classes

In this sectionwe extend Theorem 3.4 to higher levels of the Borel hierarchy. In order
to produce a sutciently big family of test pairs we needa macdinery which allows us to
condition on the construction of a given Borel set from simpler sets. For this, we handle
a, g(g,) set by coding its construction from closedsetsin a tree. The following inductive

de nition makesthis concrete.

Denition 4.1. Let0< »< !;and#; — » For»= 1, [P;(P.)] is calleda | 9(¢) set
with presentation if P = P. isa| 9(¢) set.

Supposethat the | 9(¢) setswith presenation aredened for # < ». Then [P; (Py) 7]
is a| 2((;) set with presentation if T C ! <¥ is a subtreesud that {(i):i <!} C T,

S
P=X\

<w

P and [Py (P 12 ] is @ f;i(g,) setwith presertation (i < !).

37
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It is important to note that a | 2(¢) setswith presenation is not necessarilya proper
| 2(¢) set. For example,it can easily be empty.

Next we de nethe test setsand the correspnding topologies. Thesetest pairs are ex-
actly what onemay expect; in particular, the following de nition for » = 3isin accordance

with De nition 3.1

De nition 4.2. Let0< »< ! ;andP C X. Wecall the pair {P; ¢p} a| 2((,) topological

Hurewicz test pair in X if
1. Pisaj 2(¢) set;
2. ¢p is a Polish topology re ning ¢;
3. P is a ¢p-nowheredense} I(¢p) set;

4. (a) »= 1. for every ¢-opensetA C X and basic¢p-opensetG with GNP # () if
A NP is ¢p|p-residualin GNP then A is ¢p-residualin a ¢p-openset G°C G

such that GNP Ccl,, (G°NP).

(b) 1 < »is a successowordinal: for every # < », | 9(¢) set A C X and basic
ép-openset G with GNP # () if ANP is ¢p|p-residualin GNP then A is

cp-residualin G.

(c) 1 < »is a limit ordinal: there is a ¢p-open set Hy p(#) (# < ») sud that
P C Hxp(#) (# < »), and for every # < », | 9(¢) set A C X and basic
ép-openset G with GNP # () if ANP is ¢p|p-residualin GNP then A is

¢p-residualin G N Hy p(#).

We asseiate inductively the topologies¢;s and ¢p to | g((;) setswith presertation

(O< »< 1),
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De nition 4.3. Considera | g(g,) setwith presetnation [P; (P;);»7]. For » = 1 we de ne

g = ép=¢ IfL<»< ! and¢pisdened for | 9(¢) setswith presenation for # < »,
T _ W

setP = {Py) N (X\P@):n<!} Wedene ¢5= ., ép, and ép = ¢5[P

<n

Obsenethat P is disjoint to the menbersof P and the setsin P are pairwise disjoint.
Next we prove an auxiliary claim on how P is related to the topologies¢s, ¢p. For its
proof we will needthe Kuratowski-Ulam Theorem in the following form (seel[4], (8.41)

Theorem).

Theorem 4.4. (Kuratowski-Ulam) Let (X;¢) and (Y; %) be Polish spaces, let G = Gy X
Gy be a basic ¢ X Yaopen set in X X Y and consider a Borel set A C X x Y. Set

AV = {x e X:(xy) € A}. Then A is ¢ X Yaresidual in G if and only if
{y € Gy: AY is ¢-residal in Gx }
18 Yaresidual in Gy
Claim 4.5. With the notation of Definition 4.3, we have the following.
1. P s 5(¢p) and | §(ép)-
2. If G is basic ¢p-open and GNP Z () then G is in fact basic ¢5-open.
3. The topologies ép|lp and ¢5|p coincide.

4. The topologies

S ; < S |
CPIPmyn i Py and C'P‘P<n>” i< n Pl (n<t)

coincide.

5. If (Y; %) is any nonempty Polish space and {P; ép} is a | g(g,) topological Hurewicz
test pair in (X; ¢) then {P xY;é¢p X ¥4 is a | 2((; X ¥) topological Hurewicz test pair

in (X xY;¢x9).
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Pro of. We prove the rst statemert by induction on ». For » = 1 the statemert is

obvious. Let now 1< »< ! ; and supposethatAthe statemen holdsI for # < ». We have

[ [ \
(4.1) P=X\ Pum=X\ P n (X \Pw)

n<w n<w <n

wherePy,, is ¢5 closed(n < !') by the inductive hypothesisand P, N TKn(X \ Pe) is
ép-open(n < 1) by denition, sol follows. By De nition 4.3, proper basic ¢p-open sets
do not intersect P, which shavs 2. This immediately implies 3.

Sincethe setsin P are pairwise disjoint, if G is a proper basic ¢p-open set which
intersectsPy,, \SKn P then G = GNP, \SKn P Where GPis basic ¢;5-open, so 4
holds.

For 5, let G be a basic¢p x ¥z0penset,say G = Gx x Gy whereGy (Gy, resp.) is
basic ¢p-openin X (basic ¥zopenin Y, resp.). If » = 1, let A be a ¢ x ¥z0pen set suc

that AN(P xY) is ¢p x %residualin (Gy NP) x Gy. Let
G%= " {H C X xY:H isbasic¢p x ¥s0pen, A is ¢p x ¥aresidualin H} :

Then A is ¢p x ¥aresidualin G%soit remainsshow that GN (P x Y) C ¢l £,(G°N (P x
Y)). Supposethat K = Kx x Ky C G is a nonempty basic ¢» x ¥:0pen set such that
KNP xY)CGNP xY)\cCleo(GN(P xY)) . ThenAN(P x Y) is ¢p x Yaresidual
in (Kx NP) x Ky, soby Theorem4.4,

W = {yeKy: AYNP is ¢p|p-residualin Ky NP}

is %sresidualin Ky. Since{P; ¢p} isa] 9(¢)-topological Hurewicz test pair, by De nition

4.243, for everyy € W thereis a ¢p-opensetK 3(y) C K y sud that AY is ¢p-residualin
K% (y) andK x NP C cl.(K%(y) NP). Since(X; ¢r) hascourtable base,K %(y) cortains
the samebasic ¢p-open set for ¥zresidually many y's, that is there is a basic ¢p-open set

K$ C Kx and a basic¥opensetK Y C Ky sud that

{y e K{: AY is ¢p-residualin K §}
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is ¥sresidualin K. Then by Theorem4.4, A is ¢p x ¥residualin K%= K% x K¢, that
is K9C G? a cortradiction.

Let now 1< »< ! ; bea successoordinal, # < »and A bea | 9(¢ x ¥) setsudc that
AN(P xY)is¢p x residualin (Gx NP) x Gy. We show that A is ¢p x ¥aresidualin

G. By Theorem4.4
W = {y eGy: AYNP is ¢p|p-residualin Gy NP}

is ¥sresidualin Gy . Since{P;¢p}isa; g(g,)-topologicalHurewicztest pair, by De nition
4.24b, AY (y € W) is ¢p-residualin Gx. Then againby Theorem4.4, A is ¢p x ¥aresidual
in G, as stated.

Let now 1< » < ! ; be a limit ordinal. We show that Hxzy.pey(#) = Hxp(#) x Y
fulTls the requiremers. Let # < » and A bea | %(¢ x %) setsud that AN (P x Y) is

ép X Yaresidualin (Gx NP) x Gy. By Theorem4.4,
W = {y eGy: AYNP is ¢p|p-residualin Gy NP}

is ¥sresidualin Gy . Since{P;¢p}isa; g(g,)-topologicalHurewicztest pair, by De nition
4.24¢, AY (y € W) is ¢p-residualin Gx N Hy p(#). Then again by Theorem 4.4, A is
ép X Yaresidualin G N Hxeypey(#) = (Gx N'Hx p(#)) x Gy, asstated. This completes

the proof.¥

The following claim describesthe behavior of a topological test pair with respect to
§2(¢) sets.
Claim 4.6. Let 0< »< !y and let {P;¢ép} be a | 2((;) topological Hurewicz test pair. If

for a §g((',) set W and ¢p-open set G with GNP Z () we have that W NP is ¢p|p-residual

in GNP, then W is ¢p-residual in a ¢p-open set H satisfying that GNP C ¢l (H NP).

Pro of. For » = 1 the statemert follows from the de nition. Let now 1< »< ! ; and

write W = Q;; whereQ; is | 3i((;) and#;, — » If WN GNP is ¢p|p-residualin

<w
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G N P then let H; denotethe maximal ¢p-open set in which Q; is ¢p-residual (i < !).
.. S . :
By De nition 4.24, the ¢p-opensetH = . H; meetsewery ¢p-open set intersecting

G N P, which provesthe statemert. ¥

In the following theorem we give a method allowing to build up inductively a topo-

logical Hurewicz test pair from simpler test sets.

Theorem 4.7. Let 0< »< 14, #, — » and let [P; (P;)w27] be a nonempty | 2((,) set with
presentation. If » = 1 and P is ¢-nowhere dense then {P;ép} is a topological Hurewicz
test pair.

Forl< »<! suppose that

i

<o Py is ¢ -dense and {Pgy; ép }is a | 3i (¢) topological

Hurewicz test pair (i < 1). Then
1. P s ¢5-residual;
2. {P;¢p} is a | 2((',) topological Hurewicz test pair.

Pro of. If »= 1then G°= AN G doesthe job. Let now 1< »< ! ;. Since{P(,;¢s}
(n<!)isa,; 3n(¢) topological Hurewicz test pair, P, (n < !) is ¢5-nowhere denseso
1 follows from (4.1).

For 2 we have to ched the conditions of De nition 4.2 1 holds by the choiceof P, 2
follows from De nition 4.3

For 3, by Claim 4.5.1 it remainsto shawv that P doesnot cortain any nonempty basic
¢p-open set. Supposethat G C P and G is nonempty basic ¢p-open. Then by Claim
452, G is basic¢;5-open, we have that SKW P is ¢5-densehenceP,) NG 7 () for some
n < !, acortradiction.

Let now # < » A C X be} 9(¢), G beabasic¢p-opensetwith GNP # () and suppose
that A NP is ¢p|p-residualin GN P. By Claim 4.52, G is actually ¢5-open while by 1

and Claim 4.53, A is ¢5-residualin G.
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SetG%= G if » is asuccessorlf »is limit thenlet| < ! beminimal sud that # < #;,

T S
SetHX,p(#) = ¢<1X \P(i) and G°= GHHX,p(#) = G\ P(i). WehaveP C H_)Qp(#)

i<l
by Denition 4.1 It remainsto shaw that A is ¢p-residualin G° Note that GPis ¢5-open
and that A is ¢5-residualin G°

Supposethat A is not ¢p-residual in G% that is we have a nonempty basic ¢-open
setG C G%sudh that A NG is ¢p-meagerin G. By passingto a nonempty basic ¢»-open

subsetwe can assumethat

\ [

1<n 1<n

where Gy is basic¢s-openand n < ! . Note that if » is limit then | < n by the choice of

..
G° Sowe canassumeGon ,_, X \ P C G

%

We obtained that the 89(¢) setX \ A is <',p|p(n)n5i<n p(i)-residual in the ¢p-open set

T
P(n) N GgN

1 I<n

o X \ Py. Thusby Claim 4.54, X \ A is ¢1§|p(n)ns. p(i)-residual in the

¢,§|p(n>-open setPuy NGoN ,_, X \ Py. Since# <#,, we canapply Claim 4.6 for the

)

§9 (¢) setW = X \ A, the | § (¢) topological Hurewicz test pair {P,); ¢5} and the ¢5-

T
. X \ P(; satisfyingG NP, 7 0. Wegetthat X \ A is ¢5-residual

)

opensetG = GpnN
in a ¢5-opensetH sud that GNP, C cl< (H N Pgy), in particular H=HNGF 0
and H°C G Thusboth A and X \ A are ¢5-residualin the nonempty ¢5-opensetH, a

contradiction. This completesthe proof.¥

Just asfor the » = 3 case,the conditions of Theorem 4.7 concernthe presenation of
the | g((;) set P instead of P itself. This handicapseemdo be inevitable. First, because
up to our knowledgethere are no results providing somemethod to build up §2((;) sets
from simpler sets, there is not even a canonicaldecompsition of §9(¢) setsto | 9(¢) sets.
It is easyto seethat by taking a wrong presenation the topology ¢» becomeswrong
either, that is we cannotjust condition our test setto be proper ; g(g,), a suitably chosen,

not natural presenation must be involved. Second,becausethe only way to build up a
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proper | 2

hardly imagine Theorem4.7 without someinductive condition on the presenation. Even

(¢) setfor » > 4 is to useinduction, soin view of our rst reasonone could

if well explained, this handicap remains painful and this is responsible for most of the

complication we have to facelater. We closethis sectionwith the usual corollaries.

Corollary 4.8. For a0< »< !y let {P;ép} be a | 2((,) topological Hurewicz test pair
as in Theorem 4.7. Let G be a basic ép-open set with GNP Z (), or equivalently let G be

a nonempty basic ¢;5-open. Then the following hold.

1. If » is a successor, # < » and A C X s | 9(¢) and ¢5-residual in G then A is

écp-residual in G.

2. IfA CX is §g(¢) and of ¢p-second category in G then A is of ¢p-second category
mn G.

3. If » is a successor, # < » and A C X is 8%(¢) and of ¢p-second category in G then

A is of ¢5-second category in G.
4. If A C X is 2(6) and ¢p-residual in G then A is ¢5-residual in G.
5. P is a proper | 2((;) set.

Pro of. Let A be| 9(¢) and ¢5-residualin G. SinceP is a ¢5-residual} 9(¢5) set,
A NP is ¢5|p-residualin G N P. Sinceby Claim 4.53 the topologies¢s|pr and ¢p|p
coincide, A NP is ¢p|p-residualin G N P. SoDe nition 4.24b appliesand we conclude
that A is ¢p-residualin G, which proves1.

For 2, let A = SKwAi with | 3i(¢',) setA; (i < !) where#; — » SinceP is a
¢o-residual | 9(¢5) set, if A is of ¢5-secondcategoryin G then for ani < !, A,NP
is ¢5|p-residual in G°N P for somebasic ¢5-open set G° C G. Sinceby Claim 4.53

the topologies¢s|p and ¢p|p coincide,we have that A, NP is ¢p|p-residualin the basic
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¢r-openset GPwith G°NP # () soby De nition 4.24, A, is ¢p-residualin somenonempty
¢p-openset G C G%thus A is of ¢p-secondcategoryin G, asrequired.
Statemerts 3 and 4 follow from 1 and 2 by taking complemets.

For 5, supposethat P is §g(¢). By Theorem 4.7.1, P is ¢5-residual in X so by
Corollary 4.82, P is of ¢p-secondcategoryin X . But by De nition 4.23, P is ¢p-nowhere

dense,a cortradiction. This completesthe proof.¥

There is an asymmetry in our approad to topological Hurewicz test sets: the test
set is of somemultiplicativ e classand the setstested are of the dual additive class. The
reasonfor this is that §2 is closedunder taking courtable union while | g is not. Howeer,
there is a testing theorem like Theorem 4.7 for special §2 sets(seee.g. Theorem 5.2 or
Corollary 5.3) but the statemen of this theorem cannot go beyond Corollary 4.8 Sowe

do not work for that.

4.2 Intersection criteria

It turns out that the conditions of Theorem 4.7 are conbinatorial, they are the sameas
requiring that courtably marny intersectionsare nonempty. We give theseintersections.
Our purposeis to show that if Theorem4.7 provesthat a setP is a topological Hurewicz

test then P remainsa test setif the initial topology ¢, of the Polish spaceis changed.

De nition 4.9. Let 0 < » < !'; and [P;(P,)27] be a | 2(¢) set with presenation. If
»=1,setCi(X; ¢, P) = {{(X \P;G): Geg¢g} If Cy(XC% %P9 isdened for every # < »,
Polish space(X % ¢9 and | 9(¢) setwith presenation P%then let #; — » and set

A !
Ce(X;6P) = {(X \P;G): G ez,]f}u[ Co X5 épyyi Py

i<w j<w, j61
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We sa that [P; (P;)i27] satisfies {¢ in (X;¢) if
V(C;G) € Ce(X; 6, P) (GF 0 == CNGZ 0):

Claim 4.10. Let0< »<!,. Ifa, 2({,) set with presentation [P; (Py)wr] satisfies {¢ in
(X;¢) then {P;¢p} satisfies the conditions of Theorem 4.7, so in particular {P;ép} is a

! 2((',) topological Hurewicz test pair.

Pro of. We prove the statement by induction on ». For » = 1, {; meansthat P
is ¢-nowhere densein X, that is {P;¢p} is a ] 9(¢) topological Hurewicz test pair by
Theorem 4.7. Supposenow that the statemert holds for # < » and let #; — ». By {¢,
X\P= SKW P is ¢p-densein X and [P (Pi 1)1, ] satises {y, in the Polish space

W
(X;

j<w, j6i &) We have

A !
< = . — - . .
r = iy ~ ) ’
J<w j<w, j8i Pi)
soby the induction hypothesis{P; ¢5} isa| gi (¢) topologicalHurewicztest pair. Thus
the conditions of Theorem4.7 are satis ed, Theorem4.7.2 canbe applied and we conclude

that {P;¢p}isa) g(g,) topological Hurewicz test pair.¥

We needthat if P livesin a product spacebut it is nontrivial only on one coordinate

then {. alsoconditions only on one coordinate.

Claim 4.11. Let 0 < » < 'y and let [P;(Pywr] be a | g(c',) set with presentation in
the Polish space (X;¢). Let (Y; ¥ be a Polish space and set Q = P x Y, Q; = P, xY
(t € T). Then [Q;(Qi)iw27] is a | 2((; X ¥) set with presentation and for every (C;G) €

Ce(X X Y;¢ x %Q), C is nontrivial only on the X coordinate.

Pro of. The statemen easily follows by induction on ».¥

The next claim givesthat {, remainstrue if the initial topology gets coarser.
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Claim 4.12. Let ¢° be a Polish topology on X refining ¢ If for some 0< »< !, a| 2(&,)

set with presentation [P; (Py) 1] satisfies {¢ in (X; &Y then it satisfies {¢ in (X;¢) as well.

Pro of. We prove by induction on » that C¢(X; ¢ P) C Ce(X;¢%P) (0 < » < 1),
From this the statemert follows.

For » = 1 we have ¢ C ¢°and soCi(X;¢;P) C Ci(X;¢%P). Supposenow that the
statemert holdsfor # < » andlet #; — ». Since¢, C ¢(°wealsohave ¢5 C ¢%, épg, C (;,2(i>

(i<!)so

{(X\P;G):Ge¢sl C{X\P;G): Ge )

! A !

. . . . - .0 .
X; érg Py S Gy X, épy,s Pl
j<w, j6i j<w, j6i

and by the induction hypothesis,
A

Cy;

This provesCe(X; ¢, P) C Ce(X; ¢% P) and completesthe proof.¥

From now on in this section we work to prove the main lemma of the extension of
Theorem 3.1Q0 The technique of the proof is to exploit the low classHurewicz test sets

appearingin the construction of a | 2((;) test set. For this we needsomemore topologies.
De nition 4.13. Let 0 < »< !, and let [P; (P, 7] be a | g(g,) set with presenation
which satises {¢ in (X;¢). We de ne the topologies

e(N) =" i,V ép, (n<t):

in n<i<w
Corollary 4.14. Let 0 < » < 1, # — » and let [P;(Py)w2r] be a | 2((,) set with pre-
sentation which satisfies {¢ in (X;¢). With the notation of Definition 4.13, {P(,y; ép(N)}
satisfies the conditions of Theorem 4.7, thus it is a | gn (¢) topological Hurewicz test pair.

We have

(05 =" ¢5
1<w

and ¢p(N+ 1)< = ¢p(n) (n< 1),
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Pro of. Since[P; (P:):27] satises {¢, [P); (Pn- )27 )] satises {y, in the Polish space

W ) - . .
(X; i<w, i6i Ry >). Then by Claim 4.12, [P(,,y; (P, t)tZT(n)] satises {», in the Polish space
A !
X; épy Vo C-’]§(i)
i<n n<i<w
We have
()= oy V7 ol Vo
i<n n<i<w

soby Claim 4.10 {P,; ¢p(n)} satises the conditions of Theorem4.7, soit isa | § (¢)
topological Hurewicz test pair. Similarly,
M+ )™=¢p VvV i,V &y, = e (n< )
i<n+l n+l <i<w
and
(R N T
0<i<w i<w

which completesthe proof.¥

The next lemmais an application of our newly found Hurewicz test sets.

Lemma 4.15. Let 2 < » < |1 be such that we have » = »°+ 1 where » = »@+ 1 s
a successor. Let [P;(Py)wr] be a | 2((,) set with presentation which satisfies {¢. Fiz an
n<!. IfAisa §gm(¢',) set and A is ¢p(N)-meager in a é¢p(N)-open set G then A is also

ép(m)-meager in G (n <m<1).

Pro of. If Gis ¢p(n)-openthenit is ¢p(M)-open(n < m < !) soit is enoughto prove
that A is ¢p(n + 1)-meagerin G; from this the statemert follows by induction.

By Corollary 4.14we havethat {P,.1); ¢p(n+1)}isa| go(g,) topologicalHurewicztest
pair and ¢p(n + 1)< = ¢p(n). Soby Corollary 4.83 our A cannot be of ¢»(n + 1)-second

categoryin G. This completesthe proof.¥
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The crucial point in the proof of Theorem 3.10 was the fact the a | 9(¢) set of st
category is nowhere densewhatever is the underlying Polish topology. This is not true
for | 9(¢) setswhen3 < # < ! ; soin order to avoid them we have to reducecomplicated

setsto | 9(¢) sets. This is the motivation of the following concept.

De nition 4.16. Let T C! <“ beatree. We sa that a subtreeT°C T is even-complete
if

a

©
teTS |tjodd == |y iti<! NT%°= {t} &

{Tii<!INnTHP& {t7i:i<!INnTCTY

and TY%is maximal with respect to this property.
If T°C T is an even complete subtree, t € T°\ T(TY9 with |t| eventhen t*T € TO

denotesthe unique extensionof t with |t*T| = |t| + 1.

Lemma 4.17. For some 0< »< 14 let [P;(Ps27] be a | 2((;) set with presentation. If

TOC T is an even-complete subtree and X € P, (t € T(TY) then x € P.

Pro of. We prove the statemert by induction on ». For » = 1 and » = 2 the only
even-completesubtreeof T is T°= {)} that is x € P. = P, asstated. Supposenow that
3 < » and the statemert holds for # < ». By maximality we have T°% (), hencethere is
auniquei < ! sud that (i) € T% But T? ; is an even-completesubtreeof T, ; (j < !)
so by the induction hypothesisx € P,_; (j < !). That is x € Py and sox € P, which

completesthe proof.¥

Now we can prove the main result of the section.

Claim 4.18. Let 1 < » < !4 be such that we have » = »°+ 1 where » = »®+ 1 is a

successor. Let [P; (Py)w2r] be a | g((,) set with presentation which satisfies {¢. If A™ is a

S
| 2() set such that A" NPy =0 (n< 1) then P\ ~ _ A" F 0.
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Pro of. Fix a presettation [A"; (A})pm](n<!). Takemaps™;:! —! and 5:! —
I <« sudch that
o [
:(1; 2):!—> {n}xT"

Is a bijection satisfying -

(4.2) tteTh tCt® == "Ity < 1Yt (n< 1)
and

(4.3) “1(n) <max{O;n—1} (n< !):

We construct inductively a basic ¢p(n)-opensetG,, (n < !') and an even-complete

subtreeF™ C T" (n < 1) sud that

(4.4) Cly ()(Gpi1) €G, (< 1),

(4.5) G,NPu=0(n<1!)

(4.6) G, NA"™is ¢p(n)-meager(n < !);

(4.7)  if "5(n) € FM\ Z(FmM) and | ,(n)| is even, then

n1(n) e _ i Y
G, ﬂAn2(n)+F,1<n)_i is ¢p(N)-meager(n;i < !);

(4.8)  if “5(n) € T(F™™) then G, C X \ A" (n<1):

n2(n)

Since the topology ¢5 is ner than ¢p(n) (n < 1), ¢l (»(Graa) € G, implies that

T T
cl<(Gu1) CGu (n<!), sowehavethat ,_ G,7 0by(44and ,_ G, CP by

n n

(4.5. By Lemma4.17, (4.8) gives

\ [
G,CP\ A"

n<w nw
In the following construction we will successigly grow the treesF ", soa node can be

terminal after someintermediate step but not in the nal tree. To be concrete,we will
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grow F™ at () in the n'* step or newer, while if s € F™ for s € T\ {0} with “(m) = (n; s)
then we will grow F™ at s in the m** step or never. We will declarewhen a tree doesnot

grow any more from a node, sud that this node remainsterminal.

Forn = 0, by (4.2 and (4.3) we have” (0) = (0; ). To nd our G, obsenethat X \ A°
is a §2,(¢',) set cortaining Py. By Corollary 4.14 {P();¢(0)} satis es the conditions of
Theorem4.7, in particular it isa; g/(g,) topologicalHurewicztest pair. By Theorem4.7.1,
Py and henceX \ A? is ¢p(0)<-residual, by Corollary 4.82, X \ A° is of ¢p(0)-second

category that is A° is ¢»(0)-meagerin somenonempty basic ¢»(0)-open set G.

-
If A%is | 5(¢) with 3<# < !;thenwehave A°= X \ A, sofor someko < !

and nonempty basic ¢»(0)-openset G°C G we have that X \ Af, , is ¢p(0)-meagerin G°
Put ki € FO (i < !'). Then (4.7) holds for n = 0 and (4.8 doesnot apply. SincePy,
is ¢»(0)-nowhere densewe can passto somebasic ¢»(0)-open subsetGy C G° sud that

Go NP = 0; so(4.54.8) aresatised for n = 0.

Else we have that A% is | 9(¢) or | 9(¢), that is A is ¢p(0)-nowhere densein G. In
this casechooseGy C G \ (P U A%), put § € F° and F° doesnot grow any more, that

is ",(0) = 0 € T(F°). Now (4.7) doesnot apply; sowe again have (4.5-4.8) for n = 0.

Supposethat G,, (n < N) is already de ned sud that (4.54.8) hold for n < N and
(4.4 holdsfor n < N — 1; we nd our Gy. Again, X \ AV is a §g/((‘,) set cortaining
Pvy. By Corollary 4.14 {Py);¢(N)} satises the conditions of Theorem 4.7, it is a
| g,(g,) topological Hurewicz test pair, ¢p(N)< = ¢p(N — 1), S0 Gy, 1 is ép(N)<-open.
By Theorem4.7.1, Py and henceX \ A" is ¢p(N)<-residualin Gy, 1, soby Corollary
4.82, X \ AV is of ¢p(N)-secondcategoryin Gy, 1, that is AV is ¢p(N)-meagerin some

nonempty basic¢p(N)-opensetG C Gy ;.

N ; 1 O¢; 1 0¢; i i N — T N
If AV isnota,; j(¢) ora; 3(¢) setwith presenation then we have A icw X \AG)-

Sofor someky < ! and nonempty basic¢»(N)-openset G° C G we have that X \A&N)is



52 CHAPTER 4. TOPOLOGICAL HUREWICZ TEST PAIRS

ép(N)-meager on GO If AN is a I19(¢) or a I19(¢) set with presentation then set G°= G.

Since P(yy is ¢p(N)-nowhere dense, we can pass to some basic ¢p(N )-open subset
G® C Gsuch that G®n Pivy = 0 and clTp(N)(G(D) C Gy; 1. We put kyi e FV (i < 1),

then (4.4-4.6) hold for every basic ¢p(N)-open set Gy C G®.

If "5(N) e T(FnM) then set Gy = G® If | 2(N)]| is odd then neither (4.7) nor (4.8)
apply so the inductive step is complete. If |"2(N)| is even then (4.8) does not apply so
it remains to show (4.7). If "2(N) = ) then after the "1(N )" step of the construction
we had that A is neither a I19(¢) nor a II9(¢) set with presentation, 2 < » and
G, (v N Aﬁ(:y)l(m_i is ¢p("1(N))-meager (i < !). By (4.3) we have that "1(N) < N.

Since AT71+(FN)1<N>_ s %% (¢) (i <!), Lemma 4.15 gives that A?L(FN)I(N)_ s ép(N)-meager

in G, (n) hence also in Gy, as required.

If "5(N) & T(FmM) |"5(N)] is even but “2(N) # @ then we show that “(N) will
never be a node of F)_ TLet u be the terminal node of F™®) on the branch of “5(N)
in TV By (4.2) there is an m < N such that “1(m) = "1(N) and “(m) = u. After the
mt" step of the construction U remained a terminal node of F() that is F(") never
grows from U so “2(N) will never be a node of F"™  So again neither (4.7) nor (4.8)

apply and the inductive step is complete.
If "2(N) € T(FmM) then we do the following. Let m < ! be such that "1(m) = "1(N)
and “2(M) = "2(N)|jnvj; 2- By (4.2) we have m < N. Since "2(N) # 0, A" is neither

a T19(¢) nor a T19(¢) set with presentation and 2 < ». Also, A" is a %2 (¢) set. We had

n2(N)
(4.7) in the m' step of the construction so by Lemma 4.15, G® C G,,, implies that AZ;E%;
is ¢p(N)-meager in G® If AZ;E% is a II9(¢) or a II9(¢) set then it is actually ¢p(N)-

m(N)
n2(N) "

We do not grow F™™ from the node “»(N), so (4.7) does not apply and (4.8) holds.

nowhere dense in G®so we can find a nonempty basic ¢p(N )-open set Gy C GP\ A

T
o) _ . (N) (N)
If AZ;(N) 15 Hg(c) for some 3 < # < »° then since AZ;(N) = X \AZ;(N)_ ;> for
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some |y < ! and nonempty basic ¢p(N )-open set Gy € G® we have that X \AZ;E%;_ I

is ¢p(N)-meager on Gy. We put “»(N)7Iyi € Fm) (i < 1) then (4.7) holds and (4.8)

does not apply. This completes the recursive step and the proof.¥

4.3 A moment of being concrete

In order to proceed we need to show at least one concrete Hg((,) topological Hurewicz test

pair. We do this as was done in [15].

De nition  4.19. We set (Ci;éc,) = (Ciép), P1 = {x € Ci:¥m € ! (x(m) = 1)},
T1 = {0}, P! =Py and r; = ! . Suppose that the spaces (Cy; ¢y, ), the II3(¢c, ) sets with

presentation [Py; (PY)i21,] and the ordinal ty are defined for every # < ». Then let

Y Y
CE = Cﬂl’ .w’» - C.C’#i 1
<w <w
(4.9) Pe={xeCs:Vi<! (x(i;:) € Cy, \ Py)};
(4.10) Te={n"t:teTy,; n<!}
Y Y
4.11 PS¢ .= Cy x P’ x Cy (t€Ty;n<!
n-t i t i n
i<n n<i<w
and
X
T = Ty, -
<w

Claim 4.20. Let 0 < » < 11 and #; — ». We have C¢ = 2". The Hg((,) set with pre-

sentation [Pe; (P} )iar,] satisfies {¢; in particular {Pe; ép,} is a I12(¢) topological Hurewicz
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test pair. We have ¢5 = =, ép,. and ép, = é5 [{Ugn: N < 1} (1< »< 14) where
Y Y
(4'12> UE,n = (Cﬂi \Pﬁi) X Py, X C79i -
<n n<i<w
Y
- CgiXC&X Cgi:C§(1<»<!1;n<!):

<n n<iw
Pro of. We prove the statements by induction on » For » = 1, C = 2¥ P; is a
single point so it is nowhere dense, as stated. Let now 1 < » < ! ; and suppose that the

statements are true for # < ». Then

Y Y

Com Cy— 2% —2 et — o5
i<w 1<w
By definition,
_ Y
p, = C',pg) = CPy, s
1<w 1<w

as stated.
Let now (C;G) € C¢(Ceiéc,;Pe). f C = X \ P and G € ¢5 is nonempty then G
is nontrivial only on finitely many coordinates so it intersects X \ P = .__ Pé). It

W ,
(C;G) € Co(Cs; o jsi épr ;Pé)) then by Claim 4.11, C is nontrivial only on the i
’ )

coordinate and G = icw G; where G; = Cy,

. except for finitely many j’s, G; is basic

épgy-open (j € \ {i}) while G; is basic éo, -open. Since [Py, ; (Pt)tZT#i] satisfies {y, by
the induction hypothesis, we have Pr;(C) N Pr;(G) # 0, which implies C NG # 0. So
[Pe; (Pf)ia,] indeed satisfies {.
: T .
Finally we have P(gn) N en(Ce\ Pé)) = U, so by definition ¢p, = ¢5 [{Uen: n < ! }].
This completes the proof.¥

We point out a property of this construction.

Lemma 4.21. Let G C C¢ be a nonempty basic ép,-open set. Then int < (cl< (G)) # 0
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Pro of. If G is basic ¢5-open then by regularity we have int < (cl< (G)) = G # 0: So

let G be proper basic ¢p,-open, say G = G°N Ug,, where G%is ¢ép-open and n <! Since

Uen is ¢p-dense in =, Cy x Py, x ~ _,_ Cy, we have
A !
Y Y
G°N Cy, x Py, x Cy Cints (cls (G))
<n n<i<w 7 7

so int,< (cl< (G)) # 0, as stated ¥
» 3
We close this section with the proof of Theorem 1.6.

Pro of of Theorem 1.6. First we prove 1. and 2. in the » = 2 case while this is
exceptional in Theorem 1.2. Then we show 1. and 2. for 3 < » < ! ; and finally we treat
the extension for every 2 < »< ! ;.

So let » = 2. We set

Uy ={x€2°:¥n>N (x(n)=0)} (N <)

A !
- _ [
T ={(): i<t} PRy =Ug; (i< 1), PP=27\ Uz n

N<w

Then the topology ¢py is the refinement of ¢, by turning each point of the finite sets Ug N
(N < 1) into an open set. Clearly, PJ is the complement of a dense countable subset in
(295 ¢0), so in particular P2 is TI9(¢c,) and ¢o,-residual. As a complement of the dense
épj-open set Ug N> We also have that P20 is ¢p;-nowhere dense.

Let A C X be ¥3(¢) and take a continuous one-to-one mapping ' : (2*; ¢y ) — (X;¢é)
such that ' 1 }(A) N PJ is of ¢py|p-second category in P2 Then " P 1(A) C (2 ¢c,) is
39(éey) and ' T H(A)NPPs of ¢py| py -second category; thus ' T 1(A) is of ¢, -second category,
as well. Since a $39(¢c, ) set in (2¢; ¢, ) is of second category only if its interior is nonempty,
' 1 1(A) contains a nonempty ¢o,-open set so ' 1 H(A) N UJy # 0 for some N < !'. Then

' 11(A), having nonempty interior, is of ¢p;-second category.
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If A is not X9(¢), we apply Theorem 1.2 for Ag = A, A; = X \ A. These sets
cannot be separated by a Eg((,)-set, so since PJ is the complement of a countable dense
subset of (2¢; ¢¢, ), there is a continuous one-to-one mapping ' : 2 — X with ' (PJ) C A,
' (29 \ P9) € X \ A. So as we have seen above, ' I 1(A) = P is indeed ¢p;-meager.

We turn to the » > 3 case. The Polish space (Cg; ¢c,) is obviously homeomorphic
to (C1;écy) (see e.g. [4], Theorem 7.4 on page 35). We show that {P¢; ¢p,} fulfills the
requirements for every 3 < »< 1.

Let A C X be Zg(g,) for some » < !; and take a continuous one-to-one mapping
' : C¢ — X such that ' ' 2(A) N P¢ is of ¢p, | p,-second category in P¢. Then ' i 1(A) C C¢
is Y2(ée,) and ' T1(A) N Pe is ¢ép | p,-residual in G N Pe for some basic open set G. So
according to Claim 4.6, ' P 2(A) is of ¢p,-second category, as required.

Suppose now that A is not Eg(é). We apply Theorem 1.2 for Ag = A, A; = X \ A.
These sets cannot be separated by a X2(¢)-set, so since P is TI2(¢g,) but not X2(¢, ),
there is a continuous one-to-one mapping ' : C¢ — X with' (P¢) CA," (29\P) C X \A.
So by Definition 4.2.3, ' i 1(A) = P¢ is indeed ¢p,-meager.

Finally suppose that for some cardinal , < 2@ in our model the the union of a

number of meager sets is meager in Polish spaces. Let A; (i < ,) be X2(¢) and

S ,
A = A; be Borel. Since ' i 1(A) N P; is of ¢p|p,-second category in Pg, by our

i<
assumption ' 1(A;) N Pg is also of second category in (Pg; ¢p,|p,) for some i < . So by

the first statement, ' 1 1(A;) C ' 1 1(A) is of ¢p,-second category. This finishes the proof.¥

4.4 Constructible coverings

In this section we give the extension of Theorem 3.10.

Theorem 4.22. Let 1 < » < 11 be such that » = »+ 1 where » is a successor. Let

;7 ¢) be an uncountable Polish space an - e a proper é) set. en there 1s a
X b ble Polish dP CX b Hg Th h ]
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mapping ®: SQ(P) — P(P) such that B C ®(B) and
[ . .
P\ BB £0 (BiB e SAP); i< 1)
1<w
Pro of. Fix our » First we construct ® = &, for (X;¢) = (C¢; ¢¢,) and P = P. For

S
every B € §(Pg) fix a decomposition B = —,_ B, where B; is 9 (¢c,) (j <!). Since

»

the class ITY, (¢c,) has the separation property (see e.g. [4], (22.16) Theorem; and if » = 2

note that Cy is zero dimensional) we can take a sequence (A,(B))n<, € A2 (¢e,) such

that
[ [
(4.13) B:CA,B)CC\ P (n<!
Set
Voo
®(B) = A,(B)

m<wm: n<w

It is clear that ®¢(B) is T12(¢g, ) and (4.13) implies B C ®¢(B) C Pe. It remains to show
that if B’ € S(P¢) with its fixed decomposition B = Sj<w B! (i < !) then we can find
a point in P\ SKW De(BY).

We apply Claim 4.18 for A" = Si_ LA, (BY) (n< ). We obtain that P \Sn<w A™ £ ().

Since

Pe(B") C [ An(Bi)g[ A"

i n<w n<w

S .
we have P\ ,_ ®¢(B") # (), which completes the proof of the special case.
If (X;¢), P are arbitrary, by Theorem 1.2 we can take a continuous one-to-one map

' (Ceéo,) — (X5 ¢) such that ' 1 H(P) = Pe. For B € S2(P) let

®(B) = (P\" (P))U" (2 " }(B))):

Since homeomorphism preserves the Borel class of sets this definition makes sense and

fulfills the requirements.¥
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With a more careful approach one could prove Theorem 4.22 for » = »°+ 1 where »°is

a limit ordinal. We think that this is the maximum one can do in ZFC, that is Theorem
4.22 is consistently false when » is a limit ordinal. It seems that proving Theorem 4.22
for such a » is equivalent with an affirmative answer to the question of A. Miller for Hg
generated ideals, the consistency of which is not established at the moment. We return

to this problem in Chapter 8.



Chapter 5

Testing the di®erence hierarc hy

In this chapter we show that for 0 < » < 3 a proper Dn(Eg) set cannot be well approx-
imated by a Dn/(Eg) set for “%< “. As usual in this paper, approximation is measured
by Baire category in a suitable topology. The interesting feature of this is that such a
testing is possible even if Dn(Eg) is not closed under taking countable union; this is why
the result we obtain is weaker than what we have got used to for the Borel hierarchy.

The reasons for restricting » are twofold. The more important one is that argument
which follows is not applicable for » =" =1 . The less important, aesthetic reason is that
for » < 3 all the ideas which are new comparing to the previous chapters appear without
serious technicalities. We will discuss possible generalizations after the proof of Claim 5.5
and in Chapter 8.

We start with the definition of the relevant spaces. From now on in this section let

0<»<3and0<’ <.

De nition  5.1. Take sequences (C¢(®); ¢, () and {Pe(®); épy )} (®< !1) of copies of
the Polish space (C¢; ¢, ) and the IT(¢c, ) topological Hurewicz test pair {Pg; ¢p, } defined

»

in Definition 4.19. Let

99
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Y Y
Cen = Ce(®); éo, = o) (0< 7 <1y
a<n a<n
The difference operator will act on
A !
[ Y N 3 Y ]
Ue (@) = CL) X (CONPLN X Cel®) (@< <1y
o <8 B<y<n
We set
Y Y
Veo(® = Pe(*) x (C(® \Pe(®) x  C(®) (@< < 1),
< a<y<n
] Y
V£77< )— P£(°>!
<n
Y Y )
Wen(®) = Pe(®) x Ce(®) (@< < 1y):
T<a ar y<n

Now for every 0 <~ < I let

3 .
[
Pey =D, (Ugyy(®)) = {V;,(®:®<"; ®is odd < " is even};

a<n

[ o .
Qe =Cep\Pen = {Ve,(®): ®<"; ®is odd < " is odd}

and define the topologies

< Y < < Y < A 4
bn= @ €a® = &g X i (@< < 1y);
a<T] ’Y<Oz a- y<n

&y = dﬁfn(o)[{wfvn(@)): ®<"

It is clear that U, (®) is $2(¢g,. ) (®< ” < '), Observe that Pe,, Qgy (0< ™ < 1)
are ¢¢,-open sets and that the sets Ve, (®) (® < ) are pairwise disjoint. Notice that
We, (") = Ve, (") and ¢, = ¢5,(7) (0 <7 < 1), The testing theorem can be stated as

follows.
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Theorem 5.2. Let0< » <3 and 0 <~ < ! be fizred and consider a Dn<22(('c»;, )) set
A C C¢,. Let G be ¢, -open; and if » =1 suppose that W1, (") € G in addition. Then if

AN Qg is éep-residual in G N Qg then AN Pg,, is of én-second category in G M Pe,y,.
We formulate a corollary of this theorem.
Corollary 5.3. Let0< »<3 and0< " <! be fixed.

1. If A C Ce¢y is a Dy(X2(ée,. ) set and Qe C© A then AN Pe, is of éey-second

category.

2. If A C Cepis a Ijn(Eg((;C»;, )) set and P, C A then A N Qg is of ¢en-second

category.

Pro of. The first statement is the special G = C, case of Theorem 5.2, while the
second follows from Theorem 5.2 applied to A = C, \A and G = C¢ . ¥

Corollary 5.3 has already the feature of dichotomy we are looking for: it allows to
derive from the information that a set A is simply structured the conclusion that either
it does not contain Qg,, or it is big in category in Cg¢, \ Q¢,,, and vice versa.

The proof of Theorem 5.2 is based on Claim 5.5 stating that sets like W ,,(" ) behave
as topological Hurewicz test sets with the topology ¢ ,. Before stating and proving it we

need the usual lemma on the coincidence of topologies.

Lemma 5.4. Let 0< <! 1 and ® <™ be fized. Then
1. for» =1, if G is ¢f,-open and Wy, (") € G then GV, (°) #0 (° <7);
2. for »=2;3, V¢ ,,(®) is a ‘.f<,77(° )-dense set (®<° <7);

3. for »=2;3, W, (®) is a ¢, (°)-dense TI9(¢s,) set (®<° <7);

4. if G is basic ¢, (0)-open and G N Vg, (®) # O then G is basic ¢, (°)-open (° < ®);
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5. if G is basic ¢gy-open and G N Ve, (®) # () then there is a basic ¢, (®)-open set G°
such that G N Vg ,(®) = G°N V¢, (®);

6. the topologies ¢ plv,. () and ¢ (°)|v: () (° < ®) coincide;
7. if G is basic ¢g,(0)-open and GNWe,(®) # () then G is basic ¢, (°)-open (° < ®);

8. if G is basic ¢ey-open and GNWe (") # 0 then there is a basic ¢g, -open set G° such
that Goﬁ WEJ?(' ) =GnN W&TI(' ),‘

9. the topologies égnlw,. (y and é5,(°)w,- @y (° <) coincide.

Pro of. Since ¢1, = oy, , 1is obvious. By Definition 4.19, both P¢(") and C¢ (™ )\Pe()
are ¢p g -dense (< ®) sets, so 2 follows. By Theorem 4.7.1 and Claim 4.5.1, P¢(") is a
ép, (5 Tesidual I15(¢5 (7)) set (T < ®), so we have 3.

For 4, let G be basic ¢, (0)-open with G N Ve, (®) # 0. If for some ° < ®, Pre. (G)
is proper basic ¢p,(,)-open then Pre. (G) NP¢(°) = 0 hence G N Vg, (®) = ), which is not
the case. So Prc. (G) is ¢p (,)-open (° < ®), thus 4 holds.

For 5, let G be basic ¢ ,-open, say G = G°N W, (") where G° is basic ¢, (0)-
open and < 7, such that G NV, (®) # (. Since V,(®) C W,(°) (° < ®) and
Ve, (®) MW,y (°) = 0 (®< ° <), we have GV, (®) = GONV,,,(®) # 0. Thus by 4, G°
is basic ¢, (®)-open so 5 holds.

Since ¢, (°) (° < ®) is finer than ¢, (®) and coarser than ¢ ,, 5 immediately gives 6.

For 7, observe that W ,,(®) = Ve, (). Thus GNVeg # 0 for some ® <™ <7,

a B n
So by 4, G is basic ¢, (°)-open (° <), as required.

For 8, let G be a basic ¢¢,-open set, say G = GNW, (") where G°is basic ¢, (0)-open
and <7, and suppose that GN W, (") # 0. From W, (") € W¢,(°) (° <7) we get

GON W, (") = GNWe, (") # 0 thus from 7 we have that G°is ¢, -open, as stated.
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o

< 7) is finer than é€<n and coarser than ¢¢,, 9 immediately follows

Since ¢, (%) (

from 8, so the proof is complete.¥

Claim 5.5. Let 0 < = < 11, (Y;¥ be an arbitrary nonempty Polish space and G C
Cen XY be a nonempty ¢, X ¥xopen set, such that if » =1 then GN(Wy, (") x Y) # 0 in
addition. If A C Cepx Y is X2(éo,. X ¥3 and AN (Wey (") X Y ) is of (éem X ¥ I, ey -
second category in G N (We, (") x Y) then there is a nonempty basic ¢€<77 X Yxopen set
Go C G such that A is ¢,y X Yaresidual in Gg and Go N (We,, (") x Y) # 0.

Pro of. Before starting the proof, observe that for » = 2;3 by Lemma 5.4.3, G N
(We (") x Y) # 0 for every nonempty ¢, x ¥sopen set G.

For » = 1 we have that C"1<,n = {0y and that A is ¢o,. X ¥aopen so every basic
éoy- X Yaopen set Gg can be chosen which satisfies Go € GNA and Wq,(") € Pre,. (Go).

Let now » = 2 or » = 3. Since A is (¢, x %), there is a I, 4 (ée, X %3 set
B C A and a nonempty basic ¢, X ¥sopen set G* C G such that G* N (We, (") x Y) # 0
and B is (¢e X ¥ |w,. (e y-residual in G* N (We, (") x Y). By Lemma 5.4.8 there is a
basic ¢, X 3/Atopen Set Go for which Go N (We,, (") xY) =G* N (We,(") x Y). Then by
Lemma 5.4.9, B is (f X ?/4 lw,.- (me y-residual in Go N (We,(") x Y). We show that B
is ¢¢ .,y X Yaresidual in Go; then by B C A, Gy fulfills the requirements.

For » = 2 we have ¢5, = ¢5,(") = éoy - So by Lemma 5.4.9,
. 3 l < (7 3, ¢ l . 3 .
(éan X A lwor ey = &y ) X ¥alwor ey = éone X Yo [woy ey
. ¢ o .
Hence B is ¢y X % |wy. (e y-residual in Go N (Wo,, (") x Y). By Lemma 5.4.3 we have
that Wo, (") x Y is ¢o,. X Yaresidual in X X Y so the II9(¢r,. x ¥ set B contains G.
This proves the » = 2 case.
For » = 3 suppose that B is not ¢z, X ¥sresidual in Gg. Since Cg,, \ B is X3(¢0, X ¥4,

there is some nonempty basic ¢z, X Ysopen set G°C Gg and I13(¢o,. x %) set F C Cg,,\B
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such that F is ¢z, x Yaresidual in G that is G°C F which gives CIT;, £.(GY) CF. We can
assume that G%is not ¢4, (0)-open, so G®= (W3, (®) x Y )N G® for some ® <~ where G®
is basic ¢g,,(0) x ¥sopen; thus by Lemma 5.4.7, GPis ¢4, (®) x ¥sopen. Then for some finite
set | C 7, Proy)(GY) is basic ipymyopen (° €1 N®), Prey) (G®) is basic ¢py()-open
(° €1\ ®) and Prgy,)(G® =C3(°) (° € "\ I). By Lemma 5.4.3 we have

(51) G(Dg CL_;, ()£ a(GO) - C]'T-;' £0'<GO):

By Lemma 4.21,

lntT;?,(" )

(017<3(0)(Pr03(7)(G(D)) #0(°el):

[

So by the regularity of Pry(G® in Y,

intTg:f £ O'(CIT;;» £ U(G(D)) % @

which by (5.1) gives
H = intT;, EO'(CIT;;' EO(GO)) 7é ®:

Since G is regular ¢g;, x Yaopen,

H C intT;;, EJ(CI (Go)) = Gy,

<
T3 £o

[
and from CIT;,EU(GO) C F we have H C F. Since B is ¢, X % |y, (e y-residual in

Go N (W3, (") x Y) and by Lemma 5.4.3, W3, (") is ¢g,-residual in Cg,, B is ¢g, x %

residual in Gg. But H C Gg \ B, a contradiction.¥

In our present approach the validity of this claim limits our capacities in testing the
difference hierarchy. It is fairly simple to see that the proof of the lemma can be repeated
for3< »<1,0<" <!y;itis an imitation of the proof of Theorem 4.7 for the IT(¢c,,. )
set We,,. Also, if © < | then the statement of the lemma follows for every 0 < » < 14

from the fact that {P¢; ¢p, } is a topological Hurewicz test pair, using Kuratowski-Ulam
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Theorem as in the proof of Claim 4.5.5. The handicap of this approach is that Claim 5.5
is false for » =" =1 . This failure is the main reason why we restrict our attention to
» < 3.

In the proof of Theorem 5.2 the product structure of Definition 5.1 must be exploited.
So we prove it in the following more general form. When Y is a single point, we get back

Theorem 5.2.

Theorem 5.6. Let 0 < » < 3 and 0 < ~ < 1y be fized. Let (Y;¥) be an arbitrary
nonempty Polish space and consider a Dy (32(¢c,. x¥3) set A C Ceyx Y. Let G C Ce XY
be ¢, < Yxopen, and for » =1 suppose that G N (W1, (") X Y) # 0 in addition. Then if
AN(Qey X Y) is égp x Yaresidual in GN(Qg,, X Y) then AN(Pe,y X Y) is of ¢y X Yasecond

category in G N (P, X Y).

Pro of. We prove the statement by induction on ~. Let first ©~ = 1, then A is a
3¢, x ¥4 By Claim 4.20, Claim 4.10 and Claim 4.5.5, {P¢ X Y; ¢p, X ¥4 is a topological
Hurewicz test pair in C¢1 X Y, so the statement follows from Claim 4.6.

Suppose now that 1 < ~ < !; and that the statement holds for "< “. Let A =
D, ((Aa)acy) with X2(ée,. x ¥ sets A, (®< ) satisfying Ag C A, ( <®< 7). We
have that We,,(") x Y C Q¢ X Y is ¢,y X Ys0open. By assumption for » = 1 and by
Lemma 5.4.3 for » = 2;3, GNW,,(") x Y # 0 so A is of ¢, x Yasecond category in
GNWe¢, (") x Y. Thus there is a minimal ® such that the parity of ® and ~ are different
and for some basic ¢, x ¥aopen set G* C G, A, of ¢, X ¥asecond category in the
nonempty G* N (We,) (") x Y). Then by Lemma 5.4.8 there is a ¢S, x ¥sopen set GPsuch
that G* N (We,, (") x Y) =GN (W, (") x Y) #£ 0.

We apply Claim 5.5 for A, and G% we obtain that for some nonempty basic ‘f<n X Ya
open set Go C G° A, is ¢, x Yaresidual in Gg, and G N (Wy, (") xY) # 0. So in

particular, A, is ¢, X Yaresidual in Go N (Ve (®) x Y), which is nonempty by Lemma
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5.4.1 if » = 1 and by Lemma 5.4.2 if » = 2;3. But the parity of ® and = differ, so
Ve, (®) x Y C P, x Y. That is if A, \ Sﬁm Ag is also of ¢, x ¥asecond category in
Go N (Ve,;(®) x Y) then we are done.

Suppose that this is not the case. Then there is a < ® and a basic ¢, X ¥+0open set
G C Go such that GgN (Ve,,(®) x Y) # 0 and Ag is ¢¢ ) X Yaresidual in G5N (Ve (®) x Y),
and the parity of  and ® differ, that is parity of and ~ coincide. By Lemma 5.4.5,
there is a basic ¢, (®) x ¥sopen set GJ such that G§N (Ve,(®) x Y) =GN (Ve,(®) x Y).
Since Gy is basic cé, X ¥zopen, we can and do assume that G C Gg. Then by Lemma
5.4.6, Ag is C€<n(®) x Yaresidual in GJN (Ve,(®) x Y). By passing to a subset if necessary,

we assume that Prg ) (GS) is proper ¢p, (®)-open, that is

(5.2) Pre,(0)(Gg) € Ce(®) \ Pe(®):
Set " = ®, A ! A !
5 Y Y
Y = Ce(®) xVY; %= iniy X%
a y<n o y<n

and G = GY. With this setting, using (5.2),
5 .

(5.3) GN We () xY =G5 (Ve,)(® xY)#D

and by Lemma 5.4.9,

(5.4)  (éen X Al (W (mEY) = Iéén XY | (W~ (mEY) =

- Iffm X I |y (Vor (@)EY) IQ<,17<®) X ¥4 |y (Vo (@EY)"
We apply Claim 5.5 in Cg¢ ,, ><3? for Ag, which by (5.3) and (5.4) is (¢e., X %) |W»;'~(77)£Y_

residual in the nonempty G N We (") x Y . We get that for3 some nonempty basic

ey X Yaopen set, Go C G, Ag is ¢, x Yaresidual in Go and Go N We (") x Y #§. In

particular, GoN Ve, (°) xY #0 (° <7) by Lemma 5.4.1 if » =1 and by Lemma 5.4.2

if »=2;3, and Ag is ¢, X Faresidual in Go N Ve (°) xY (° <7).
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Now Go C G is ¢y X 3g&open and Ve, (°) x Y is also ¢, x ¥%open (° < 7). So A

o

is ¢¢n X Yaresidual in Go N Ven(°) X Y for every ° <~ with parity different from the

parity of ~. By (5.2) and Gy C GJ,

Prc, () (Go) € Ce(®) \ Pe(®);

3

so we have GoN (Ve (°) X Y) =GoN Ve (°) x Y #0 (° <7). Then by Lemma 5.4.6,

i
(5:5) (e X Alan (v, mev) = &n0) X ¥ lay (v (mev) =

i ¢
- Cf<,17(0) X Ya |G’0\ (V»;' (ME Y) =
i o« =
= C{<,77(0) X Ya ’G’O\ (V»;f~(w)£ Y) = ((45777 X :%) |G'0\ (\/»;,.(7)£ Y) ( < )
3
We get that A is ¢, x Faresidual in Go N Ve, (°) x Y for every ° < 3'~ with parity
different from the parity of ™. Sinc3e Ag is also ¢, x Faresidual in Go N . Ven(°)x Y,

(° <7), this is possible only if Dg (A,) is ¢ X Yaresidual in Go N Ve (°) x Y

<8

for every ° <~ with parity different from the parity of ~.

Set = =,
A ! A !
Y - Y
i = Cg(o) X Y’ 3—/4: C.‘P»('Y) X 374
B y<a B y<a
3
A=D, (A'Y)'y < and G = GyNH # () where H is nontrivial only on the ~** coordinate

and Pr¢, (5 (H) is proper basic ¢p,g-open, i.e. Pre s (H) € Ce(T) \ Pe(7). Since Gy is
basic éf<ﬂ7 X Yaopen, it is ggﬂ(_) X ¥zopen and so G is basic ¢€<ﬁ x Yaopen. As above, we
have

3 ’ 3

GoN Ve, (°) XY =GoN Ve (o) xY #0(° <)
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so by Lemma 5.4.6,
3 . 3

(5.6)  éen x Y ‘QO\ (Vor (MEY) = één(0) x % |Q0\ (Vor (MEY) —

i
= &q(0) X a g\ (Ve (EY) =

IN

i o 1.
- an(o) X Ya |QO\ (V-(EY) — (C'é,v X ¥ |g0\ (Vi-(MET) ( _)-
3 ’ 3 ’

Since A =D, (A,) is ¢ X Yaresidual in Go N Ve, (°) x Y , we get that A is

<N

ey X Yaresidual in G N Ve, (°) x Y. f(gr every ° <~ with parity equal to the parity of

", That is, A is éem X Yaresidual ir% GnN Qgﬁ XY . So by th’se induction hypothesis A is

of ¢eyy X ¥asecond category in GN Pe, x Y . Since A=Dgs (A,) C A, this means

7<p
that A is of ¢, x ¥second category in P¢, x Y. We have

Vﬁ,g(o) XY =Ve,(°)xY (°<7)

so by Lemma 5.4.6,
3 4 3
i ¢
= &y(0) X% |y, ey =
i o 4 .
= ¢(0) X % [y, ey = (ben X A v, ey (° <)

Since and ~ have the same parity,
Y

Pey XY =P x Ce(°) xY =
B y<n
[

{Ve,(®): ®< ; ®isodd < iseven} C P, xV:

So A is of ¢, X Yasecond category in P¢, x Y, which completes the proof.¥

Possible further extensions of testing theorems will be discussed in Chapter 8.



Chapter 6

Z-convergent functions

It is a fact of life that the class of continuous real functions is not closed under pointwise
convergence: instead, we obtain a realization of the Baire-1 functions. On the other hand,
it is an easy exercise that the pointwise limit of a sequence of continuous functions with
length ! ;1 is necessarily continuous.

This problem and other properties of the pointwise convergence of transfinite sequences
of real functions has been first considered by W. Sierpinski [20]. In particular, he studied
which class of functions will be closed under such convergencies. Since most of the classes,
for example the class of Baire-» functions for » > 2, are not, T. Natkaniec [17] introduced
a stronger notion of pointwise convergence. We recall the precise setting in the following

definition.

De nition 6.1. Let, beacardinal, (X;¢) be a Polish space, (Y;d) be a separable metric
space and consider an ideal Z on | . We say that a sequence of functions f,: X — Y (®<

, ) Z-converges to the function f : X — Y in notation f, — f, if

{®<,:fax) #f(X)} €1
for every x € X.

69
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Similarly, we write f, —d f if for every " > 0 and X € X we have
{®<, . d(f (x);fo(X))>"} eT:

In case of the ordinary ! ; convergence, as used in [5] and [20], we have | = ! and
Z =[!41] ¢, that is the ideal of countable subsets of ! ;. However, our motivating theorem,
answering Problem 1 in [17] on page 490, is related to the particular case, when the ideal

contains the finite subsets of | 1, that is Z. = [! 1]<¥.

Theorem 6.2. Let (X;¢) be a Polish space, (Y;d) be a separable metric space, and for a
fized » < 11 consider a family f,: X — Y (®< 1) of Baire-» functions. Iff : X —'Y

is such that f —4 f, then f is Baire-».

We note here that the original question asked by T. Natkaniec referred to Z_-con-
vergence. However, it is easy to see that Z.-convergence implies {_-convergence, so the
result above is formally stronger than the required. The sufficiency of {'_ -convergence was
pointed out to the author by Petr Holicky.

As W. Sierpiriski showed (][20], Theorem 1 on page 133 and Theorem 2 on page 137),
for the class of continuous and Baire-1 functions Theorem 6.2 holds also for Z = [! 1] ¢
instead of Z.. On the other hand, it is independent for every 2 < » < | ; whether there
is a [! 1] “-convergent sequence of Baire-» functions whose limit function is Borel but not
Baire-» (observe that the {_-convergence implies the [! 1] “~convergence). The first part
of the following theorem has already been proved by W. Sierpinski ([20], Section 6, pages
139 and 140) and further discussed by P. Komjéth ([5], Theorem 3, page 499). Its second

part, related to Problem 3 in [17] on page 490, is a simple analogue of Theorem 6.2.

Theorem 6.3. Let (X;¢) be a Polish space, (Y;d) be a separable metric space.

1. (W. Sierpiniski, P. Komjath) Assuming CH , there ezists an [! 1] “-convergent se-

quence of real Baire-2 functions whose limit function is not Borel.
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2. Let , < 2@ be an infinite cardinal with cf(,) > ' and set J = [,|<*. For a fived
» < Iy, consider a family f,: X — Y (®< ) of Baire-» functions and a Borel
function f: X — Y. Iff, —q f and in our model the union of , meager sets is

meager in Polish spaces, then f is necessarily Baire-».

The assumption on the additivity of meager sets holds under MA(, ) (see e.g. [3],
Theorem 1.2 on page 505 or [16], Theorem on page 170). The convergence of transfinite
sequences of Baire-2 functions of length !, has also been investigated by P. Komjath
(see [5], Theorem 4 and Theorem 5 on page 500). It is consistent (with 2@ =1, and
MA(! 1)) that every real function can be obtained as such a limit. It is also consistent,
under more complicated assumptions, that the limit function is necessarily Baire-2. The
case when the underlying space X is not necessarily Polish but merely metric has been
considered in [2] and [19]. Transfinite convergence of derivatives is examined in [1] while
in [18] transfinite convergence of Baire-» functions if treated under various set theoretic
assumptions.

In order to establish the connection between function classes and sublevel sets we will

use the following classical result (see e.g. [4], Chapter II, Theorem 24.3 on page 190).

Theorem 6.4. Let (X;¢) be a Polish space, (Y;d) be a separable metric space. Then for
every 1 < »< 11, a function f : X — Y is Baire-» if and only if 1 1(U) C X s Egﬂ (¢)

for every open set U C Y.

In the metric space (Y;d), the open ball centered at X € Y with radius %zs denoted by
Ba(X; 4. After these preparations, Theorem 6.2 and Theorem 6.3.2 are simple corollaries

of Theorem 1.6.

Pro of of Theorem 6.2. By Theorem 1 on page 133 and Theorem 2 on page 137 of
[20], the statement holds for » < 1. So let 2 < » < ! ; be fixed and suppose that f —4 f

for a family f,: X — Y (®< ! ;) of Baire-» functions.
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Suppose that f is not Baire-». As the pointwise limit of the functions {f,: ® < ! },
f is clearly Borel, so by Theorem 6.4, there is an open ball B4(X;% C Y such that
fi1(Bg(x; %) is Borel but not ¥, (¢). Set

H() = 1 HBa0G Y= ")); Hal") = 1 (BabG %= "))

for every ®< ! 1 and 0 < " < % Note that by Theorem 6.4, H,(") is in ¥, (¢) for every
®<!ljand 0< " < ¥
Since H (0) is not %2, (¢), by Theorem 1.6.2 there is a continuous one-to-one map

" (2¥é0,) — (X ¢) such that
(l) ' (P€+1) g H (O), and
(i) " T1(H(0)) C 2 is of first category in the topology ¢p,, -

By (i), there is an "¢ > 0 such that " " *(H ("0)) N Pgs1 is of ép,,,|p,,,-second category.
Let J1(") denote that set of those indices ® < !y for which ' 1 *(H (")) is of ¢p,,,-second
category.

We prove that ! 1\ J1(") is finite for every " < "o. Suppose that this is not true and
take a countably infinite set JY") C !\ J1("). By the definition of {_— convergence,

" < "y implies that

a2 J/(g)

so we have that ' 1 {(HY")) N Pgq is of ¢p, -second category in Pgyq; that is, since

+1‘P»+1
HI") is Egﬂ (¢), by Theorem 1.6.1 " P 1(HY")) is of ¢p,,-second category. This is a
contradiction, since by the definition of J1("), " " H(HY")) is ¢p,,,-meager.

So J1(") is of cardinality ! ; for every " < "o. In particular, given that (2¥;¢p,,,) has

countable base, there is a ¢p . ,-open set U C 2¢ such that for a countably infinite set of

indices J® C J1("0=2) we have that ' I *(H,("0=2)) is ¢ép, ,,-residual in U whenever ® € J®,
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Hence for

\
HO=  Ha("0=2);

a2J"
"TI(H®) is also ¢p,,,-residual in U, so by (ii ) we can find a point X € H®\ H(0). Thus
fo (®<!,)is not {_-convergent since

J0C n®< La: d(f (Xo): Fa(Xo)) >

n O
20
2
is infinite; a contradiction. The proof is complete.¥

Pro of of Theorem 6.3.2. Again, for » < 1 the statement follows from the proofs of
Theorem 1 on page 133 and Theorem 2 on page 137 of [20] ; so let » > 2. Now f is Borel
by assumption; and the proof is the same as for Theorem 6.2, until the definition of J;.
Now we show that card (, \ J1(")) <, for every " < "q.

Suppose that this is not true and take a set JY") C , \ J1(") of cardinality , . By the

definition of ¢ — convergence, " < "o implies that

H (") SHY") = | Ha(");

a2.J'(e)

so we have that ' T 1(HY")) N Pgy is of ép,,, | p,,,-second category in Peyq ; that is, by the
extension of Theorem 1.6.1, since H") is the union of the , number of ¥2,; (¢) sets Hq (")
(®€39™)), " 1 HHY")) is of ¢ép,,,-second category. Now this contradicts the assumption
that the union of a, number of meager sets is meager in (2¥; ¢p, ., ), since by the definition
of J1("), " T1(Ha(") (®€ JY™)) is ¢ép,,,-meager.

We continue as above; J1(") is of cardinality , for every " < "o. In particular, given
that cf(, ) > ! and (2¥;¢p,,,) has countable base, there is a ¢p,,,-open set U C 2 such
that for a set of indices J® C J1("o=2) of cardinality , we have that ' I 1(H,("o=2)) is

ép,,,-residual in U whenever ® € J® Since in our model the intersection of a , number
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of ¢p,,,-residual sets is again ¢p  -residual, for

\
HO=  HL("0=2);
a2 J"

"TI(H®) is also ¢p,,,-residual in U, so by (ii ) we can find a point Xo € H®\ H(0). Again,

this contradicts the § -convergence. The proof is complete.¥



Chapter 7

Generalized separation and

reduction

It is well known that a pair of disjoint analytic sets can be separated by a Borel set. If
we need to estimate the Borel class of this separating set then Theorem 1.2 is very useful:
we only need to test the pair of analytic sets via injections of 2. Since analytic sets also
have the generalized separation property, that is for every sequence (A;);<, of analytic
sets with T i<wAi = 0 there is a sequence (B;);<,, of Borel sets such that A; CB; (i< !)

and . Bi =0, one can request a test for the complexity of the B,’s. We cannot refuse

i<
such a demand so we present test sets corresponding to this problem. If topologization
seems to be artificial for Theorem 1.2, here the topological feature of our Hurewicz test
sets will be essential, namely for the proof that testing generalized separation is possible;
this application is the main motivation of this section.

The concepts are similar that of [7]. On the other hand we do not follow the spirit of
[7], that is we do not define closed games, neither will be reducing maps be one-to-one.

We will have to refer to Borel determinacy, so in particular this proof is not effective. We

also restrict our attention to sequences of Borel sets; all these simplification to make the
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argument as short as possible for having a nice application of topological test sets.
First we examine the problem of generalized separation; generalized reduction will

follow by taking complements.

7.1 Witnessing generalized separation

We aim to prove the following theorem.

Theorem 7.1. For every0 < »< !4, there exists a Polish space (D¢; ép,) homeomorphic

to (C; ¢o) and A,y (ép,) sets Rg(n) € D¢ (n< 1) such that the following hold.

T
1. If B; C D¢ is a TIY(¢p,) set and Re(i) € B; (i< !) then ,_,B;#9.

2. If (X;¢) is a Polish space and (A;)i<, s a sequence of Borel sets in X such that
T
i<w Al = @ then

a) either there is a sequence (B;)ic,, of I12(¢) sets such that A; CB; (i < !) and
£
T
Bi = w?

<w

(b) or there is a continuous map ' : D¢ — X such that' (Re(i)) CA; (i<!).

Observe that if 2b holds then the map ' indeed shows that 2a fails: if (B;);<, a

T
sequence of TI9(¢) sets such that A; € B; € X (i < !') then 'i11(B;) # 0 follows

<w
T
from 1 using Re(i) €' 74(B;) (i <!),s0 ,_ B;# 0. So this theorem is of Hurewicz
type.

Before starting the construction we feel obliged to clarify why the testing is set up

only for Hg sets and not for 22 sets. We have three reasons for this, the first is a corollary

of Theorem 7.1.

Corollary 7.2. If in Theorem 7.1 case 2a holds then the sequence (B;);<, can be chosen

such that B; € AY(¢) (i<!).
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Pro of. Since the class Hg has the generalized separation property in Polish spaces

(see e.g. [4], (22.16) Theorem on page 172), the statement follows.¥

That is generalized reduction with Hg sets is stronger than generalized reduction with
Eg sets. The following result says that in a particular case Theorem 1.2 gives an answer

to the problem for Eg sets .

Claim 7.3. Let Ag; A1 C X be disjoint analytic sets. Then there are disjoint Eg((;) sets
Bo;B1 € X such that A; C B; (i = 0;1) if and only if Ag can be separated from A1 by a

Eg((,) set and vice versa, A1 can be separated from Ag by a Zg((',) set.

Pro of. If we have the disjoint 22((‘,) sets Bo; By € X such that A; € B; (i = 0;1)
then the separation is obviously possible in both directions. Suppose now that a Eg((;)
set BY separates A; from Ay, ; (i = 0;1). The class Eg has the reduction property in
Polish spaces (see again [4], (22.16) Theorem on page 172), thus we have disjoint £2(¢,)
sets B; € B2 (i = 0;1) such that B UB; = BSUBY. Since BNAy, ;=0 (i =0;1), we
have B, N Ay, ; =0 (i = 0;1). But AgUA; C BJUBY = BoUBy, so we get A; C B;

(i =0;1). The proof is complete.¥

The next clam is simply trivial.

Claim 7.4. Let 0 < »< ! be fivred and let #; — ». Let (A;)i<w be a decreasing sequence

T
of analytic sets in X such that =~ ,_ A; = 0. If there is a sequence (B;)i<,, of TI2(¢) sets

)

T
such that A; C B; (i <) and ,_ B; = 0 then there is a sequence (BY),-., satisfying

(2

-
A;CB2(i<!) and B?=0 such that BY is X3 (¢) (i< !).

<w

T
B;(i), then BYis X9 (¢) (i < !'). Since A; CA; € B; C Bj(i)
o 0/ o | T o T T

(j <i<!)wehaveA; CB)(i<!). Wealsohave ,_ BP= ,.  B;(i)= ,  B;=10,

1<w 7

J<w

-
j<lji<l) SetBP= |

which completes the proof.¥



78 CHAPTER 7. GENERALIZED SEPARATION AND REDUCTION

Claim 7.3 and Claim 7.4 handle the two extreme situations in generalized separation:
when we have only two sets which are disjoint or we have infinitely many sets which
are decreasing. The cases in-between can be handled with similar tricks but the sepa-
ration conditions become numerous and complicated, so we omit them and turn to the

construction of test sets for generalized separation by Hg sets.

De nition 7.5. For » = 1 let (D1;ép,) = (! +1;0041). Let ,1:! x! — 1 be the

bijection defined by
. 1, . .
,1(n;|):§(| +n+1)(+n)+n(nji<!)

and set Ry(n) ={, 1(n;i):i<!} (n<!)and Ry ={!}.
For 1 < »< 1y let (Ce(i); éoy()), {Pe(i);émi}t (i < 1) be copies of the space (Cg; ¢c, )

and ITY Hurewicz test pair {Pg; ¢p, } defined in Definition 4.19. Set

Y Y
De= Cli); én, = o
<w 1<w
. Y Y
Pe(n) = Ce(i) x Pe(n) X Ce(i);
<n n<i<w
Y < Y <
iy = lp) X dm) X &p, (i)
<n n<i<w
and
3 . \ . Y Y
Re(n) = D¢\ Pe(n) N Pe(m) = Pe(i) x (C¢(n) \ Pe(n)) x Pe(n);
m<w,mén <n n<i<w
Vo Y Yo
Re= Peli)= Pei); ¢g, = ipy
<w <w <w

We state a trivial lemma on the Borel class of the preceding sets.



7.1. WITNESSING GENERALIZED SEPARATION 79

Lemma 7.6. For every 1< »< !4, Pe(n) is a 12(¢p,) set and Re(n) is a Ay (ép,) set

(n< ).

Next we show that the sets R¢(n) do the job for Theorem 7.1.

Claim 7.7. Let 0 < » < !y be fived and suppose that B; € D¢ is a II2(¢p,) set and
T
Re(i)CB; (i<!). ThenRen ,_ B, #0.

Pro of. Consider first » = 1. If B; is [1%(¢p,) then ! € clp (Ra(i)) ©€B; (i <!)so

T
indeed! € Ri N B,.

<w n 0

Let now 1 < »< ! 1. By Claim 4.5.5, P¢(n); iy (N <!)isatopological Hurewicz

test pair in the Polish space

A !
Y Y

Dei  épp) X ovim X 730
i<n n<i<w
Moreover, also by Claim 4.5.5, Theorem 4.7 holds for Fsg(n) with the presentation inherited
from the presentation of P, defined in (4.9-4.11) of Definition 4.19. We also have (,; =
én, (n< 1), So by Theorem 4.7.1, Pe(i) (i < !) hence R; is ¢n, residual in De. We show
that B; (i < !) is also ¢ -residual in Dy, this will complete the proof.
Fix some i < !. Since D¢ \ Pe(i) is ép,y-residual and Pe(j) is also ép,(y-residual
(b <!'5 ] #1), Re(i) and thus B; are also ¢p (y-residual in D¢ (i < !). Since B; is
I2(¢p,) , it is also X !
Y Y

0 ,< , ,
I &, (i) X &o,(n) X &ps (i
i<n n<i<w

Thus Corollary 4.8.4 can be applied and gives that B; is c‘,; (i)—residual, that is ¢ -residual

in D¢, as stated.¥

The next task is to find the appropriate image of R¢(n) (n < !') if generalized separa-

tion by Hg sets is not possible. Fixa 1 < »< ;. Let , c:! — t¢! be a bijection; using
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D¢ = (2)* by Claim 4.20, let A¢: C — D¢ denote the corresponding homeomorphism.
We define the Borel game &, which is the heart of the proof of Theorem 7.1.
Let A;; G;H C D¢ be Borel sets such that A; C G (i < !'). In the game &¢((A;)i<.; G;H)

players I and II play

I - (0) (1)
where ®&(i); (i) € {0;1} (i <! ), and IT wins if and only if
* Ae(®) €Re(i) = Ae()eA;(i<!);
Ae() € G and
Ac@® eRe = A()€H;

else I wins.
We associate maps to the strategies of I.
De nition 7.8. Fix a1 < » < !; and let ¥%be a strategy of I in &,. Then ¥%3: D¢ —

D¢ denotes the function mapping to a 'y € D, the unique X € D¢ such that the run
{AL Y(x); AL L(y)} is according to ¥

Note that Y2 is continuous. In the sequel we will use this property in the form that
1% 1 keeps the Borel class of sets.

By the following claim the determinacy of the game &, indeed proves Theorem 7.1.
Claim 7.9. For every 1 < »< !, in the game & a winning strategy

1. for player I gives a sequence (B;)i<, of Hg(w) sets such that A; CB; (i< !) and
T
(G \ H) N B@ = (Z),’

<w
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2. for player II gives a continuous map ' : D¢ — G such that ' (Rg) "H = 0 and
"(Re(i) CA (<)

Pro of. Consider first a winning strategy ¥afor 1. Let B; = 1/gl(|:3§(|)) (i<!) By

Lemma 7.6, B; is II(¢p,) (i < !). So it remains to show that A; C B, and that
T
(G\H)n ,_,B;=0.

Suppose that for some i < ! we have ay € A; \ B, that is y € A; \ % 1(P¢(i)). Since
A\ ¥ 1(Pe(i) = A;N¥ YD \ Pe(i)), there is some x € D¢ \ Pe(i) such that the run
© : a

Ay L(x); Ay 1(y) in & is according to ¥ We have

3 3

. [ .
D¢\ Pe(i) = Re(i) U De\ Pe(j) UPe(i)

j<w,j61
But if X € R¢(i) then IT wins since y € A; C G while if X € R¢(i) and
[ 3 3
X € De\ Pe(j) UP(i)
Jj<w,j61i
then X € R¢(j) (j <!) and X € R¢ so II wins already by y € G. This contradicts the
definition of ¥and proves that A; CB; (i < !).

-
Suppose now that y € (G\H)N ,_ B;, thatisy € G\ H and

(7.1) y € BEPe(i) (i< !):

a

Let X € D¢ be arbitrary such that the run ©A‘5 L(x); AL 1(y) in & is according to ¥ Then
by (7.1), X € Ti<w Pe(i) so x € Re(j) (j <!). Thus II wins by y € G\ H, which again
contradicts the choice of ¥aand proves (G\ H) N T icoBi=10.

Let now ¥be a winning strategy of II. Let ' : D¢ — D¢ map to an X € D¢ the unique
y € D¢ such that the run ©Ai5 L(x); Ai£ 1(y)a in &, is according to ¥ This map is clearly
continuous. We have ' (Dg) € G, ' (Rg)NH =0 and if i < ! and X € Rg(i) then

' (X) € A; since the strategy %is winning for II. This completes the proof.¥
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From this Theorem 7.1 will follow by standard arguments (see [7], Corollary 2 and
Theorem 3); that we give in the remaining part of this section. We have to extend the
results to arbitrary Polish spaces; for this we need the following result (see e.g. [7],

Theorem on page 455).

Theorem 7.10. (Saint Raymond) Let (E; ¢ég), (F;ér) be compact metrizable spaces and
(Q; ¢ég) be a Polish space. Ifh: E — F is a continuous surjection andf : E — Q is a first
class function then h has a first class section (i.e. there is a Baire-1 function s: F — E

such that h(s(y)) =y (y € F)) such that f os: F — Q is also a first class function.

This theorem is applicable for a class of sets I' if this I' can be built up from X9 sets

on some canonical way.

De nition 7.11. Let D C 2¢ and let (C(N))n<w be a sequence of arbitrary subsets of
some base set X. The the Hausdorff operation associated to D acts on the sequence
(C(N))nes a8

D(C(N))pew) ={xeX:{n<!:xeC(n)} eD}:

A class I is called a X9 generated Hausdorff class if there is a basis D C 2¥ such that in

every Polish space (X;¢) the members of I" are the sets of the form D ((C(N))n<.) where
(C(N)n<w € 23(6)-

We recall that each class Zg (1< »< !4)is a X9 generated Hausdorff class (see e.g.
[4], (23.5) Exercise on page 180.) The following corollary is a variant of the so-called
transfer lemma (for a version, see e.g. [7], Corollary 2 on page 455). It will allow us to

extend our results to arbitrary compact spaces.

Corollary 7.12. Let (E;¢ér), (F; ér) be compact metrizable spaces, h: E — F be a con-

tinuous surjection and T be a X9 generated Hausdorff class. Suppose that (A;)i<. is a
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sequence of subsets of F, T C F and there is a sequence (H;)i<, C I' of subsets of E

satisfying hi Y{A) NH; =0 (i < ') and LHi =hiY(T). Then there is a sequence

1<

S
(Bi)icw C T of subsets of F satisfying A;NB; =0 (i< !) and B,=T.

<w

Pro of. Let H; = D ((C;(n)),<.) where D is a basis for I" and C;(n) is ¥3(¢z) (in< ).
Let f;,: E — [0;1] be a first class function such that C;(n) = {x € E: f,,(x) > 0} (i n <

). Set f: E — [0;1]“¢« f = Q f;n. From Theorem 7.10 for h and f we get a first

i,n<w

class section S of h such that f osis also of first class, that is V;(n) ={y € F: f,,.(s(y)) >

0} is a X9(¢r) set. Thus for B; = D((Vi(n)),<w) we have B; € T (i < ). It is clear
S

that st 1(H;) = B; (i < !). Since st }(hi }(T)) = T and H;, = hi }(T), we obtain

S : o
.« Bi=T. Froms' }(H); = B, we have s(B;) C H;, which gives B; = h(s(B;)) € h(H,)

<w

<| < ) Since HZ N hi 1(Az) = @ 1mphes h(HZ) ﬂAZ = @ (l < | ), we have BZ ﬂAl = @

(i < 1) which completes the proof.¥

It remains to finish with the proof of Theorem 7.1. We prove a slightly stronger
T
~»A; =0 case of Theorem 7.13 together with Claim 7.7.

extension; Theorem 7.1 is the

Theorem 7.13. Let 0 < »< ! 1. In the Polish space (X;¢) let (A;)i<w be a sequence of

Borel sets. Then

1. either there is a sequence (B;)ic, of 1I3(¢) set such that A; € B; (i < 1) and
T T
i<w Bl = ; Ai?

1<w

2. or there is a continuous map ' : D¢ — X such that ' (R¢) N A, =0 and

C(RelD) S A< 1).

<w

Pro of. First we show that 2 excludes 1. If a map ' satisfies the conditions of 2
T T
then by Claim 7.7, Re N ,__ " 1 *(B;) # 0. This implies ' (R¢) N ,__ B; # 0 so since
T T T
' (Rg) Q X \ i<w AZ', we have i<w Bl 7é i<w Az
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T
To return to the proof of the theorem, set H = ._ A;, and let first » = 1. If
T T
i<wClz(A;) = H then we have 1. Else let X, € ,__ cl;(A;) \ H. Since X, € cl.(A;)
(i<!), we have

A;NB,(X,;1=n) £ 0 (i;n< 1)

where B (X,; 1=n) is the open ball around X, with radius 1=n (n < ! ). So we can pick
points Xy, msy) € A; NB-(X,;1=n) (i;n < ). Let ' : Dy — X be defined by ' (i) = x;
(i < 1). This map is clearly continuous, ' (Ry(i)) € A; (i < !) and ' (Ry) € H, as
required.

Let now 1 < » < !; and let (A;);<, be a sequence of Borel sets in (X;¢) such that

T .
<A = H. Let (X;¢) be a Polish compactification of (X;¢) (see e.g. [4], (4.14)
Theorem); then X C X is a I13(¢) set. Take a continuous surjection h: D¢ — X and

consider the game

Be((hFH(A:))icwr N H(X ) hTH(H)):

This game is clearly Borel so by Borel determinacy either player I or player II has a
winning strategy.
If player I has a winning strategy then by Claim 7.9.1 we have a sequence (U;);<,, of

I12(¢p, ) sets such that hi 1(A;) C U; (i< !) and

\
(W AX)\hi YH)N U =0

<w

That is by
hi '(H) C hi (A,) Chi LX) (i< 1)
we have
\
(7.2) hit(X)n U;=h*H):

1<w
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Let (E;éz) = (Dgién,), (Fiér) = (X;8), T = X2ép,), T = X \ H and H; = D¢\
(hi3(X)NU,) (i < !). Since hi 1(A;) C hi}(X)NU; implies hi 1{(A)NH; =0 (i < 1)
and A !

| H;=D¢\ hi 1(X)m\ Ui =D¢\hit(H)=hiY{T)

i<w i<w

by (7.2), we can apply Corollary 7.12 to get a sequence (V;);<., of 22(2) sets such that

A;NV; = 0 and SKWVZ- — X \H. Then B; = X \ V; is T1%(¢), A; C B; (i < ! ) and
TKW B; = H, as required.

If Player II has a winning strategy then we have a continuous map A: D¢ — hi }(X)

such that A(R¢) Nhit(H) = () and A(R¢(i)) € hi }(A;) (i < !). Then for' = hoA,

' : D¢ — X is also continuous and satisfies ' (Rg) NH =0, " (Re(i)) CA; (i< !). This

completes proof.¥

7.2 Generalized reduction

Generalized reduction follows from Theorem 7.13 by taking complements.

Theorem 7.14. Let 0 < »< ! ;. In the Polish space (X;¢) let (A;)i<w be a sequence of

Borel sets. Then

1. either there is a sequence (B;)i<, of Eg(g,) set such that B; C A;, B;NB; =0
(] <Pii#]) andSKwBi:SKwAi,

2. or there is a continuous map "' : D¢ — X such that' (R¢) C SKW A; and' (Re(i))N
A,=0.(i<!).

Pro of. By repeating the argument in the proof of Theorem 7.13 one easily obtains

that by Claim 7.7, 2 excludes 1. Set A= X \ A; (i <! ). By Theorem 7.13, either there
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T T
is a sequence (B?);.,, of Hg((',) set such that A9C BPand ,_ A%?= ,_ BPor there is a

1<w 1

continuous map ' : D¢ — X such that ' (Rg) N ,_ A?=0and "' (Re(i)) CAY(i<!).

In the first case let BP= X \ B? (i < !'). The class X2 has the generalized reduction

property so there is a X2(¢) set B; CBP (i < 1) such that B; N B; =0 (i;j <!; i #]j)

S S 0 S L
icwBi= ,Bi= i A which is 1.

T
In the second case we have ' (Re¢(i)) NA; =0 (i< !)and' (Re) C X\ ,_ A)=

7

and

S S .
i< Aé; which is 2. So the proof is complete.¥

For reduction by Hg sets the same remarks apply as for separation by Eg sets (see

Corollary 7.2, Claim 7.3, Claim 7.4 and their discussion).



Chapter 8

Concluding remarks

We constructed Hg topological Hurewicz test pairs for every 0 < » < ! ; and we proved
the applications announced in the introduction. To conclude this thesis we would like
to present some problems which were left open implicitly or explicitly in the preceding

chapters.
Problem 8.1. Extend Theorem 4.7 or Theorem 5.2 to the entire Borel-Wadge hierarchy.

The aesthetic motivation for this is the fact that Theorem 1.2 has its extension to all
the Borel-Wadge degrees (see [6] and [8]). The real motivation is that it is not clear at
all how one could get rid of the rigid structure of the sets P¢ (0 < » < ! 1), which were
practically our only examples of Hurewicz test sets. The reason why we did not prove
Theorem 5.2 for 3 < » was the failure of Claim 5.5 for » =" = ! . But the reason for
this failure is that we cannot allow too much flexibility in the structure of our topological
Hurewicz test sets so the proofs get lost in technicalities. An approach which is able
to handle the entire Borel-Wadge hierarchy will hopefully be free of these superfluous
complications.

Next let us recall the theorem of S. Solecki mentioned in the introduction ([21], The-

87
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orem 1 on page 1023).

Theorem 8.2. (S. Solecki) Let T be a family of closed subsets of a Polis space (X;¢).
Let A C X be a¥1(¢) set. Then either A can be covered by a countable union of members
of T or there is a 113(¢) set G C A such that F N G relatively meager in G for every
FeZl.

Less formally this result says that if a ¥sideal Z is generated by its I19 members
the problem whether an analytic set belongs to Z or not depends only on sets of low
complexity, namely on II9 sets. This led to the formulation of Question 1.5 and Question
3.16. It is important to note that these questions are already refuted by the following
unpublished result of A. Kechris and M. Zeleny.

Theorem 8.3. (A. Kechris-M. Zeleny) Assume V = L. Then there is an analytic set
A C C and a ¥Yideal T strongly generated by its 113(¢c) members such that I contains

every Borel subset of A.

However, in view of Theorem 3.15 it seems to be interesting to look for an alternative
counterexample. Mostly because in the proof of Theorem 3.15, CH was used for having

only ! ; many sets to handle, so this result is more “descriptive” than “set theory”.

Problem 8.4. Prove (without V. =L ) for every 2 < » <!, that the answer to Question

1.5 and/or to Question 3.16 is consistently negative.

We know that using the approach of nested sequences applied in the proof of Theorem
3.15 it can be proved that Question 1.5 has a negative answer under CH; this will be
published elsewhere. The reason why we could not include it in this thesis is the same as
above: the proof gets extremely technical due to the fact that the structural conditions

on P4 are so restrictive that this set cannot be used. We admit that we used P;, instead
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of Pz for the same reason. And we also admit that this approach seems to be completely
inadequate to handle the 4 < » < I ; case. It seems that Problem 8.4 is in close relation

also to the question whether Theorem 4.22 holds for » = »°+ 1 where »°is a limit ordinal.

Problem 8.5. Prove for every 2 < » < | 1 that the answer to Question 1.5 and/or to

Question 3.16 is consistently positive.

We have no results in this direction. It can easily happen that the conditions for a
positive answer are much more natural and easier to handle. Since the proof of Theorem
8.2 is as elegant as numerous its corollaries are, it would be nice if an analogous statement

was true for higher Borel classes, at least consistently.
Problem 8.6. Make the arguments in Chapter 7 effective.

It seems to require only endurance. But a lot more than effective generalized separation
and reduction might be achieved. We could ask for a much closer analogy with the Baire
Category Theorem and related techniques than what we have up till now through our
topological Hurewicz test pairs. Namely for 1 < » < ! 1, we intend to have some machinery
which isolates a “maximal” Eg set inside a given Borel set which behaves like “taking the
interior”. The best candidate for the framework of such a theory seems to be the effective
machinery. It may allow to define topologies ¢p to a much larger family of Hg set in such
a way that {P;¢p} is a topological Hurewicz test pair. We may have an elegant, natural
proof for Theorem 4.22 and for ideal generation theorems in general. And we may be in
the position to answer Question 1.5 and Question 3.16: in the negative by repeating the
relatively simple argument of the proof of Theorem 3.15 and in the positive by repeating
the absolute simple argument of the proof of Theorem 8.2 with a properly chosen notion

of an “effective closure”.
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CHAPTER 8. CONCLUDING REMARKS
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