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Abstract

In this thesis we develop the theory of topological Hurewicz test pairs. The central

idea of this method is to construct special Polish topologiesin such a way that simply

structured sets,e.g.setsof low Borel class,areeither \almost empty" or of secondcategory

in the corresponding special topology. Through this approach, which can be considered

asa generalizationof the Baire CategoryTheoremfor higher Borel classes,we are able to

give a quantitativ e aspect, in Baire categorysense,to certain results related to Hurewicz

test sets. As an application of the theory, we prove someresults related to trans¯nite

convergenceof Borel functions, to the problem of ¯nding simple generatorsof analytic

idealsand to the problem of constructing Hurewicz test setsfor generalizedseparationof

analytic sets.
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Chapter 1

Classical results, motiv ating

problems

If an open set is nonempty it is of secondcategory. This is probably the simplest for-

mulation of the Baire Category Theorem. The purposeof our thesis is to show that this

theorem can be extendedto the entire Borel hierarchy: for every 0 < » < ! 1 we dē ne a

¯ne topology such that if a § 0
ξ set is just \a bit biggerthan nonempty" then it is huge,i.e.

it is of secondcategoryin our ¯ne topology. And we present sometypical Baire Category

Theorem-like applicationsof this result: the intersectionof countably many \fairly dense"

§ 0
ξ setsis residual in the ¯ne topology, henceit is nonempty.

We remark that there is a quite classicalextensionof the dichotomy expressedby the

Baire Category Theorem for open sets. More than a half century ago Witold Hurewicz

proved the following theorem,alsocalledHurewicz-dichotomy, about setsfailing to be Fσ.

Theorem 1.1. (W. Hurewicz) Let X be a Polish space and A ⊆ X be an analytic set. If

A is not Fσ, then there is a continuous injection of the Cantor set into X , ' : 2ω → X

5
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such that 2ω \ ' ¡ 1(A) is countable dense in 2ω; that is ' (2ω) ∩ A is a relatively closed

subset of A homeomorphic to the irrationals.

If we add the well-known fact that any subsetN of the Cantor set 2ω homeomorphic

to the irrationals is never Fσ we gave all the reasonswhy the pair (2ω; N ) is called the

H urewicz test for Fσ sets.

Theorem1.1 hasbeenstrengthenedin many successive steps. In somesensethe most

generalexistencetheorem for Hurewicz tests is the following (see[7]).

Theorem 1.2. (A. Louveau, J. Saint Raymond) Let 3 ≤ » < ! 1 and (X ; ¿) be a Polish

space. If Pξ ⊆ 2ω is ¦ 0
ξ(¿2! ) but not § 0

ξ(¿2! ) and A0; A1 ⊆ X is any pair of disjoint analytic

sets, then either A0 can be separated from A1 by a § 0
ξ(¿) set or there is a continuous one-

to-one map ' : (2ω; ¿2! ) → X with ' (Pξ) ⊆ A0 and ' (2ω \ Pξ) ⊆ A1.

The same conclusion holds for » = 2 if P2 ⊆ 2ω is the complement of a dense countable

set.

Thus we may call a ¦ 0
ξ(¿2! ) but not § 0

ξ(¿2! ) set Pξ a Hurewicz test for § 0
ξ(¿2! ) sets,

in the sensethat either a set A ⊆ X is § 0
ξ(¿2! ), a fact which can be witnessedby a

description of the construction of A from simpler sets, or A is not § 0
ξ(¿2! ), a property

which cannot be veri¯ed by checking somedecomposition, but by Theorem1.2 it can be

witnessedby a continuous injection ' : 2ω → X satisfying ' ¡ 1(A) = Pξ.

Theorem1.2turned out to be the ideal starting point of our investigations. It allowsus

to isolatea simple reason,namely the imageof the Hurewicz test ' (Pξ) in ' (2ω) why the

analytic set A0 cannot be separatedfrom the other analytic set A1 with one single § 0
ξ set.

But the aspect of dichotomy which was present in the Baire Category Theoremfor open

sets is lacking, in particular Theorem 1.2 says nothing about how \crude" a separation

attempt is if oneinsistson § 0
ξ sets,or in other words,how well our A0 canbeapproximated
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by § 0
ξ setslaying outside A1. It was the problem of I-convergent functions, raisedby T.

Natkaniec in [17], which shedlight on this failure. We start with the dē nition.

De¯nition 1.3. Let ¸ be a cardinal, (X ; ¿) and (Y; d) be Polish spaces. Consider an

ideal I on ¸ . We say that a sequenceof functions f α : X → Y (® < ¸ ) I-converges to the

function f : X → Y, in notation f α →I f , if

{® < ¸ : f α(x) 6= f (x)} ∈ I

for every x ∈ X .

The questionof T. Natkaniecis whether I-convergencekeepsthe Baire classesor not,

that is under which condition on ¸ and I it is true that if f α is Baire-» (® < ! ) and

f α →I f the limit function f must be also Baire-». Sincethe Baire classof a function

is in closerelation with the Borel classof its sublevel set it is not surprising that the

problem of I-convergent functions is equivalent to ¯nding somequantitativ e analogueof

Theorem1.2. It was the ¯rst motivation for our investigations.

In some sensea particular caseof the problem of T. Natkaniec is the problem of

generalizedseparation. It is well known that analytic setshave the generalizedseparation

property, that is for every sequence(Ai)i<ω of analytic setswith
T
i<ω Ai = ∅ there is a

sequence(B i)i<ω of Borel setssatisfying Ai ⊆ B i (i < ! ) and
T
i<ω B i = ∅. But of what

complexity must B i (i < ! ) be? That is, if » is ¯xed, whencan each B i (i < ! ) be chosen

in ¦ 0
ξ? This can be regardedas an approximation problem where the analytic sets Ai

(i < ! ) play the role of constraint. One can ask whether there is a theorem providing

Hurewicz tests for generalizedseparationas Theorem1.2 doesfor ordinary separation.

The last problem we mention here has been posedby A. Miller. S. Solecki in [21]

proved the following result.
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Theorem 1.4. (S. Solecki) Given a family of closed sets I and an analytic set A in some

Polish space X , either A can be covered by the union of countably many members of I or

A contains a nonempty ¦ 0
2 set G with the property that F ∩ G is meager in G for every

F ∈ I.

Observe that this result has the feature of testing: if A can be covered by the union

of countably many members of I this is witnessedby the countable collection of closed

sets in I realizing the covering, while the contrary, which is a priory unwitnessable,can

be veri¯ed by a good ¦ 0
2 subsetof A and Baire category. It is natural to askwhether this

holds for every Borel class(see[15]).

Question 1.5. (A. Miller) For 2 ≤ » < ! 1 let I be a ¾-ideal which is generated by its

¦ 0
ξ members. Is it true that for every analytic set A ⊆ X , either A ∈ I or there is a ¦ 0

ξ+1

set B ⊆ A such that B =∈ I?

Theseproblemscan be treated within the theory of topological Hurewicz test pairs, a

conceptwe aim to develop in this thesis. Informally, it can be summarizedas\sets of low

Borel classare sosimply structured comparingto setsof high Borel classthat even Baire

category can distinguish them in a suitable topology". As an illustration, the precise

topologizedversion of Theorem 1.2 is the following result (see[10], Theorem 4 on page

159).

Theorem 1.6. Let (X ; ¿) be a Polish space. For every 2≤ » < ! 1, there exist a ¦ 0
ξ(¿2! )

set Pξ ⊆ 2ω and a Polish topology ¿P» on 2ω which is finer than ¿2! such that Pξ is nowhere

dense and closed in the topology ¿P» , and if an analytic set A ⊆ X is

1. in § 0
ξ(¿), then whenever for a continuous one-to-one mapping ' : (2ω; ¿2! ) → (X ; ¿)

we have that ' ¡ 1(A) ∩ Pξ is of second category in Pξ in the relative topology ¿P» |P»

then ' ¡ 1(A) ⊆ 2ω is of second category in the topology ¿P» ;
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2. not in § 0
ξ(¿), then there is a continuous one-to-one mapping ' : (2ω; ¿2! ) → (X ; ¿)

such that ' (Pξ) ⊆ A and ' ¡ 1(A) ⊆ 2ω is of first category in the topology ¿P» .

Moreover, if ¸ < 2@0 is a cardinal and in our model the union of a ¸ number of meager

sets is meager in Polish spaces the first statement holds for every (not necessarily Borel)

set A which can be obtained as a union of a ¸ number of § 0
ξ(¿) sets.

This result extendsTheorem 1.2 by providing the quantitativ e aspect we have been

looking for: the Baire category in the topology ¿P» . We remark that S. Solecki proved a

theorem where Baire category was usedto distinguish § 0
ξ sets from a given ¦ 0

ξ set (see

[22], Theorem2.2). In his approach the topology ¿P remainshidden.

In the next chapters we will build up the theory of topological Hurewicz test pairs.

The basicdē nitions and notations in Chapter 2 are followed by an introductory chapter,

Chapter 3, where we make the reader familiar with the techniquesand conceptsin the

» = 3 case. In particular we show that the answer to a special form of the question of

A. Miller is consistently negative. In Chapter 4 we continue with the general0 < » < ! 1

case,we prove Theorem 1.6 in an extendedform and we construct ¦ 0
ξ coverings for § 0

ξ

generatedideals. Given that Theorem 1.2 can essentially be extendedto the di®erence

hierarchy, we perform a partial extensionfor Theorem1.6 in Chapter 5. Then in Chapter

6 we show that indeed,I-convergencekeepsthe Baire classof functions. In Chapter 7 we

construct a test allowing the determination of the minimal complexity of setsinvolved in

a generalizedseparationor reduction, and we concludethe thesis with Chapter 8 where

we formulate someproblemswhich hopefully will be as motivating as the onespresented

here.1
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Chapter 2

De¯nitions and notation

2.1 Sequences and trees

Our terminology and notation follow [4]. Let (C; ¿C) denotethe Polish space2ω with its

usual product topology. For two ¯nite sequencess; t ∈ ! <ω, we write s ⊆ t (s ⊂ t, resp.)

if t is an extension(a proper extension,resp.) of s. The length of s is denotedby |s|. If

s = (s0s1 : : : sn¡ 1) and i < ! , then s_i standsfor the sequence(s0s1 : : : sn¡ 1i ).

If T ⊆ ! <ω is a subtree and s ∈ ! <ω then Ts = {t ∈ ! <ω : s_t ∈ T}. The terminal

nodesof T are denotedby T(T).

Let »; #i (i < ! ) be ordinals. We write #i → » if » is successorand #i + 1 = » (i < ! )

or if » is limit, #i ≤ #j (i ≤ j < ! ) and supi<ω #i = ».

For every ordinal » < ! 1 we ¯x onceand for all a sequence(#i)i<ω such that #i → ».

To avoid complicatednotations, we do not indicate the dependenceof the sequenceon »,

it will be always clear which pair of ordinal and sequenceis considered.

The order topology on an ordinal » is denotedby oξ.

11
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2.2 Re¯ning top ologies, basic open sets

In this note we will notoriously re¯ne Polish topologiesby turning countably many closed

sets into open sets. We do this as described in [4], that is the open setsof the ancient

topology together with their portion on the membersof our collection of closedsetsserve

as a subbaseof the new, ¯ner topology. We will use that the topology obtained in this

way is alsoPolish.

De¯nition 2.1. Let (X ; ¿) be a Polish space,P = {Pi : i < ! } be a countable collection

of ¦ 0
1(¿) sets. Then ¿[P] denotesthat Polish topology re¯ning ¿ whereeach Pi (i < ! ) is

turned successively into an open set.

It is easyto seethat the resulting ¯ner topology ¿[P] is independent from the enumer-

ation of P. This will be clearshortly whenwe ¯x a baseof ¿[P]. We alsousethe notation

¿[P] when the countable collection of not necessarily¦ 0
1(¿) setsP can be enumeratedon

such a way that Pn is ¦ 0
1(¿[{Pi : i < n}]).

De¯nition 2.2. If ¿n (n < ! ) is a Polish topology on somebaseset X then
W
n<ω ¿n

denotesthe coarsesttopology on X which re¯nes each ¿n (n < ! ).

The resulting topology is also Polish and we will shortly ¯x a countable basefor it.

Beforedoing this we needa precisenotion of basicopen setsin our spaces.

De¯nition 2.3. Let (X i; ¿i) (i ∈ I ) be Polish spaces;if a basisGi is ¯xed in the spaces

(X i; ¿i) (i ∈ I ), which are meant to be the basicopen setsin (X i; ¿i), then the basic open

sets of (
Q

i2 I X i;
Q

i2 I ¿i) are the open setsof the form

Y

i2J

Gi ×
Y

i2 InJ

X i;

whereJ ⊆ I is ¯nite and Gi ∈ Gi for every i ∈ J .
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If the basicopen setsG are ¯xed in the Polish space(X ; ¿) and ¿[P] makessensefor

a countable collectionP of subsetsof X , then the basic open sets of ¿[P] are of the form

G ∩ F0 ∩ · · · ∩ Fn¡ 1 or G with G ∈ G, Fi ∈ P (i < n); a basic¿[P]-open set is said to be

proper if it is not ¿-open.

If the basicopen setsGn are ¯xed for the Polish topologies¿n (n < ! ) then the basic

open sets for
W
n<ω ¿n are the setsof the form

T
i<m Gni whereGni ∈ Gni (m < ! ; ni <

! (i < ! )) .

Observe that the basicopen setsdē ned on this way form a basisof
Q

i2 I ¿i, ¿[P] and
W
n<ω ¿n, respectively. From now on whenever a Polish space(X ; ¿) appearswe assume

that a countable basiscomprisedof basic¿-opensetsis ¯xed; and this is donewith respect

to the convention of Dē nition 2.3 if applicable. We take X to be basic ¿-open. Basic

open sets are assumedto be regular open. In zero dimensionalspaceswe assumethat

our basic ¿-open sets are ¦ 0
1(¿); note that our procedure of re¯nement results a zero

dimensionalspacefrom a zero dimensionalone with ¦ 0
1(¿[P]) basic ¿[P]-open sets. We

denoteambiguously our special collection of basic¿-open setsalsoby ¿.

The interior (closure,resp.) of a set A ⊆ (X ; ¿) is denotedby int τ (A) (clτ (A), resp.).

We will never have to ¯x a special compatible metric on our Polish spacesbut we will

condition on the diameter of sets. In this casediamτ denotesthe diameter in an arbitrary

¯xed metric generating¿. We assumethat diamτ (X ) ≤ 1.

We recall that a ¦ 0
2(¿) subsetG of the Polish space(X ; ¿) is itself a Polish spacewith

the restricted topology¿G (seee.g.[4], (3.11) Theorem). In particular, the notions related

to category in the topology ¿ make senserelative to G.

We will have to return to the topologieson the coordinates in product spaces. If

(X ; ¾), (Y; ¿) are arbitrary topologicalspacesand (X ;S) = (X ×Y; ¾×¿), then we dē ne

PrX(S) = ¾. The projection of product sets in product spacesis dē ned analogously.



            

14 CHAPTER 2. DEFINITIONS AND NOTATION

If GX ⊆ X and GY ⊆ Y, we say that the set of product form G = GX × GY ⊆ X is

nontrivial on the X coordinate if GX 6= X .

2.3 Hierarc hies, separation, reduction

As usual, ¦ 0
ξ(¿) (§ 0

ξ(¿) resp.) (0 < » < ! ) stands for the »th multiplicativ e (additiv e

resp.) Borel classin the Polish space(X ; ¿), starting with ¦ 0
1(¿) = closedsets,§ 0

1(¿) =

open sets. The dual class·¡ of a class¡ ⊆ 2X is dē ned by ·¡ = {A ⊆ X : X \ A ∈ ¡ }.
A set is called proper ¦ 0

ξ(¿) if it is ¦ 0
ξ(¿) but not § 0

ξ(¿) (0 < » < ! 1).

We derive the difference hierarchy asfollows. Every ordinal ´ can be uniquely written

as®+ n where® is limit and n < ! . We call ´ even (odd, resp.) if n is even (odd, resp.).

De¯nition 2.4. Let 0 < #; » < ! 1 and let (Aη)η<ϑ be a sequenceof subsetsof a set X ,

such that Aη ⊆ Aη0 (´ ≤ ´ 0 < #). Then Dϑ((Aη)η<ϑ) ⊆ X is dē ned by

x ∈ Dϑ((Aη)η<ϑ) ⇐⇒ x ∈
[

η<ϑ

Aη and the least ´ < # with x ∈ Aη

hasparity opposite to that of #.

With this operation in the Polish space(X ; ¿) we set

Dϑ

¡
§ 0
ξ(¿)

¢
=

©
Dϑ((Aη)η<ϑ) : Aη ∈ § 0

ξ(¿); Aη ⊆ Aη0 (´ ≤ ´ 0 < #)
ª

:

For ¯xed 0 < » < ! 1, a set is called proper Dϑ

¡
§ 0
ξ(¿)

¢
if it is Dϑ

¡
§ 0
ξ(¿)

¢
but not

·Dϑ

¡
§ 0
ξ(¿)

¢
(0 < # < ! 1).

Next we give two dē nition related to ideals.

De¯nition 2.5. Let 0 < ´ < ! 1. If (X ; ¿) is a Polish spaceand P ⊆ X , S0
η (P) (P0

η (P),

resp.) denotesthe collection of § 0
η(¿) (¦ 0

η(¿), resp.) subsetsof P.



          

2.3. HIERARCHIES, SEPARATION, REDUCTION 15

De¯nition 2.6. Let I be a ¾-ideal and F ⊆ I. We say that I is generated by F if for

every G ∈ I there existsFi ∈ F (i < ! ) such that G ⊆ S
i<ω Fi. We say that I is strongly

generated by F if for every G ∈ I there is an F ∈ F such that G ⊆ F .

We recall somedē nitions related to separation.

De¯nition 2.7. Let X be an arbitrary set. For A0; A1 ⊆ X we say that G ⊆ X separates

A0 from A1 if we have A0 ⊆ G ⊆ X \ A1.

A class¡ ⊆ 2X hasthe separation property if for every A0; A1 ∈ ¡ there is a set G ∈ ¡

such that X \ G ∈ ¡ and G separatesA0 from A1. A class¡ ⊆ 2X has the generalized

separation property if for every sequence(Ai)i<ω ⊆ ¡ with
T
i<ω Ai = ∅ there is a sequence

(Gi)i<ω ⊆ ¡ such that (X \Gi)i<ω ⊆ ¡ , Ai ⊆ Gi (i < ! ) and
T
i<ω Gi = ∅.

A class¡ ⊆ 2X has the reduction property if for every A; A0∈ ¡ there are B; B 0∈ ¡

such that B ⊆ A, B 0⊆ A0, A ∪ A0 = B ∪ B 0 and B ∩ B 0 = ∅.
Our ¡ ⊆ 2X has the generalized reduction property if for every sequence(Ai)i<ω ⊆ ¡

there is a sequence(Gi)i<ω ⊆ ¡ such that Gi ⊆ Ai, Gi ∩ Gj = ∅ (i; j < ! ; i 6= j ) and
S
i<ω Gi =

S
i<ω Ai.
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Chapter 3

The » = 3 case

As we announcedin the introduction, we start our work by constructing topological

Hurewicz test pairs for » = 3 and then we prove the corresponding theorems for ¦ 0
2

generatedideals. From now on (X ; ¿) denotesa Polish space.

3.1 The Π0
3 set of Lusin

We will investigatethe following object.

De¯nition 3.1. Let P ⊆ X . We call the pair {P; ¿P} a ¦ 0
3(¿) topological Hurewicz test

pair in X if

1. P is a ¦ 0
3(¿) set;

2. ¿P is a Polish topology re¯ning ¿;

3. P is a nowhere¿P -dense¦ 0
1(¿P ) set;

4. for every ¦ 0
2(¿) set A ⊆ X and basic ¿P -open set G with G ∩ P 6= ∅, if A ∩ P is

¿P |P -residual in G ∩ P then A is ¿P -residual in G.

17
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As we shall seelater, there exist ¦ 0
3(¿) topologicalHurewicz test pairs in uncountable

Polish spaces.We present a construction providing such setsin a su±ciently largevariety

for our purposes.First we dē ne the topologiescorresponding to P.

De¯nition 3.2. Considera ¦ 0
3(¿) set P and ¯x a presentation

P =
\

i<ω

P i; P i =
[

j<ω

P i
j

with ¦ 0
1(¿) setsP i

j ⊆ X (i; j < ! ). Set

Pn = {P i
j : i < n; j < ! } (n ≤ ! ); P = {X \ P i : i < ! }:

We dē ne ¿<P = ¿[Pω] and ¿P = ¿<P [P].

Claim 3.3. We have the following.

1. P is ¦ 0
2(¿<P ) and ¦ 0

1(¿P ).

2. If G is basic ¿P -open and G ∩ P 6= ∅ then G is in fact basic ¿<P -open.

3. The topologies ¿P |P and ¿<P |P coincide.

4. If G is basic ¿<P -open and G ∩ X \ P i 6= ∅ (n ≤ i < ! ) then G is basic ¿[Pn]-open.

5. If G is a ¿[Pn]-open set then the topologies

¿P |G\ (
T

i < n P
i )n

S
n · j < ! P

j and ¿[Pn]|G\ (
T

i < n P
i )n

S
n · j < ! P

j

coincide.

Pro of. The ¯rst statement is obvious. Since¿P = ¿<P [P], proper basic ¿P -open sets

do not intersect P, which shows 2. Form this we immediately get 3.

By dē nition, if a set is basic¿<P -open then it is basic¿[Pn]-open for somen < ! . But

a basic¿[Pi+1 ]-open but not ¿[Pi]-open set G0 satis̄ es G0⊆ P i (i < ! ), so 4 follows.
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For 5, it is enoughto consider the casewhen G ∩
¡T

i<n P i
¢
\ S

n· j<ω P j 6= ∅. Let

H be a nonempty basic ¿P -open set which intersects G ∩
¡T

i<n P i
¢
\ S

n· j<ω P j, say

H = H0 ∩
T
k<l X \ Pmk whereH0 is basic¿<P -open, l < ! and mk < ! (k < l). Then we

have n ≤ mk (k < l), soG∩
¡T

i<n P i
¢
\S n· j<ω P j ⊆ T

k<l X \Pmk . SinceH0∩X \P j 6= ∅
(n ≤ j < ! ), H0 is basic¿[Pn]-open by 4. Thus

H ∩G ∩
Ã

\

i<n

P i

!

\
[

n· j<ω

P j = H0 ∩G ∩
Ã

\

i<n

P i

!

\
[

n· j<ω

P j

whereH0 is basic¿[Pn]-open, so the statement follows and the proof is complete.¥

Using topologiesof Dē nition 3.2 we can formulate a su±cient condition for that

{P; ¿P} is a topologicalHurewicztest pair. Observe that the requirements concernmainly

the presentation of P insteadof P itself; in the next chapter wewill discussthe advantages

and inconveniencesof this.

Theorem 3.4. With the notation of Definition 3.2, suppose that P j ⊆ P i (i ≤ j < ! )

and P i is ¿[Pi]-dense and ¿[Pi]-meager in X (i < ! ); then

1. P is ¿<P -residual;

2. {P; ¿P} is a ¦ 0
3(¿) topological Hurewicz test pair.

Pro of. For 1, it is enoughto show that P i is ¿<P -dense(i < ! ); being ¿<P -open this

implies that each P i and henceP is ¿<P -residual. We have that P i is ¿[Pi] denseand

contains P j (i ≤ j < ! ). So if G is a basic ¿<P -open set then either G is ¿[Pi]-open and

so P i ∩G 6= ∅, or G is not ¿[Pi]-open henceG ⊆ P i. This provesthe statement.

For 2 we check the conditions of Dē nition 3.1: 1 holds by the choice of P. By

Dē nition 3.2, the topology ¿P is Polish and re¯nes ¿, which proves2.

For 3, by Claim 3.3.1 P is ¦ 0
1(¿P ) so it remainsto show that P doesnot contain any

nonempty basic ¿P -open set. Supposethat G ⊆ P and G is nonempty basic ¿P -open.
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Then by Claim 3.3.2, G is basic¿<P -open hencebasic¿[Pn]-open for somen < ! . But Pn

is ¿[Pn]-meager,so G 6⊆ Pn which contradicts G ⊆ P ⊆ Pn.

For 4, let A ⊆ X be ¦ 0
2(¿), G be a basic ¿P -open set with G ∩ P 6= ∅ and suppose

that A ∩P is ¿P |P -residual in G∩P. Observe that sinceA is ¦ 0
2(¿), (¦ 0

2(¿[Pn]) (n ≤ ! ),

¦ 0
2(¿P ), resp.), the notions \meager" and \nowheredense" coincidefor A in the topology

¿, (¿[Pn] (n ≤ ! ), ¿P , resp.).

By Claim 3.3.2, G is actually ¿<P -open. Sinceby 1, P is ¿<P -residualin X and by Claim

3.3.3 the topologies¿P |P and ¿<P |P coincide,we have that A is ¿<P -residual in G. Suppose

that A is not ¿P -residual in G; that is we have a nonempty basic ¿P -open set G0 ⊆ G

such that A ∩G0 is ¿P -meagerthus ¿P -nowheredensein G0. Soby passingto a nonempty

basic ¿P -open subset we can assumethat A ∩ G0 = ∅. Since P j ⊆ P i (i ≤ j < ! ),

we have G0 = G00∩ (X \ Pn) for somen < ! where G00 ⊆ G is basic ¿<P -open. Since

G00∩ (X \ Pn) 6= ∅, from Claim 3.3.4 we get that G00 is basic ¿[Pn]-open. Now G00⊆ G

implies that A is ¿<P -residual hence¿<P -densein G00. Since¿[Pn] is coarserthan ¿<P , A is

¿[Pn]-denseso ¿[Pn]-residual in G00. Thus A and X \ Pn are both ¿[Pn]-residual in G00

which yields A ∩G00∩ (X \ Pn) 6= ∅, a contradiction which completesthe proof.¥

The following theorem describes important additional properties of the construction

in Theorem3.4, and in fact the ¯rst four statements canbe consideredasa reformulation.

The ¯fth statement points out an obvious fact.

Corollary 3.5. Let {P; ¿P} be a ¦ 0
3(¿) topological Hurewicz test pair as in Theorem 3.4.

Then the following hold.

1. If A ⊆ X is ¦ 0
2(¿) and ¿<P -residual then A is ¿P -residual.

2. If A ⊆ X is § 0
3(¿) and of ¿<P -second category then A is of ¿P -second category.

3. If A ⊆ X is § 0
2(¿) and of ¿P -second category then A is of ¿<P -second category.
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4. If A ⊆ X is ¦ 0
3(¿) and ¿P -residual then A is ¿<P -residual.

5. P is a proper ¦ 0
3(¿) set.

Pro of. Let A be ¦ 0
2(¿) and ¿<P -residual. By Theorem3.4.1, P is a ¿<P -residual ¦ 0

2(¿<P )

set soA ∩P 6= ∅ and A ∩P is ¿<P |P -residual in P. By Claim 3.3.3 the topologies¿<P |P and

¿P |P coincide,sowe have that A ∩P is ¿P |P -residual in P. By Theorem3.4.2, Dē nition

3.1.4 applieswith G = X and we concludethat A is ¿P -residual in X , as required.

For 2, let A =
S
i<ω Ai with ¦ 0

2(¿) set Ai (i < ! ). As in the proof of 1, if A is of

¿<P -secondcategorythen there existsan i < ! such that Ai ∩P is ¿<P |P -residual in G∩P

for somebasic¿<P -open set G with G ∩ P 6= ∅. Sinceby Claim 3.3.3 the topologies¿<P |P
and ¿P |P coincide, we have that Ai ∩ P is ¿P |P -residual in G ∩ P. Thus G is a basic

¿P -open set with G∩P 6= ∅, by Theorem3.4.2, Dē nition 3.1.4 appliesand givesthat Ai

is ¿P -residual in G. Thus A is of ¿P -secondcategory, as required.

Statements 3 and 4 follow from 1 and 2 by taking complements.

Finally supposethat P is § 0
3(¿). SinceP is ¿<P -residual by Theorem3.4.1, from 2 we

get that P is of ¿P -secondcategory. But P is ¿P -nowheredenseby Dē nition 3.1.3. This

contradiction completesthe proof.¥

We prove hereanother, a bit moretechnical lemmabut of the same° avor asCorollary

3.5.

Lemma 3.6. Let {P; ¿P} be a ¦ 0
3(¿) topological Hurewicz test pair as in Theorem 3.4.

Let A ⊆ X be a ¿P -meager ¦ 0
2(¿) set. If G is a basic ¿[Pn]-open but not ¿[Pn¡ 1]-open set

for some n < ! , put

ZX,P
G (A) = clτ [Pn ](A ∩G):

Then ZX,P
G (A) is ¿[Pn]-meager in G.
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Pro of. Supposethat ZX,P
G (A) is of ¿[Pn]-secondcategoryin G. Now the § 0

2(¿) set Pn

is ¿[Pn]-meagerin G, sowehavethat A is of ¿[Pn]-secondcategoryin G\Pn. SinceG is not

¿[Pn¡ 1]-open and P j ⊆ P i (i ≤ j < ! ), we have that G\Pn = G∩
¡T

i<n P i
¢
\S

n· j<ω P j.

Thus from Claim 3.3.5 we obtain that the topologies¿P |GnP n and ¿[Pn]|GnP n coincide. So

A is of ¿P -secondcategory in the ¿P -open G \ Pn, a contradiction. This completesthe

proof.¥

Theorem1.2says in particular that in (C; ¿C) from the point of view of Hurewicztests

each proper ¦ 0
3(¿C) set is the same,up to passingto a perfect subsetof C. Preciselywe

have the following.

Corollary 3.7. Let P; P0⊆ C be proper ¦ 0
3(¿C) sets. Then there are continuous one-to-

one maps '; ' 0: C → C such that ' ¡ 1(P) = P0 and ' 0¡ 1(P0) = P .

Theorem3.4showsthat a fairly big family of ¦ 0
3(¿C) setsP form a topologicalHurewicz

test with the natural re¯nement ¿P of ¿ but in consequencethe reasoningis at least

notationally complicated. So in view of Corollary 3.7 we can ¯x one special ¦ 0
3(¿C) set

for which the topologies¿<P and ¿P becomesimple without loosing to much generality.

Sincethe method we apply had already beenusedby Lusin to build (probably the ¯rst)

proper ¦ 0
3(¿C) set, we denoteit by PL (seealso [9]). We carry out the construction in an

arbitrary perfect Polish space(X ; ¿).

For every ¯nite sequences ∈ ! <ω, ¯x a nonempty perfectsetPs ⊆ X with the following

properties:

P; = X ;(3.1)

Ps_ i ∩ Ps_ j = ∅ (s ∈ ! <ω; i < j < ! );(3.2)

Ps ⊆ Pt and Ps is ¿|Pt -nowheredensein (Pt; ¿|Pt ) (t ⊂ s ∈ ! <ω);(3.3)
[

i<ω

Ps_ i is ¿|Ps -densein (Ps; ¿|Ps ) (s ∈ ! <ω):(3.4)
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To have Ps_ i ⊆ Ps (i < ! ), one simply has to take a countable densesubsetDs =

{d1; d2; : : : } ⊆ Ps and cover successively every di with a perfect set Ps_ i which is nowhere

densein (Ps; ¿C |Ps ) and disjoint from Ps_ j (j < i ). Then (3.1-3.4) obviously hold. Once

this done, let

Pn = {Ps : s ∈ ! <ω; |s| < n} (n ≤ ! );(3.5)

Pn =
[

s 2 ! <!

j sj = n

Ps (n < ! ); PL =
\

n<ω

Pn:

Observe that this notation is in accordancewith Dē nition 3.2. From now on if we

take a PL in X then we assumethat the above construction has beencarried out, such

that (3.1-3.5) hold. Observealsothat the conditionsof Theorem3.4aresatis̄ ed: P j ⊆ P i

(i ≤ j < ! ) by (3.3), P i is ¿[Pi]-densein X by (3.4) and ¿[Pi]-meagerin X by (3.3). So

{PL; ¿PL } is a topological Hurewicz test pair, in particular PL is a proper ¦ 0
3(¿) set by

Corollary 3.5.5. Finally we formulate a corollary of Lemma 3.6, which gets particularly

simple for {PL; ¿PL }. We ¯x a notation in advance.

De¯nition 3.8. For every A ⊆ X set ZX,PL
s (A) = clτ (A ∩ Ps) (s ∈ ! <ω) and

ZX,PL (A) = PL ∪
[

s2ω< !

ZX,PL
s (A) \ P jsj+1 :

Corollary 3.9. The topologies ¿|Ps and ¿[Pjsj+1 ]|Ps coincide (s ∈ ! <ω). A basic ¿<PL
-open

set is of the form G ∩ Ps where G basic ¿-open and s ∈ ! <ω.

Let A ⊆ X be a ¿PL -meager ¦ 0
2(¿) set. Then

1. ZX,PL
s (A) = ZX,PL

Ps
(A) (s ∈ ! <ω);

2. ZX,PL
s (A) is ¿|Ps -nowhere dense in Ps (s ∈ ! <ω);

3. X \ ZX,PL (A) is ¿<PL
-dense in X .
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Pro of. The coincidenceof the topologiesand the structure of basic ¿<PL
-open sets

follow from (3.2) and (3.3). This gives

ZX,PL
s (A) = clτ (A ∩ Ps) = clτ [P j sj +1](A ∩ Ps) = ZX,PL

Ps
(A) (s ∈ ! <ω);

which is 1.

By Lemma 3.6, ZX,PL
Ps

(A) is ¿[Pjsj+1 ]|Ps -meagerin Ps (s ∈ ! <ω), so since \meager"

and \nowheredense" coincidefor ¦ 0
2(¿) sets,2 follows from 1.

For 3, let G be a basic ¿<PL
-open set, say G = G0∩ Ps where G0 is basic ¿-open and

s ∈ ! <ω. By (3.2) and (3.3) we have Ps ∩ ZX,PL (A) ⊆ ZX,PL
s (A) ∪ P jsj+1 , thus

G ∩ X \ ZX,PL (A) = G0∩ Ps \ (Ps ∩ ZX,PL (A)) ⊇ G0∩ Ps \ (ZX,PL
s (A) ∪ P jsj+1 ):

SinceZX,PL
s (A) is ¿|Ps -nowheredensein Ps by 2, and P jsj+1 is ¿|Ps -meagerin Ps by (3.3),

G0∩ Ps \ (ZX,PL
s (A) ∪ P jsj+1 ) 6= ∅; which completesthe proof.¥

3.2 Generating ideals

The next step is to show that if (X ; ¿) is a Polish spaceand P ⊆ X is a Borel but not

§ 0
3(¿) set then the ¾-ideal generatedby the § 0

3(¿) subsetsof P canbe coveredby a ¾-ideal

I strongly generatedby some¦ 0
3(¿) subsetsof P such that P =∈ I. This is surprising

becauseas we will seelater there are § 0
3(¿C) setscontained by PL which can be covered

only by ¿PL |PL -residual¦ 0
3(¿C) subsetsof PL. We think that this is the bestcovering result

for § 0
3-generatedidealswhich can be obtained in ZFC. We will return to this questionin

the last chapter.

Theorem 3.10. Let (X ; ¿) be an uncountable Polish space and P ⊆ X be a proper ¦ 0
3(¿)

set. Then there is a mapping ©: S0
3 (P) → P0

3 (P) such that A ⊆ ©(A) and

P \
[

i<ω

©(Ai) 6= ∅ (A; Ai ∈ S0
3 (P) (i < ! )) :
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Pro of. First we construct © = ©L for (X ; ¿) = (C; ¿C) and P = PL. For every

A ∈ S0
3 (PL) ¯x a presentation A =

S
j<ω Aj whereAj is ¦ 0

2(¿C) (j < ! ). Set

©s(A) =
[

j<jsj

clτC (Aj ∩ Ps) (s ∈ ! <ω);

©n(A) =
[

jsj= n

©s(A) (n < ! ); ©L(A) =
\

m<ω

[

m· n<ω

©n(A):

It is clear that ©L(A) is ¦ 0
3(¿C); ©n(A) ⊆ Pn ⊆ Pm (m ≤ n < ! ) shows ©L(A) ⊆ PL.

SinceA ⊆ PL ⊆ Pn implies Aj ⊆ ©n(A) for j < n < ! , we also have A ⊆ ©L(A). It

remains to show that if Ai ∈ S0
3 (PL) with its ¯xed presentation Ai =

S
j<ω Ai

j (i < ! )

then we can ¯nd a point in PL \
S
i<ω ©L(Ai). We do this by constructing inductively a

sequencesn ∈ ! <ω, |sn| = n (n < ! ) and a basic¿C-open set Gn (n < ! ) such that

sn ⊂ sn+1 (n < ! );(3.6)

Gn ∩ Psn 6= ∅ (n < ! );(3.7)

clτC (Gn+1 ) ⊆ Gn (n < ! );(3.8)

Gn+1 ∩ Psn +1 ⊆ C \
[

i· n

©n

¡
Ai

¢
(n < ! ):(3.9)

Then by (3.6), (3.7) and (3.8) we have
T
n<ω Gn ∩ Psn 6= ∅ and

T
n<ω Gn ∩ Psn ⊆ PL, so

(3.9) gives
\

n<ω

Gn ∩ Psn ⊆ PL \
[

i<ω

©L(Ai):

It remains to make the construction. Set s0 = ∅, G0 = C. Supposethat sn, Gn are

already dē ned; we ¯nd our sn+1 , Gn+1 . By (3.2), ©n(Ai) ∩ Psn = ©sn (Ai) (i < ! ). First

we obtain a basic¿C-open set G ⊆ Gn such that G ∩ Psn 6= ∅ and G ∩ Psn ∩ ©sn (Ai) = ∅
(i ≤ n). For this we show that ©sn (Ai) (i ≤ n) is ¿C |Psn

-nowheredensein Psn .

We have ©sn (Ai) =
S
j<jsj clτC (Ai

j ∩ Psn ) (i ≤ n). SinceAi
j ⊆ PL, Ai

j is a ¿PL -meager

¦ 0
2(¿C) set (i ≤ n; j < |sn|). Henceby Corollary 3.9.2, clτC (Ai

j ∩ Psn ) (i ≤ n; j < |sn|) is

¿C |Psn
-nowheredensein Psn . So©sn (Ai) (i ≤ n) is indeed¿C |Psn

-nowheredensein Psn .
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We obtained that there is a basic¿C-open set G ⊆ Gn which satis̄ es G∩Psn 6= ∅ and

G∩Psn ⊆ C\S i· n ©n(Ai). Wecanpassto a basic¿C-opensubsetGn+1 ⊆ clτC (Gn+1 ) ⊆ G

such that Gn+1 ∩ Psn 6= ∅; then we have (3.8). By (3.4) we can ¯nd an sn ⊂ sn+1 ∈ ! <ω,

|sn+1 | = n + 1 with Psn +1 ∩ Gn+1 6= ∅, thus (3.6), (3.7) and (3.9) hold. This choice

completesthe inductive step and the proof of the special case.

If (X ; ¿) and P are arbitrary, by Theorem 1.2 we can take a continuous one-to-one

map ' : (C; ¿C) → (X ; ¿) such that ' ¡ 1(P) = PL. For A ∈ S0
3 (P) let

©(A) = (P \ ' (PL)) ∪ ' (©L(' ¡ 1(A))) :

Sincehomeomorphismpreserves the Borel classof sets, this dē nition makes senseand

ful¯lls the requirements.¥

One may say that the construction in Theorem3.10 is trivial if the § 0
3(¿C) subsetsof

PL (which are all ¿PL |PL -meagerby Corollary 3.5.2) could be coveredby a ¿PL |PL -meager

¦ 0
3(¿C) subsetof PL. Then a categoryargument would give that

PL \
[

i<ω

©(Ai) 6= ∅ (A; Ai ∈ S0
3 (P) (i < ! )) :

However, this is not the case. The construction in the following claim has already been

usedby S. Solecki in [21] to prove Theorem1.4.

Claim 3.11. There is a § 0
3(¿C) set A ⊆ PL such that if B is ¦ 0

3(¿C) and A ⊆ B ⊆ PL

then B is ¿PL |PL -residual in PL.

Pro of. In this proof B(x; ") denotesthe ¿C-open ball centered at x ∈ C with radius

" > 0. Fix a v ∈ ! <ω \ {∅} and a basic¿C-open set V satisfying V ∩Pv 6= ∅. We dē ne an

injection ' : ! <ω → ! <ω, a map j : ! <ω → ! and basic ¿C-open sets (Ut)t2ω< ! with the
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following properties.

U; = V; ' (∅) = v;(3.10)

s ⊆ t =⇒ ' (s) ⊆ ' (t);(3.11)

Us ⊆ clτC (Us) ⊆ Ut \ Pϕ(t)_ j(t) (s; t ∈ ! <ω; t ⊂ s);(3.12)

Us ∩ Ut = ∅ (s; t ∈ ! <ω; |t| = |s|);(3.13)

diamτC (Us) ≤ 2¡j sj (s ∈ ! <ω);(3.14)

Us ∩ Pϕ(s)_ j(s) 6= ∅ (s ∈ ! <ω);(3.15)

∀x ∈ Us ∩ Pϕ(s)_ j(s) ∀" > 0 ∃i < ! (Us_ i ⊆ B(x; ")) (s ∈ ! <ω):(3.16)

Supposethat the construction is done. Let Av,V =
T
n<ω

S
s2ω< ! , jsj= n Us. This set is

¦ 0
2(¿C), we show that Av,V ⊆ PL. By (3.13) we have Av,V =

S
σ2ω!

T
n<ω Uσjn . By (3.14),

(3.15) and (3.3) we have
\

n<ω

Uσjn =
\

n<ω

¡
Uσjn ∩ Pϕ(σjn )

¢
∈ PL (¾∈ ! ω)

so indeedAv,V ⊆ PL.

Next we show that Us∩Pϕ(s)_ j(s) ⊆ clτC (Us∩Av,V ) (s ∈ ! <ω). Let x ∈ Us∩Pϕ(s)_ j(s) .

By (3.16) there is a sequence(i l)l<ω ⊆ ! such that Us_ il ⊆ B(x; 1=l). By (3.12) and

(3.14) we have Av,V ∩ Us 6= ∅ (s ∈ ! <ω), in particular Av,V ∩ Us_ il 6= ∅ (l < ! ) so indeed

x ∈ clτC (Us ∩ Av,V ).

Finally we show that every § 0
2(¿C) set H ⊆ C for which Av,V ⊆ H is of ¿<PL

-second

categoryin V ∩Pv. Let H =
S
i<ω H i whereH i is ¦ 0

1(¿C) (i < ! ). By the Baire Category

Theorem in Av,V , there is an i < ! such that H i ∩ Av,V is of ¿C |Av ;V -secondcategory in

Av,V , say H i contains a basic ¿C |Av ;V -open set G ∩ Av,V where G is basic ¿C-open. By

(3.14) there is an s ∈ ! <ω such that Us ⊆ G. By (3.15) we have Us ∩ Pϕ(s)_ j(s) 6= ∅. As

we have seenabove,

Us ∩ Pϕ(s)_ j(s) ⊆ clτC (Us ∩ Av,V ) ⊆ clτC (G ∩ Av,V ) ⊆ H i:
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SincePϕ(s)_ j(s) ⊆ Pv by (3.10) and (3.11), H i and thus H is indeedof ¿<PL
-secondcategory

in V ∩ Pv.

To have A, ¯x an enumeration {(vi; Vi) : i < ! } of the pairs (v; V) wherev ∈ ! <ω, V is

basic¿C-open and V ∩Pv 6= ∅. Set A =
S
i<ω Avi ,Vi . If B is a ¦ 0

3(¿C) set containing A, say

B =
T
i<ω B i with B i § 0

2(¿C) then as we have shown above, B i (i < ! ) is of ¿<PL
-second

category in every nonempty ¿<PL
-open set. So B i (i < ! ) and henceB is ¿<PL

-residual.

Now if B ⊆ PL then B is ¿<PL
|PL residual in PL, by Claim 3.3.3 the topologies¿<PL

|PL and

¿PL |PL coincide,so B is ¿PL |PL -residual in PL, as stated.

So it remainsto make the construction; we do this recursively. Set U; = V, ' (∅) = v

and let j (∅) < ! besuch that V∩Pv_ j(; ) 6= ∅; such a j (∅) existsby (3.4). Sowehave(3.10-

3.15) for s = ∅. Supposethat we already have Us, ' (s) and j (s) for s ∈ ! <ω, |s| ≤ n such

that (3.11-3.15) hold for |s|; |t| ≤ n and (3.16) holds for |s| < n. For every s ∈ ! <ω with

|s| = n, using(3.3), we can¯x a countable setDs = {ds(i ) : i < ! } ⊆ Us∩Pϕ(s) \Pϕ(s)_ j(s)

with the property that clτC (D) = D ∪ clτC (Us ∩ Pϕ(s)_ j(s)). Then we can ¯nd a basic¿C-

open neighborhood Us_ i of ds(i ) such that

Us_ i ∩ Pϕ(s) 6= ∅; clτC (Us_ i) ⊆ Us \ Pϕ(s)_ j(s) ; Us_ i ∩ Us_ j = ∅ (i; j < ! ; i 6= j )

and diamτC (Us_ i) ≤ 2n+1+ i (i < ! ). Then (3.12-3.14) hold for |s| ≤ n + 1 and (3.16)

holds for |s| ≤ n. Dē ne ' (s) ⊂ ' (s_i ) to have Pϕ(s_ i) ∩Us_ i 6= ∅ (i < ! ); this is possible

by (3.4). Then (3.11) holds for |s|; |t| ≤ n + 1. Again by (3.4), we can have j (s_i ) < !

such that Pϕ(s_ i)_ j(s_ i) ∩ Us_ i 6= ∅ (i < ! ). Then also (3.15) holds for |s| ≤ n + 1. This

completesthe recursive step and the proof.¥

By assumingthe Continuum Hypothesis we can cover the § 0
3(¿C) subsetsof PL by

¦ 0
2(¿C) setssuch that PL is not in the ¾-ideal generatedby the covering sets. Combining

Theorem3.4 with the previousexamplewe seethat in this casethe covering ¦ 0
2(¿C) sets

cannot be the subsetsof PL: a ¦ 0
2(¿C) subsetof PL should be ¿PL |PL -meagerin PL while
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we have constructeda § 0
3(¿C) subsetof PL which can be coveredonly by ¿PL |PL -residual

¦ 0
3(¿C) subsetsof PL. For this covering by ¦ 0

2(¿) sets, Theorem 1.2 is too \imprecise"

in the sensethat it does not care about the presentation of ¦ 0
ξ(¿) sets. We prove an

alternative for » = 3.

Lemma 3.12. Let (X ; ¿) be a Polish space, (Ps)s2ω< ! be a family of ¦ 0
1(¿) subsets of

X satisfying (3.1-3.4). Let Pn, Pn (n < ! ) and PL be as in (3.5). Let A be a fixed

¿PL -meager ¦ 0
2(¿) set. If x? ∈ X \ZX,PL (A) and U ⊆ X is basic ¿-open with x? ∈ U then

there is a ¿-compact set F ⊆ X such that x? ∈ F ⊆ U \ A and (F ∩ Ps)s2ω< ! satisfies

(3.1-3.4) in the Polish space (F; ¿|F ).

Pro of. Let G = {Gn : n < ! } be an enumeration of the sets of the form G ∩ Ps

(s ∈ ! <ω; G basic¿-open). Let r ∈ ! <ω be such that x? ∈ Pr \ P jrj+1 . We dē ne

recursively a tree T ⊆ ! <ω and T = {(Vs; X s) : s ∈ T} such that T ∩ ! n (n < ! ) is ¯nite,

Vs ⊆ X (s ∈ T) is a basic¿-open set, X s = {xs_ i : i < ! ; s_i ∈ T} ⊆ X \ PL (s ∈ T) is

a ¯nite set, and with Vn =
S
s2T,jsj= n Vs, X n =

S
s2T,jsj= n X s (n < ! ) the following hold:

x? ∈ X n ⊆ X n+1 (n < ! );(3.17)

clτ (Vs_ i) ⊆ Vs ⊆ U (i < ! ; s;s_i ∈ T);(3.18)

Vs ∩ Vt = ∅ (s; t ∈ T; |s| = |t|);(3.19)

diamτ (Vs) < 2¡j sj (s ∈ T);(3.20)

Vs_ i ∩ X s = {xs_ i} (i < ! ; s_i ∈ T);(3.21)

clτ (Gn) ∩ X n = ∅ implies Gn ∩ Vn+1 = ∅ (n < ! );(3.22)

if i ≤ |r | is maximal such that xs ∈ Prj i then Vs ∩ clτ
¡
Prj i ∩ A

¢
= ∅ (s ∈ T);(3.23)

if xs ∈ Pt for somes ∈ T; t ∈ ! <ω then X s ∩ Vs ∩ (Ptjm \ Pm+1 ) 6= ∅ (m < |t|);(3.24)

if xs ∈ Pt for somes ∈ T; t ∈ ! <ω then X s ∩ Vs ∩
[

i<ω

Pt_ i 6= ∅:(3.25)
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Supposethat the construction is done,we show that

F =
\

n<ω

Vn = clτ (
[

n<ω

X n)

ful¯lls the requirements; here equality follows from (3.18), (3.20) and (3.21). By (3.18),

(3.19) and (3.20), F is compact, (3.17) and (3.18) imply that x? ∈ F ⊆ U.

We show that F ∩A = ∅: If x ∈ F then by (3.19) and (3.20) there is a unique ¾∈ ! ω

such that x =
T
n<ω Vσjn . Let i ≤ |r | be maximal for which xσjn ∈ Prj i for in¯nitely many

n < ! . By (3.21) we have limn! 1 xσjn = x so x ∈ Prj i . Fix an n < ! such that i is

maximal for which xσjn ∈ Prj i . Then by (3.23), Vσjn ∩ clτ (Prj i ∩ A) = ∅, in particular

x ∈ Prj i \ A, as stated.

Now we prove that (3.1-3.4) holds for (F ∩Ps)s2ω< ! in the Polish space(F; ¿|F ). Since

(3.1) and (3.2) are automatic we only have to check (3.3) and (3.4).

First weshow that F ∩Ps = clτ (
S
n<ω X n∩Ps). It is clearthat F ∩Ps ⊇ clτ (

S
n<ω X n∩

Ps). For the reversecontainment it is enoughto show that whenever G ∩ F ∩ Ps 6= ∅ for

somebasic¿-open set G then G∩X n ∩Ps 6= ∅ for somen < ! ; so let G∩F ∩Ps 6= ∅. By

regularity wecan¯nd anotherbasic¿-opensetG0⊆ clτ (G0) ⊆ G such that G0∩F ∩Ps 6= ∅.
Let Gn = G0∩ Ps. Since Gn ∩ Vn+1 6= ∅, by (3.22) we have clτ (Gn) ∩ X n 6= ∅ hence

G ∩ X n ∩ Ps 6= ∅, which provesthe statement.

For (3.3), let s ⊂ t and supposethat G∩ F ∩Pt 6= ∅ for somebasic¿-open set G. We

have to show that G ∩ F ∩ Ps \ Pt 6= ∅. By the preceding,xu ∈ G ∩ Pt for someu ∈ T,

so by (3.17), (3.18), (3.20) and (3.21), xu = xv ∈ Vv ⊆ G for someu ⊆ v ∈ T. Then by

(3.24) for m = |s| < |t| we get X v ∩ Vv ∩ (Ptjm \ Pm+1 ) 6= ∅. SincePt ⊆ Pm+1 , X v ⊆ F

and Vv ⊆ G, we have G ∩ F ∩ (Ps \ Pt) 6= ∅, as required.

For (3.4), supposethat G ∩ F ∩ Pt 6= ∅ for somebasic¿-open set G and t ∈ ! <ω. We

have to ¯nd somei < ! such that G ∩ F ∩ Pt_ i 6= ∅. Let xu ∈ G ∩ Pt; as above, we have

a u ⊆ v ∈ T with xu = xv ∈ Vv ⊆ G. Then by (3.25), X v ∩ Vv ∩
S
i<ω Pt_ i 6= ∅, so from
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Vv ⊆ G and X v ⊆ F we have G ∩ F ∩ S
i<ω Pt_ i 6= ∅ and we are done.

We do the construction recursively such that after the N th step of the recursion(3.17-

3.23) hold for n ≤ N while (3.24) and (3.25) hold for xs ∈ X N ¡ 1. Put ∅ ∈ T, set x ; = x?

and let x? ∈ V; ⊆ U be a basic ¿-open set such that V; ∩ clτ (Pr ∩ A) = ∅; this choice

is possiblesincex? =∈ ZX,PL (A), which meansthat x? =∈ clτ (Pr ∩ A). So x ; ; V; meet the

requirements.

Supposethat T ∩ ! N is dē ned, we have X N ¡ 1 and VN such that (3.17-3.23) hold for

n ≤ N , (3.24) and (3.25) hold for xs ∈ X N ¡ 1. We extend T up to level N + 1 and dē ne

X N , VN+1 such that (3.17-3.23) hold for n ≤ N + 1, (3.24) and (3.25) hold for xs ∈ X N

as follows. Let s ∈ T, |s| = N be arbitrary; sincexs =∈ PL, to satisfy (3.24) and (3.25)

for xs we have to take only ¯nitely many points. We show that we can pick each of these

points x in Vs such that

if i ≤ |r | is maximal for which x ∈ Prj i then x =∈ clτ (Prj i ∩ A).(3.26)

Let xs ∈ Pt for somet ∈ ! <ω. For (3.24) let m < |t|, and let i ≤ |r | be maximal

such that Ptjm ⊆ Prj i . We distinguish two cases.If Ptjm = Prj i then by Corollary 3.9.2,

clτ (Ptjm ∩A) is ¿|Pt j m
-nowheredensein Ptjm soby (3.3) we can pick a point in Vs ∩Ptjm \

(Pm+1 ∪ clτ (Ptjm ∩ A)). If Ptjm ⊂ Prj i then by (3.2) for every y ∈ Ptjm , i is the maximal

for which y ∈ Prj i . Sincexs ∈ Ptjm , we have Vs ∩ clτ (Prj i ∩ A) = ∅ by (3.23). By (3.3) we

can pick a point x in Vs ∩ Ptjm \ Pm+1 , such that x =∈ clτ (Prj i ∩ A) follows from x ∈ Vs.

For (3.25), if xs ∈ P jtj+1 then xs ∈ X s shows (3.25). So supposethat xs =∈ P jtj+1 .

By (3.4) we have a j < ! such that Vs ∩ Pt_ j 6= ∅. By Corollary 3.9.2, clτ (Pt_ j ∩ A)

is ¿|Pt _ j -nowhere densein Pt_ j so we can pick a point x in Vs ∩ Pt_ j \ clτ (Pt_ j ∩ A).

Let i ≤ |r | be maximal for which x ∈ Prj i . If r |i = t_j then we have x =∈ clτ (Prj i ∩ A).

If r |i 6= t_j then Pt ⊆ Prj i . We show that for xs, as well, i is the maximal such that

xs ∈ Prj i . If Pt = Prj i then this follows from x =∈ P jtj+1 while if Pt ⊂ Prj i then we are
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doneby the maximality of i for x. Thus by (3.23), Vs ∩ clτ (Prj i ∩ A) = ∅ so x ∈ Vs gives

x =∈ clτ (Prj i ∩ A).

Index xs and the new points with s_i (i < ns) for somens < ! , put s_i ∈ T (i < ns)

and take pairwisedisjoint basic¿-opensetsxs_ i ∈ Vs_ i ⊆ clτ (Vs_ i) ⊆ Vs such that (3.19),

(3.20), (3.22) and (3.23) hold; observe that (3.23) can be satis̄ ed by (3.26). Since(3.17),

(3.18), (3.21), (3.24) and (3.25) hold, this completesthe recursive step and the proof.¥

Instead of covering § 0
3(¿) setsby ¦ 0

2(¿) setswe dē ne § 0
2(¿) setsavoiding them. The

sequenceof § 0
2(¿) setsconstructedfor this must be specially nested.

De¯nition 3.13. Let (X ; ¿) bea Polish spaceand considerPL in X . Let 0 < ³ < ! 1. Set

B0 = {X }, while for 0 < ® < ³ , let Bα = {Bα
i : i < ! } be a collection of pairwise disjoint

¦ 0
1(¿) subsetsof X . Set Bα =

S
i<ω Bα

i (® < ³ ), Bζ =
T
α<ζ Bα. Let ¿[®] = ¿[

S
ϑ<α Bϑ],

¿<PL
[®] = ¿<PL

[
S
ϑ<α Bϑ] and ¿PL [®] = ¿PL [

S
ϑ<α Bϑ] (® ≤ ³ ). We say that (Bα)α<ζ is

PL-nested if

1. B β ⊆ Bα (®≤ ¯ < ³ );

2. Bα is ¿<PL
[®]-densein X (® < ³ );

3. Bα
i is ¿[®]-compact (® < ³ ; i < ! );

4. (Ps ∩Bα)s2ω< ! satis̄ es (3.1-3.4) in the Polish space(Bα; ¿[®]|B® ) for every ®≤ ³ if

³ is successorand for ® < ³ if ³ is limit.

Sincea compactPolish topology on a baseset hasno nontrivial compactPolish re¯ ne-

ment, Dē nition 3.13.3 says in particular that on Bα
i the topologies¿[¯ ] (¯ ≤ ®) coincide.

In the sequelweusethis property without further reference.Next weshow that Dē nition

3.13.4 holds for limit ® = ³ , as well.
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Lemma 3.14. Let (Bα)α<ζ be a PL-nested sequence for some ³ < ! 1 and suppose that

A ⊆ Bζ is ¦ 0
2(¿[³ ]|B³ ) and ¿PL [³ ]|B³ -meager. Then

1. Bζ is ¿<PL
[³ ]-residual in X ;

2. if ³ is a limit ordinal then (Ps ∩ Bζ)s2ω< ! satisfies (3.1-3.4) in the Polish space

(Bζ ; ¿[³ ]|B³ );

3. Bζ \ ZB³ ,PL \ B³ (A) is ¿<PL
[³ ]|B³ -dense in Bζ;

4. PL ∩ Bζ 6= ∅.

Pro of. By Dē nition 3.13.1 and 2, Bα (® < ³ ) is ¿<PL
[®]-denseand ¿<PL

[³ ]-open(® < ³ ).

Sincea ¿<PL
[³ ]-open but not ¿<PL

[®]-open set is contained in Bα (® < ³ ), Bα (® < ³ ) is also

¿<PL
[³ ]-dense.HenceBα (® < ³ ) and so Bζ is ¿<PL

[³ ]-residual in X , which is 1.

For 2, we have (3.1) and (3.2) automatically. To have (3.3), let t ⊂ s and supposethat

G∩Ps 6= ∅ for somebasic¿[³ ]|B³ -openset. That is, G = G0∩Bα
n∩Bζ for somebasic¿-open

set G0, ® < ³ and n < ! . But (3.3) holds in Bα
n , in particular U = Bα

n ∩G0∩ Pt \ Ps 6= ∅.
Now U is a ¿<PL

[³ ]-open set, so given that Bζ is ¿<PL
[³ ]-residualby 1, we have U ∩ Bζ 6= ∅,

as required.

To see(3.4) ¯x an s ∈ ! <ω and a basic¿[³ ]|B³ -open set G with G∩Ps 6= ∅. As before,

we have that G = G0∩ Bα
n ∩ Bζ for somebasic ¿-open set G0, ® < ³ and n < ! . Now

(3.4) holds in Bα
n henceBα

n ∩ G0∩ S
i<ω Ps_ i 6= ∅, say U = Bα

n ∩ G0∩ Ps_ i 6= ∅ for some

i < ! . Again, U is a ¿<PL
[³ ]-open set, so given that Bζ is ¿<PL

[³ ]-residual by 1, we have

U ∩ Bζ 6= ∅, which provesthe statement.

We have 3 sincefor ³ limit by 2, for ³ successorby Dē nition 3.13.4, Corollary 3.9.3

holds in the Polish space(Bζ ; ¿[³ ]|B³ ).

Finally by 2 for ³ limit and by Dē nition 3.13.4 for ³ successor,Theorem3.4.1 applies

and we get that PL∩Bζ is ¿<PL
[³ ]|B³ -residual in Bζ ; in particular, PL∩Bζ 6= ∅. This shows



           

34 CHAPTER 3. THE » = 3 CASE

4 and completesthe proof.¥

Now we have everything to prove the ideal generationtheorem. We remark that CH

is usedonly to assurethat the cardinality of the family of ¦ 0
2(¿) setsis ! 1.

Theorem 3.15. Assume CH. Let (X ; ¿) be a Polish space and P ⊆ X be a Borel not

§ 0
3(¿) set. Then there is a ¾-ideal I such that

1. I is strongly generated by its ¦ 0
2(¿) members;

2. S0
3 (P) ⊆ I;

3. P =∈ I.

Pro of. First we prove the special case(X ; ¿) = (C; ¿C), P = PL. Using CH, let

{Aα : ® < ! 1} be an enumeration of P0
2 (PL) such that A0 = ∅. We shall construct a

PL-nestedsequence(Bα)α<ω1
such that

Aα ∩ Bα = ∅ (® < ! 1) :(3.27)

Oncethis doneset

IPL = {G ⊆ C : ∃® < ! 1 (Bα ∩G = ∅)};

or, sinceBα+1 ⊆ Bα ⊆ Bα (® < ! 1) by Dē nition 3.13.1, equivalently

IPL = {G ⊆ C : ∃® < ! 1 (Bα ∩G = ∅)}:

By Dē nition 3.13, IPL is a ¾-ideal. Also by Dē nition 3.13.1, IPL is strongly generated

by its ¦ 0
2 (¿C) members. By (3.27) it contains P0

2 (PL), henceS0
3 (PL), as well. Finally

Lemma 3.14.4 implies that PL =∈ I, as required.

It remains to make the construction. We proceedby induction; to start with, set

B0 = {B 0
0} with B 0

0 = C. Supposethat Bα is dē ned for ® < ³ such that the sequence
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(Bα)α<ζ is PL-nested and (3.27) hold. By Dē nition 3.13.4 if ³ is a successorand by

Lemma 3.14.2 if ³ is limit, {PL ∩ Bζ ; ¿PL [³ ]|B³ } is a topological Hurewicz test pair; in

particular, PL ∩ Bζ is ¿PL [³ ]|B³ meagerin Bζ . SinceAζ ∩ Bζ ⊆ PL ∩ Bζ and , Aζ ∩ Bζ is

a ¿PL [³ ]|B³ -meager¦ 0
2(¿[³ ]|B³ ) set. Soby Lemma 3.14.3 we can ¯x a countable set

Y = {xn : n < ! } ⊆ Bζ \ ZB³ ,PL \ B³ (Aζ ∩ Bζ)

such that Y is ¿<PL
[³ ]|B³ -densein the Polish space(Bζ ; ¿<PL

[³ ]|B³ ). We dē ne recursively

B ζ
n (n < ! ) such that

S
i<n B ζ

i 6= Bζ (n < ! ), (Bα)α<ζ+1 is PL-nestedand (3.27) hold.

Supposethat we already have B ζ
i ⊆ Bζ for i < n. Let m < ! be minimal with xm =∈

S
i<n B ζ

i and take a basic¿C [³ ]|B³ -open set U ⊆ Bζ such that x = xm ∈ U ⊆ Bζ \
S
i<n B ζ

i

and U ∪ S
i<n B ζ

i 6= Bζ . By Dē nition 3.13.4 if ³ is successorand by Lemma 3.14.2 if ³

is limit, we can apply Lemma 3.12 in the polish space(X ; ¿) = (Bζ ; ¿C [³ ]|B³ ) for x? = x,

U, (Ps ∩ Bζ)s2ω< ! and Aζ ∩ Bζ . Let B ζ
n ⊆ Bζ be the resulting ¿C [³ ]|B³ -compactset. This

dē nes recursively Bζ .
We have B ζ ∩ Aζ = ∅ so we have to check the conditions of Dē nition 3.13; 1 and 3

are obvious while 2 follows from Y ⊆ B ζ using Lemma 3.14.1. If ³ is limit, 4 follows for

® = ³ from Lemma 3.14.2. If ³ is a successorthen we have 4 for ® = » by the induction

hypothesis. Now we check 4 for ® = » + 1; (3.1) and (3.2) are automatic. To have (3.3),

let t ⊂ s and supposethat G ∩ Ps 6= ∅ for somebasic ¿C [³ + 1]|B³ +1
-open set G. Since

B ζ is ¿<PL
[³ + 1]|B³ +1

-open and ¿<PL
[³ + 1]|B ³ +1

-dense,we can assumethat G is of the form

G0∩ B ζ
n for somebasic ¿C-open set G and n < ! . But (3.3) holds in B ζ

n, in particular

B ζ
n ∩G0∩ Pt \ Ps 6= ∅, as required.

To see(3.4) ¯x an s ∈ ! <ω and a basic ¿C [³ + 1]|B³ +1
-open set G with G ∩ Ps 6= ∅;

as before, we can assumethat G = G0∩ B ζ
n for somebasic ¿C-open set G0 and n < ! .

Now (3.4) holds in B ζ
n henceB ζ

n ∩G0∩ S
i<ω Ps_ i 6= ∅ which provesthe statement. This

completesthe recursive step and the proof of the special case.
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For an arbitrary uncountable Polish space(X ; ¿) and Borel not § 0
3(¿) set P take a

continuousone-to-onemap ' : (C; ¿C) → (X ; ¿) such that ' ¡ 1(P) = PL. Let

I = {G ⊆ X : ∃G0∈ IPL (G ∩ ' (C) ⊆ ' (G0))} :

Sincehomeomorphismpreservesthe Borel classof setsand X \ ' (C) is ¿-open hence

¦ 0
2(¿), this ¾-ideal is strongly generatedby its ¦ 0

2(¿) members. If A ⊆ P is § 0
3(¿) then

' ¡ 1(A) ⊆ PL is § 0
3(¿C) so ' ¡ 1(A) ∈ IPL and henceA ∈ I. This shows S0

3 (P) ⊆ I. Since

PL =∈ IPL we have P =∈ I, which completesthe proof.¥

Let us turn back to Question1.5. The analogousquestionfor strong generationis the

following.

Question 3.16. Let (X ; ¿) be a Polish space and let 0 < » < ! 1. If a ¾-ideal I ⊆ 2X

is strongly generated by its ¦ 0
ξ(¿) members and a Borel set A ⊆ X is not in I then does

there exists a § 0
ξ+1 (¿) set B ⊆ A such that B =∈ I ?

If » = 1 then the answer is obviously a±rmativ e, sinceif B is a countable ¿|A-dense

subsetof A then B =∈ I is shown by A ⊆ clτ (B ).

Theorem3.15shows that for » = 2 the answer is consistently negative. We think that

Question 3.16 is independent. In particular, we belive that Theorem 3.10 gives the best

constructible covering for the ideal S0
3 (P). We will comeback to this problem in Chapter

8.



             

Chapter 4

Topological Hurewicz test pairs

This chapter is devoted to the extensionsof the results of Chapter 4 we have for 4≤ » <

! 1: the existenceof ¦ 0
ξ topologicalHurewicz test pairs and the ideal generationtheorem.

4.1 Distinguishing Borel classes

In this section we extend Theorem 3.4 to higher levels of the Borel hierarchy. In order

to producea su±ciently big family of test pairs we needa machinery which allows us to

condition on the construction of a given Borel set from simpler sets. For this, we handle

a ¦ 0
ξ(¿) set by coding its construction from closedsetsin a tree. The following inductive

dē nition makesthis concrete.

De¯nition 4.1. Let 0 < » < ! 1 and #i → ». For » = 1, [P; (P; )] is called a ¦ 0
1(¿) set

with presentation if P = P; is a ¦ 0
1(¿) set.

Supposethat the ¦ 0
ϑ(¿) setswith presentation are dē ned for # < ». Then [P; (Pt)t2T ]

is a ¦ 0
ξ(¿) set with presentation if T ⊆ ! <ω is a subtree such that {(i ) : i < ! } ⊆ T,

P = X \ S
i<ω P(i) and [P(i) ; (Pi_ t)t2T(i )

] is a ¦ 0
ϑi

(¿) set with presentation (i < ! ).

37
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It is important to note that a ¦ 0
ξ(¿) setswith presentation is not necessarilya proper

¦ 0
ξ(¿) set. For example,it can easily be empty.

Next we dē ne the test setsand the corresponding topologies.Thesetest pairs are ex-

actly what onemay expect; in particular, the following dē nition for » = 3 is in accordance

with Dē nition 3.1.

De¯nition 4.2. Let 0 < » < ! 1 and P ⊆ X . We call the pair {P; ¿P} a ¦ 0
ξ(¿) topological

Hurewicz test pair in X if

1. P is a ¦ 0
ξ(¿) set;

2. ¿P is a Polish topology re¯ning ¿;

3. P is a ¿P -nowheredense¦ 0
1(¿P ) set;

4. (a) » = 1: for every ¿-open set A ⊆ X and basic¿P -open set G with G ∩ P 6= ∅ if

A ∩ P is ¿P |P -residual in G ∩ P then A is ¿P -residual in a ¿P -open set G0⊆ G

such that G ∩ P ⊆ clτP (G0∩ P).

(b) 1 < » is a successorordinal: for every # < », ¦ 0
ϑ(¿) set A ⊆ X and basic

¿P -open set G with G ∩ P 6= ∅ if A ∩ P is ¿P |P -residual in G ∩ P then A is

¿P -residual in G.

(c) 1 < » is a limit ordinal: there is a ¿P -open set HX,P (#) (# < ») such that

P ⊆ HX,P (#) (# < »), and for every # < », ¦ 0
ϑ(¿) set A ⊆ X and basic

¿P -open set G with G ∩ P 6= ∅ if A ∩ P is ¿P |P -residual in G ∩ P then A is

¿P -residual in G ∩HX,P (#).

We associate inductively the topologies¿<P and ¿P to ¦ 0
ξ(¿) sets with presentation

(0 < » < ! 1).
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De¯nition 4.3. Considera ¦ 0
ξ(¿) set with presentation [P; (Pt)t2T ]. For » = 1 we dē ne

¿<P = ¿P = ¿. If 1 < » < ! 1 and ¿P is dē ned for ¦ 0
ϑ(¿) setswith presentation for # < »,

setP = {P(n) ∩
T
i<n(X \ P(i)) : n < ! }. We dē ne ¿<P =

W
i<ω ¿P(i )

and ¿P = ¿<P [P].

Observe that P is disjoint to the membersof P and the setsin P arepairwisedisjoint.

Next we prove an auxiliary claim on how P is related to the topologies¿<P , ¿P . For its

proof we will needthe Kuratowski-Ulam Theorem in the following form (see[4], (8.41)

Theorem).

Theorem 4.4. (Kuratowski-Ulam) Let (X ; ¿) and (Y; ¾) be Polish spaces, let G = GX ×
GY be a basic ¿ × ¾-open set in X × Y and consider a Borel set A ⊆ X × Y . Set

Ay = {x ∈ X : (x; y) ∈ A}. Then A is ¿×¾-residual in G if and only if

{y ∈ GY : Ay is ¿-residal in GX}

is ¾-residual in GY .

Claim 4.5. With the notation of Definition 4.3, we have the following.

1. P is ¦ 0
2(¿<P ) and ¦ 0

1(¿P ).

2. If G is basic ¿P -open and G ∩ P 6= ∅ then G is in fact basic ¿<P -open.

3. The topologies ¿P |P and ¿<P |P coincide.

4. The topologies

¿P |P(n )n
S

i< n P(i )
and ¿<P |P(n )n

S
i< n P(i )

(n < ! )

coincide.

5. If (Y; ¾) is any nonempty Polish space and {P; ¿P} is a ¦ 0
ξ(¿) topological Hurewicz

test pair in (X ; ¿) then {P ×Y; ¿P ×¾} is a ¦ 0
ξ(¿×¾) topological Hurewicz test pair

in (X × Y; ¿×¾).
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Pro of. We prove the ¯rst statement by induction on ». For » = 1 the statement is

obvious. Let now 1 < » < ! 1 and supposethat the statement holds for # < ». We have

P = X \
[

n<ω

P(n) = X \
[

n<ω

Ã

P(n) ∩
\

i<n

(X \ P(i))

!

;(4.1)

whereP(n) is ¿<P closed(n < ! ) by the inductive hypothesisand P(n) ∩
T
i<n(X \ P(i)) is

¿P -open (n < ! ) by dē nition, so 1 follows. By Dē nition 4.3, proper basic¿P -open sets

do not intersect P, which shows 2. This immediately implies 3.

Since the sets in P are pairwise disjoint, if G is a proper basic ¿P -open set which

intersectsP(n) \
S
i<n P(i) then G = G0∩ P(n) \

S
i<n P(i) whereG0 is basic ¿<P -open, so 4

holds.

For 5, let G be a basic ¿P ×¾-open set, say G = GX × GY whereGX (GY , resp.) is

basic ¿P -open in X (basic ¾-open in Y, resp.). If » = 1, let A be a ¿×¾-open set such

that A ∩ (P × Y) is ¿P ×¾-residual in (GX ∩ P) ×GY . Let

G0 =
[
{H ⊆ X × Y : H is basic¿P ×¾-open, A is ¿P ×¾-residual in H } :

Then A is ¿P ×¾-residual in G0 so it remainsshow that G∩ (P × Y) ⊆ clτP £ σ(G0∩ (P ×
Y)). Supposethat K = KX × K Y ⊆ G is a nonempty basic ¿P × ¾-open set such that

K ∩ (P ×Y) ⊆ G∩ (P ×Y) \ clτP £ σ(G0∩ (P ×Y)) . Then A ∩ (P × Y) is ¿P ×¾-residual

in (KX ∩ P) × K Y , so by Theorem4.4,

W = {y ∈ K Y : Ay ∩ P is ¿P |P -residual in KX ∩ P}

is ¾-residual in K Y . Since{P; ¿P} is a ¦ 0
1(¿)-topologicalHurewicz test pair, by Dē nition

4.2.4a, for every y ∈W there is a ¿P -open set K 0
X(y) ⊆ KX such that Ay is ¿P -residual in

K 0
X(y) and KX ∩P ⊆ clτ (K 0

X(y) ∩P). Since(X ; ¿P ) hascountable base,K 0
X(y) contains

the samebasic¿P -open set for ¾-residually many y's, that is there is a basic¿P -open set

K 0
X ⊆ KX and a basic¾-open set K 0

Y ⊆ K Y such that

{y ∈ K 0
Y : Ay is ¿P -residual in K 0

X}
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is ¾-residual in K 0
Y . Then by Theorem 4.4, A is ¿P ×¾-residual in K 0 = K 0

X × K 0
Y , that

is K 0⊆ G0, a contradiction.

Let now 1 < » < ! 1 be a successorordinal, # < » and A be a ¦ 0
ϑ(¿×¾) set such that

A ∩ (P × Y) is ¿P ×¾-residual in (GX ∩ P) ×GY . We show that A is ¿P ×¾-residual in

G. By Theorem4.4,

W = {y ∈ GY : Ay ∩ P is ¿P |P -residual in GX ∩ P}

is ¾-residual in GY . Since{P; ¿P} is a ¦ 0
ξ(¿)-topologicalHurewicz test pair, by Dē nition

4.2.4b, Ay (y ∈W) is ¿P -residual in GX . Then againby Theorem4.4, A is ¿P ×¾-residual

in G, as stated.

Let now 1 < » < ! 1 be a limit ordinal. We show that HX£ Y,P£ Y (#) = HX,P (#) × Y

ful¯lls the requirements. Let # < » and A be a ¦ 0
ϑ(¿×¾) set such that A ∩ (P × Y) is

¿P ×¾-residual in (GX ∩ P) ×GY . By Theorem4.4,

W = {y ∈ GY : Ay ∩ P is ¿P |P -residual in GX ∩ P}

is ¾-residual in GY . Since{P; ¿P} is a ¦ 0
ξ(¿)-topologicalHurewicz test pair, by Dē nition

4.2.4c, Ay (y ∈ W) is ¿P -residual in GX ∩ HX,P (#). Then again by Theorem 4.4, A is

¿P ×¾-residual in G ∩HX£ Y,P£ Y (#) = (GX ∩HX,P (#)) ×GY , as stated. This completes

the proof.¥

The following claim describes the behavior of a topological test pair with respect to

§ 0
ξ(¿) sets.

Claim 4.6. Let 0 < » < ! 1 and let {P; ¿P} be a ¦ 0
ξ(¿) topological Hurewicz test pair. If

for a § 0
ξ(¿) set W and ¿P -open set G with G∩P 6= ∅ we have that W ∩P is ¿P |P -residual

in G∩P , then W is ¿P -residual in a ¿P -open set H satisfying that G∩P ⊆ clτP (H ∩P).

Pro of. For » = 1 the statement follows from the dē nition. Let now 1 < » < ! 1 and

write W =
S
i<ω Qi; where Qi is ¦ 0

ϑi
(¿) and #i → ». If W ∩ G ∩ P is ¿P |P -residual in
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G ∩ P then let H i denote the maximal ¿P -open set in which Qi is ¿P -residual (i < ! ).

By Dē nition 4.2.4, the ¿P -open set H =
S
i<ω H i meetsevery ¿P -open set intersecting

G ∩ P, which provesthe statement.¥

In the following theorem we give a method allowing to build up inductively a topo-

logical Hurewicz test pair from simpler test sets.

Theorem 4.7. Let 0 < » < ! 1, #i → » and let [P; (Pt)t2T ] be a nonempty ¦ 0
ξ(¿) set with

presentation. If » = 1 and P is ¿-nowhere dense then {P; ¿P} is a topological Hurewicz

test pair.

For 1 < » < ! 1 suppose that
S
i<ω P(i) is ¿<P -dense and {P(i) ; ¿<P } is a ¦ 0

ϑi
(¿) topological

Hurewicz test pair (i < ! ). Then

1. P is ¿<P -residual;

2. {P; ¿P} is a ¦ 0
ξ(¿) topological Hurewicz test pair.

Pro of. If » = 1 then G0 = A ∩G doesthe job. Let now 1 < » < ! 1. Since{P(n) ; ¿<P }
(n < ! ) is a ¦ 0

ϑn
(¿) topological Hurewicz test pair, P(n) (n < ! ) is ¿<P -nowheredenseso

1 follows from (4.1).

For 2 we have to check the conditions of Dē nition 4.2; 1 holds by the choiceof P, 2

follows from Dē nition 4.3.

For 3, by Claim 4.5.1 it remainsto show that P doesnot contain any nonempty basic

¿P -open set. Supposethat G ⊆ P and G is nonempty basic ¿P -open. Then by Claim

4.5.2, G is basic¿<P -open, we have that
S
i<ω P(i) is ¿<P -densehenceP(n) ∩G 6= ∅ for some

n < ! , a contradiction.

Let now # < », A ⊆ X be ¦ 0
ϑ(¿), G be a basic¿P -opensetwith G∩P 6= ∅ and suppose

that A ∩ P is ¿P |P -residual in G ∩ P. By Claim 4.5.2, G is actually ¿<P -open while by 1

and Claim 4.5.3, A is ¿<P -residual in G.
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SetG0 = G if » is a successor.If » is limit then let I < ! be minimal such that # ≤ #I ,

setHX,P (#) =
T
i<I X \P(i) and G0 = G∩HX,P (#) = G\S

i<I P(i) . We have P ⊆ HX,P (#)

by Dē nition 4.1. It remainsto show that A is ¿P -residual in G0. Note that G0 is ¿<P -open

and that A is ¿<P -residual in G0.

Supposethat A is not ¿P -residual in G0; that is we have a nonempty basic ¿P -open

set ~G ⊆ G0 such that A ∩ ~G is ¿P -meagerin ~G. By passingto a nonempty basic¿P -open

subsetwe can assumethat

~G = G0 ∩ P(n) ∩
\

i<n

X \ P(i) = G0 ∩ P(n) \
[

i<n

P(i)

whereG0 is basic¿<P -open and n < ! . Note that if » is limit then I ≤ n by the choiceof

G0. Sowe can assumeG0 ∩
T
i<n X \ P(i) ⊆ G0.

We obtained that the § 0
ϑ(¿) set X \ A is ¿P |P(n )n

S
i < n P(i )

-residual in the ¿P -open set

P(n) ∩ G0 ∩
T
i<ω X \ P(i) . Thus by Claim 4.5.4, X \ A is ¿<P |P(n )n

S
i < n P(i )

-residual in the

¿<P |P(n )
-open set P(n) ∩G0 ∩

T
i<n X \ P(i) . Since# ≤ #n, we can apply Claim 4.6 for the

§ 0
ϑn

(¿) set W = X \ A, the ¦ 0
ϑn

(¿) topological Hurewicz test pair {P(n) ; ¿<P } and the ¿<P -

open set G = G0∩
T
i<n X \P(i) satisfying G∩P(n) 6= ∅. We get that X \A is ¿<P -residual

in a ¿<P -open set H such that G ∩ P(n) ⊆ clτ<
P

(H ∩ P(n)), in particular H 0 = H ∩ G 6= ∅
and H 0⊆ G0. Thus both A and X \A are ¿<P -residual in the nonempty ¿<P -open set H , a

contradiction. This completesthe proof.¥

Just as for the » = 3 case,the conditions of Theorem 4.7 concernthe presentation of

the ¦ 0
ξ(¿) set P instead of P itself. This handicapseemsto be inevitable. First, because

up to our knowledgethere are no results providing somemethod to build up § 0
ξ(¿) sets

from simpler sets,there is not even a canonicaldecomposition of § 0
2(¿) setsto ¦ 0

1(¿) sets.

It is easy to seethat by taking a wrong presentation the topology ¿P becomeswrong

either, that is we cannot just condition our test set to be proper ¦ 0
ξ(¿), a suitably chosen,

not natural presentation must be involved. Second,becausethe only way to build up a
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proper ¦ 0
ξ(¿) set for » > 4 is to use induction, so in view of our ¯rst reasonone could

hardly imagineTheorem4.7 without someinductive condition on the presentation. Even

if well explained, this handicap remains painful and this is responsible for most of the

complication we have to facelater. We closethis sectionwith the usual corollaries.

Corollary 4.8. For a 0 < » < ! 1, let {P; ¿P} be a ¦ 0
ξ(¿) topological Hurewicz test pair

as in Theorem 4.7. Let G be a basic ¿P -open set with G∩ P 6= ∅, or equivalently let G be

a nonempty basic ¿<P -open. Then the following hold.

1. If » is a successor, # < » and A ⊆ X is ¦ 0
ϑ(¿) and ¿<P -residual in G then A is

¿P -residual in G.

2. If A ⊆ X is § 0
ξ(¿) and of ¿<P -second category in G then A is of ¿P -second category

in G.

3. If » is a successor, # < » and A ⊆ X is § 0
ϑ(¿) and of ¿P -second category in G then

A is of ¿<P -second category in G.

4. If A ⊆ X is ¦ 0
ξ(¿) and ¿P -residual in G then A is ¿<P -residual in G.

5. P is a proper ¦ 0
ξ(¿) set.

Pro of. Let A be ¦ 0
ϑ(¿) and ¿<P -residual in G. SinceP is a ¿<P -residual ¦ 0

2(¿<P ) set,

A ∩ P is ¿<P |P -residual in G ∩ P. Since by Claim 4.5.3 the topologies¿<P |P and ¿P |P
coincide,A ∩ P is ¿P |P -residual in G ∩ P. So Dē nition 4.2.4b appliesand we conclude

that A is ¿P -residual in G, which proves1.

For 2, let A =
S
i<ω Ai with ¦ 0

ϑi
(¿) set Ai (i < ! ) where #i → ». Since P is a

¿<P -residual ¦ 0
2(¿<P ) set, if A is of ¿<P -secondcategory in G then for an i < ! , Ai ∩ P

is ¿<P |P -residual in G0∩ P for somebasic ¿<P -open set G0 ⊆ G. Since by Claim 4.5.3

the topologies¿<P |P and ¿P |P coincide,we have that Ai ∩ P is ¿P |P -residual in the basic
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¿P -open set G0 with G0∩P 6= ∅ soby Dē nition 4.2.4, Ai is ¿P -residual in somenonempty

¿P -open set G00⊆ G0 thus A is of ¿P -secondcategory in G, as required.

Statements 3 and 4 follow from 1 and 2 by taking complements.

For 5, suppose that P is § 0
ξ(¿). By Theorem 4.7.1, P is ¿<P -residual in X so by

Corollary 4.8.2, P is of ¿P -secondcategoryin X . But by Dē nition 4.2.3, P is ¿P -nowhere

dense,a contradiction. This completesthe proof.¥

There is an asymmetry in our approach to topological Hurewicz test sets: the test

set is of somemultiplicativ e classand the setstested are of the dual additive class. The

reasonfor this is that § 0
ξ is closedunder taking countable union while ¦ 0

ξ is not. However,

there is a testing theorem like Theorem 4.7 for special § 0
ξ sets (seee.g. Theorem 5.2 or

Corollary 5.3) but the statement of this theorem cannot go beyond Corollary 4.8. So we

do not work for that.

4.2 In tersection criteria

It turns out that the conditions of Theorem 4.7 are combinatorial, they are the sameas

requiring that countably many intersectionsare nonempty. We give theseintersections.

Our purposeis to show that if Theorem4.7 provesthat a set P is a topologicalHurewicz

test then P remainsa test set if the initial topology ¿ of the Polish spaceis changed.

De¯nition 4.9. Let 0 < » < ! 1 and [P; (Pt)t2T ] be a ¦ 0
ξ(¿) set with presentation. If

» = 1, set C1(X ; ¿; P) = {(X \ P; G) : G ∈ ¿}. If Cϑ(X 0; ¿0; P0) is dē ned for every # < »,

Polish space(X 0; ¿0) and ¦ 0
ϑ(¿) set with presentation P0 then let #i → » and set

Cξ(X ; ¿; P) = {(X \ P; G) : G ∈ ¿<P } ∪
[

i<ω

Cϑi

Ã

X ;
_

j<ω, j6= i

¿P(j )
; P(i)

!

:
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We say that [P; (Pt)t2T ] satisfies { ξ in (X ; ¿) if

∀(C; G) ∈ Cξ(X ; ¿; P) (G 6= ∅ =⇒ C ∩G 6= ∅):

Claim 4.10. Let 0 < » < ! 1. If a ¦ 0
ξ(¿) set with presentation [P; (Pt)t2T ] satisfies { ξ in

(X ; ¿) then {P; ¿P} satisfies the conditions of Theorem 4.7, so in particular {P; ¿P} is a

¦ 0
ξ(¿) topological Hurewicz test pair.

Pro of. We prove the statement by induction on ». For » = 1, { 1 means that P

is ¿-nowhere densein X , that is {P; ¿P} is a ¦ 0
1(¿) topological Hurewicz test pair by

Theorem 4.7. Supposenow that the statement holds for # < » and let #i → ». By { ξ,

X \ P =
S
i<ω P(i) is ¿<P -densein X and [P(i) ; (Pi_ t)t2T(i )

] satis̄ es { ϑi in the Polish space

(X ;
W
j<ω, j6= i ¿P(j )

). We have

¿<P =
_

j<ω

¿P(j )
=

Ã
_

j<ω, j6= i

¿P(j )

!

P(i )

;

soby the induction hypothesis{P(i) ; ¿<P } is a ¦ 0
ϑi

(¿) topologicalHurewicz test pair. Thus

the conditionsof Theorem4.7aresatis̄ ed, Theorem4.7.2 canbeappliedand weconclude

that {P; ¿P} is a ¦ 0
ξ(¿) topological Hurewicz test pair.¥

We needthat if P livesin a product spacebut it is nontrivial only on onecoordinate

then { ξ alsoconditions only on onecoordinate.

Claim 4.11. Let 0 < » < ! 1 and let [P; (Pt)t2T ] be a ¦ 0
ξ(¿) set with presentation in

the Polish space (X ; ¿). Let (Y; ¾) be a Polish space and set Q = P × Y , Qt = Pt × Y

(t ∈ T). Then [Q; (Qt)t2T ] is a ¦ 0
ξ(¿× ¾) set with presentation and for every (C; G) ∈

Cξ(X × Y; ¿×¾; Q), C is nontrivial only on the X coordinate.

Pro of. The statement easily follows by induction on ».¥

The next claim givesthat { ξ remainstrue if the initial topology getscoarser.
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Claim 4.12. Let ¿0 be a Polish topology on X refining ¿. If for some 0 < » < ! 1 a ¦ 0
ξ(¿)

set with presentation [P; (Pt)t2T ] satisfies { ξ in (X ; ¿0) then it satisfies { ξ in (X ; ¿) as well.

Pro of. We prove by induction on » that Cξ(X ; ¿; P) ⊆ Cξ(X ; ¿0; P) (0 < » < ! 1).

From this the statement follows.

For » = 1 we have ¿ ⊆ ¿0 and so C1(X ; ¿; P) ⊆ C1(X ; ¿0; P). Supposenow that the

statement holds for # < » and let #i → ». Since¿⊆ ¿0 we alsohave ¿<P ⊆ ¿0<
P , ¿P(i )

⊆ ¿0
P(i )

(i < ! ) so

{(X \ P; G) : G ∈ ¿<P } ⊆ {(X \ P; G) : G ∈ ¿0<
P}

and by the induction hypothesis,

Cϑi

Ã

X ;
_

j<ω, j6= i

¿P(j )
; P(i)

!

⊆ Cϑi

Ã

X ;
_

j<ω, j6= i

¿0
P(j )

; P(i)

!

:

This provesCξ(X ; ¿; P) ⊆ Cξ(X ; ¿0; P) and completesthe proof.¥

From now on in this section we work to prove the main lemma of the extensionof

Theorem 3.10. The technique of the proof is to exploit the low classHurewicz test sets

appearing in the construction of a ¦ 0
ξ(¿) test set. For this we needsomemore topologies.

De¯nition 4.13. Let 0 < » < ! 1 and let [P; (Pt)t2T ] be a ¦ 0
ξ(¿) set with presentation

which satis̄ es { ξ in (X ; ¿). We dē ne the topologies

¿P (n) =
_

i· n

¿P(i )
∨

_

n<i<ω

¿<P(i )
(n < ! ):

Corollary 4.14. Let 0 < » < ! 1, #i → » and let [P; (Pt)t2T ] be a ¦ 0
ξ(¿) set with pre-

sentation which satisfies { ξ in (X ; ¿). With the notation of Definition 4.13, {P(n) ; ¿P (n)}
satisfies the conditions of Theorem 4.7, thus it is a ¦ 0

ϑn
(¿) topological Hurewicz test pair.

We have

¿P (0)< =
_

i<ω

¿<Pi

and ¿P (n + 1)< = ¿P (n) (n < ! ).
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Pro of. Since[P; (Pt)t2T ] satis̄ es { ξ, [P(n) ; (Pn_ t)t2T(n )
] satis̄ es { ϑn in the Polish space

(X ;
W
j<ω, j6= i ¿P(j )

). Then by Claim 4.12, [P(n) ; (Pn_ t)t2T(n )
] satis̄ es { ϑn in the Polish space

Ã

X ;
_

i<n

¿P(i )
∨

_

n<i<ω

¿<P(i )

!

:

We have

¿P (n) = ¿P(n )
∨

_

i<n

¿P(i )
∨

_

n<i<ω

¿<P(i )

so by Claim 4.10, {P(n) ; ¿P (n)} satis̄ es the conditions of Theorem 4.7, so it is a ¦ 0
ϑn

(¿)

topological Hurewicz test pair. Similarly,

¿P (n + 1)< = ¿<P(n +1)
∨

_

i<n+1

¿P(i )
∨

_

n+1<i<ω

¿<P(i )
= ¿P (n) (n < ! )

and

¿P (0)< = ¿<P(0)
∨

_

0<i<ω

¿<P(i )
=

_

i<ω

¿<P(i )
;

which completesthe proof.¥

The next lemma is an application of our newly found Hurewicz test sets.

Lemma 4.15. Let 2 < » < ! 1 be such that we have » = »0 + 1 where »0 = »00 + 1 is

a successor. Let [P; (Pt)t2T ] be a ¦ 0
ξ(¿) set with presentation which satisfies { ξ. Fix an

n < ! . If A is a § 0
ξ00(¿) set and A is ¿P (n)-meager in a ¿P (n)-open set G then A is also

¿P (m)-meager in G (n ≤ m < ! ).

Pro of. If G is ¿P (n)-open then it is ¿P (m)-open (n ≤ m < ! ) so it is enoughto prove

that A is ¿P (n + 1)-meagerin G; from this the statement follows by induction.

By Corollary 4.14wehave that {P(n+1) ; ¿P (n+ 1)} is a ¦ 0
ξ0(¿) topologicalHurewicztest

pair and ¿P (n + 1)< = ¿P (n). Soby Corollary 4.8.3 our A cannot be of ¿P (n + 1)-second

category in G. This completesthe proof.¥
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The crucial point in the proof of Theorem 3.10 was the fact the a ¦ 0
2(¿) set of ¯rst

category is nowhere densewhatever is the underlying Polish topology. This is not true

for ¦ 0
ϑ(¿) setswhen 3≤ # < ! 1 so in order to avoid them we have to reducecomplicated

setsto ¦ 0
2(¿) sets. This is the motivation of the following concept.

De¯nition 4.16. Let T ⊆ ! <ω be a tree. We say that a subtreeT0⊆ T is even-complete

if

t ∈ T0; |t| odd =⇒
©

t|jtj¡ 1
_i : i < !

ª
∩ T0 = {t} &

{t_i : i < ! } ∩ T 6= ∅ & {t_i : i < ! } ∩ T ⊆ T0;

and T0 is maximal with respect to this property.

If T0 ⊆ T is an even complete subtree, t ∈ T0\ T(T0) with |t| even then t+ T ∈ T0

denotesthe unique extensionof t with |t+ T | = |t| + 1.

Lemma 4.17. For some 0 < » < ! 1 let [P; (Pt)t2T ] be a ¦ 0
ξ(¿) set with presentation. If

T0⊆ T is an even-complete subtree and x =∈ Pt (t ∈ T(T0)) then x =∈ P .

Pro of. We prove the statement by induction on ». For » = 1 and » = 2 the only

even-completesubtreeof T is T0 = {∅} that is x =∈ P; = P, as stated. Supposenow that

3 ≤ » and the statement holds for # < ». By maximality we have T0 6= ∅, hencethere is

a unique i < ! such that (i ) ∈ T0. But T0
i_ j is an even-completesubtreeof Ti_ j (j < ! )

so by the induction hypothesisx =∈ Pi_ j (j < ! ). That is x ∈ P(i) and so x =∈ P, which

completesthe proof.¥

Now we can prove the main result of the section.

Claim 4.18. Let 1 < » < ! 1 be such that we have » = »0 + 1 where »0 = »00 + 1 is a

successor. Let [P; (Pt)t2T ] be a ¦ 0
ξ(¿) set with presentation which satisfies { ξ. If An is a

¦ 0
ξ0(¿) set such that An ∩ P(n) = ∅ (n < ! ) then P \ S

n<ω An 6= ∅.
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Pro of. Fix a presentation [An; (An
t )t2T n ] (n < ! ). Take maps´ 1 : ! → ! and ´ 2 : ! →

! <ω such that

´ = (´ 1; ´ 2) : ! →
[

n<ω

{n} × Tn

is a bijection satisfying

t; t0∈ Tn; t ⊆ t0 =⇒ ´ ¡ 1(n; t) ≤ ´ ¡ 1(n; t0) (n < ! )(4.2)

and

´ 1(n) ≤ max{0; n − 1} (n < ! ):(4.3)

We construct inductively a basic ¿P (n)-open set Gn (n < ! ) and an even-complete

subtreeF n ⊆ Tn (n < ! ) such that

clτP (n)(Gn+1 ) ⊆ Gn (n < ! );(4.4)

Gn ∩ P(n) = ∅ (n < ! );(4.5)

Gn ∩ An is ¿P (n)-meager(n < ! );(4.6)

if ´ 2(n) ∈ F η1(n) \ T(F η1(n)) and |´ 2(n)| is even, then(4.7)

Gn ∩ Aη1(n)

η2(n)+F ´ 1(n ) _ i
is ¿P (n)-meager(n; i < ! );

if ´ 2(n) ∈ T(F η1(n)) then Gn ⊆ X \ Aη1(n)
η2(n) (n < ! ):(4.8)

Since the topology ¿<P is ¯ner than ¿P (n) (n < ! ), clτP (n)(Gn+1 ) ⊆ Gn implies that

clτ<
P

(Gn+1 ) ⊆ Gn (n < ! ), so we have that
T
n<ω Gn 6= ∅ by (4.4) and

T
n<ω Gn ⊆ P by

(4.5). By Lemma 4.17, (4.8) gives

\

n<ω

Gn ⊆ P \
[

n<ω

An:

In the following construction we will successively grow the treesF n, soa node can be

terminal after someintermediate step but not in the ¯nal tree. To be concrete,we will
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grow F n at ∅ in the nth step or never, while if s ∈ F n for s ∈ Tn \ {∅} with ´ (m) = (n; s)

then we will grow F n at s in the mth step or never. We will declarewhen a tree doesnot

grow any more from a node, such that this node remainsterminal.

For n = 0, by (4.2) and (4.3) we have ´ (0) = (0; ∅). To ¯nd our G0 observe that X \A0

is a § 0
ξ′(¿) set containing P(0) . By Corollary 4.14, {P(0) ; ¿(0)} satis̄ es the conditions of

Theorem4.7, in particular it is a ¦ 0
ξ′(¿) topologicalHurewicztest pair. By Theorem4.7.1,

P(0) and henceX \ A0 is ¿P (0)<-residual, by Corollary 4.8.2, X \ A0 is of ¿P (0)-second

category, that is A0 is ¿P (0)-meagerin somenonempty basic¿P (0)-open set G.

If A0 is ¦ 0
ϑ(¿) with 3≤ # < ! 1 then we have A0 =

T
i<ω X \ A0

(i) , so for somek0 < !

and nonempty basic¿P (0)-open set G0⊆ G we have that X \A0
(k0) is ¿P (0)-meagerin G0.

Put k_0 i ∈ F 0 (i < ! ). Then (4.7) holds for n = 0 and (4.8) doesnot apply. SinceP(0)

is ¿P (0)-nowhere densewe can passto somebasic ¿P (0)-open subsetG0 ⊆ G0 such that

G0 ∩ P(0) = ∅; so (4.5-4.8) are satis̄ ed for n = 0.

Else we have that A0 is ¦ 0
1(¿) or ¦ 0

2(¿), that is A0 is ¿P (0)-nowhere densein G. In

this casechooseG0 ⊆ G \ (P(0) ∪ A0), put ∅ ∈ F 0 and F 0 doesnot grow any more, that

is ´ 2(0) = ∅ ∈ T(F 0). Now (4.7) doesnot apply; so we again have (4.5-4.8) for n = 0.

Supposethat Gn (n < N ) is already dē ned such that (4.5-4.8) hold for n < N and

(4.4) holds for n < N − 1; we ¯nd our GN . Again, X \ AN is a § 0
ξ′(¿) set containing

P(N ) . By Corollary 4.14, {P(N ) ; ¿(N )} satis̄ es the conditions of Theorem 4.7, it is a

¦ 0
ξ′(¿) topological Hurewicz test pair, ¿P (N )< = ¿P (N − 1), so GN ¡ 1 is ¿P (N )<-open.

By Theorem 4.7.1, P(N ) and henceX \ AN is ¿P (N )<-residual in GN ¡ 1, so by Corollary

4.8.2, X \ AN is of ¿P (N )-secondcategory in GN ¡ 1, that is AN is ¿P (N )-meagerin some

nonempty basic¿P (N )-open set G ⊆ GN ¡ 1.

If AN is not a ¦ 0
1(¿) or a ¦ 0

2(¿) setwith presentation then wehaveAN =
T
i<ω X \AN

(i) .

Sofor somekN < ! and nonempty basic¿P (N )-open set G0⊆ G we have that X \AN
(kN ) is
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¿P (N )-meager on G0. If AN is a Π0
1(¿) or a Π0

2(¿) set with presentation then set G0 = G.

Since P(N ) is ¿P (N )-nowhere dense, we can pass to some basic ¿P (N )-open subset

G00⊆ G0 such that G00∩ P(N ) = ∅ and clτP (N )(G00) ⊆ GN ¡ 1. We put k_N i ∈ FN , (i < ! ),

then (4.4-4.6) hold for every basic ¿P (N )-open set GN ⊆ G00.

If ´ 2(N ) =∈ T(F η1(N )) then set GN = G00. If |´ 2(N )| is odd then neither (4.7) nor (4.8)

apply so the inductive step is complete. If |´ 2(N )| is even then (4.8) does not apply so

it remains to show (4.7). If ´ 2(N ) = ∅ then after the ´ 1(N )th step of the construction

we had that Aη1(N ) is neither a Π0
1(¿) nor a Π0

2(¿) set with presentation, 2 < » and

Gη1(N ) ∩ Aη1(N )

; +F ´ 1(N ) _ i
is ¿P (´ 1(N ))-meager (i < ! ). By (4.3) we have that ´ 1(N ) < N .

Since Aη1(N )

; +F ´ 1(N ) _ i
is Σ0

ξ′′(¿) (i < ! ), Lemma 4.15 gives that Aη1(N )

; +F ´ 1(N ) _ i
is ¿P (N )-meager

in Gη1(N ) hence also in GN , as required.

If ´ 2(N ) =∈ T(F η1(N )), |´ 2(N )| is even but ´ 2(N ) 6= ∅ then we show that ´ 2(N ) will

never be a node of F η1(N ) . Let u be the terminal node of F η1(N ) on the branch of ´ 2(N )

in Tη1(N ) . By (4.2) there is an m < N such that ´ 1(m) = ´ 1(N ) and ´ 2(m) = u. After the

mth step of the construction u remained a terminal node of F η1(N ) , that is F η1(N ) never

grows from u so ´ 2(N ) will never be a node of F η1(N ) . So again neither (4.7) nor (4.8)

apply and the inductive step is complete.

If ´ 2(N ) ∈ T(F η1(N )) then we do the following. Let m < ! be such that ´ 1(m) = ´ 1(N )

and ´ 2(m) = ´ 2(N )|jη2(N )j¡ 2. By (4.2) we have m < N . Since ´ 2(N ) 6= ∅, Aη1(N ) is neither

a Π0
1(¿) nor a Π0

2(¿) set with presentation and 2 < ». Also, Aη1(N )
η2(N ) is a Σ0

ξ′′(¿) set. We had

(4.7) in the mth step of the construction so by Lemma 4.15, G00⊆ Gm implies that Aη1(N )
η2(N )

is ¿P (N )-meager in G00. If Aη1(N )
η2(N ) is a Π0

1(¿) or a Π0
2(¿) set then it is actually ¿P (N )-

nowhere dense in G00 so we can find a nonempty basic ¿P (N )-open set GN ⊆ G00\Aη1(N )
η2(N ) .

We do not grow F η1(N ) from the node ´ 2(N ), so (4.7) does not apply and (4.8) holds.

If Aη1(N )
η2(N ) is Π0

ϑ(¿) for some 3 ≤ # < »0 then since Aη1(N )
η2(N ) =

T
i<ω X \ Aη1(N )

η2(N )_ i, for
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some lN < ! and nonempty basic ¿P (N )-open set GN ⊆ G00 we have that X \ Aη1(N )
η2(N )_ lN

is ¿P (N )-meager on GN . We put ´ 2(N )_l_N i ∈ F η1(N ) , (i < ! ), then (4.7) holds and (4.8)

does not apply. This completes the recursive step and the proof.¥

4.3 A momen t of being concrete

In order to proceed we need to show at least one concrete Π0
ξ(¿) topological Hurewicz test

pair. We do this as was done in [15].

De¯nition 4.19. We set (C1; ¿C1) = (C; ¿C), P1 = {x ∈ C1 : ∀m ∈ ! (x(m) = 1)},
T1 = {∅}, P1

; = P1 and r1 = ! . Suppose that the spaces (Cϑ; ¿C# ), the Π0
ϑ(¿C# ) sets with

presentation [Pϑ; (Pϑ
t )t2T# ] and the ordinal rϑ are defined for every # < ». Then let

Cξ =
Y

i<ω

Cϑi ; ¿C» =
Y

i<ω

¿C# i
;

Pξ = {x ∈ Cξ : ∀i < ! (x(i; :) ∈ Cϑi \ Pϑi )};(4.9)

Tξ = {n_t : t ∈ Tϑn ; n < ! };(4.10)

P ξ
n_ t =

Y

i<n

Cϑi × Pϑn
t ×

Y

n<i<ω

Cϑi (t ∈ Tϑn ; n < ! )(4.11)

and

rξ =
X

i<ω

rϑi :

Claim 4.20. Let 0 < » < ! 1 and #i → ». We have Cξ = 2r» . The Π0
ξ(¿) set with pre-

sentation [Pξ; (P ξ
t )t2T» ] satisfies { ξ; in particular {Pξ; ¿P»} is a Π0

ξ(¿) topological Hurewicz
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test pair. We have ¿<P»
=

Q
i<ω ¿P# i

and ¿P» = ¿<P»
[{Uξ,n : n < ! }] (1 < » < ! 1) where

Uξ,n =
Y

i<n

(Cϑi \ Pϑi )× Pϑn ×
Y

n<i<ω

Cϑi ⊆(4.12)

⊆
Y

i<n

Cϑi × Cξn ×
Y

n<iω

Cϑi = Cξ (1 < » < ! 1; n < ! ):

Pro of. We prove the statements by induction on ». For » = 1, C = 2ω, P1 is a

single point so it is nowhere dense, as stated. Let now 1 < » < ! 1 and suppose that the

statements are true for # < ». Then

Cξ =
Y

i<ω

Cϑi =
Y

i<ω

2r# i = 2
P

i < ! r# i = 2r» :

By definition,

¿<P»
=

_

i<ω

¿P »
(i )

=
Y

i<ω

¿P# i
;

as stated.

Let now (C; G) ∈ Cξ(Cξ; ¿C» ; Pξ). If C = X \ P and G ∈ ¿<P»
is nonempty then G

is nontrivial only on finitely many coordinates so it intersects X \ P =
S
i<ω P ξ

(i) . If

(C; G) ∈ Cϑi (Cξ;
W
j<ω,j6= i ¿P »

(j )
; P ξ

(i)) then by Claim 4.11, C is nontrivial only on the i th

coordinate and G =
Q

j<ω Gj where Gj = Cϑj except for finitely many j ’s, Gj is basic

¿P(j )
-open (j ∈ ! \ {i}) while Gi is basic ¿C# i

-open. Since [Pϑi ; (Pt)t2T# i
] satisfies { ϑi by

the induction hypothesis, we have Pri(C) ∩ Pri(G) 6= ∅, which implies C ∩ G 6= ∅. So

[Pξ; (P ξ
t )t2T» ] indeed satisfies { ξ.

Finally we have P ξ
(n) ∩

T
i<n(Cξ \P ξ

(i)) = Uξ,n, so by definition ¿P» = ¿<P»
[{Uξ,n : n < ! }].

This completes the proof.¥

We point out a property of this construction.

Lemma 4.21. Let G ⊆ Cξ be a nonempty basic ¿P» -open set. Then intτ<
P»

(clτ<
P»

(G)) 6= ∅:
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Pro of. If G is basic ¿<P»
-open then by regularity we have intτ<

P»
(clτ<

P»
(G)) = G 6= ∅: So

let G be proper basic ¿P» -open, say G = G0∩Uξ,n where G0 is ¿<P»
-open and n < ! . Since

Uξ,n is ¿<P»
-dense in

Q
i<n Cϑi × Pϑn ×

Q
n<i<ω Cϑi , we have

G0∩
Ã

Y

i<n

Cϑi × Pϑn ×
Y

n<i<ω

Cϑi

!

⊆ intτ<
P»

(clτ<
P»

(G))

so intτ<
P»

(clτ<
P3

(G)) 6= ∅, as stated.¥

We close this section with the proof of Theorem 1.6.

Pro of of Theorem 1.6. First we prove 1. and 2. in the » = 2 case while this is

exceptional in Theorem 1.2. Then we show 1. and 2. for 3 ≤ » < ! 1 and finally we treat

the extension for every 2 ≤ » < ! 1.

So let » = 2. We set

U0
2,N = {x ∈ 2ω : ∀n ≥ N (x(n) = 0)} (N < ! );

T0
2 = {(i) : i < ! }; P20

(i) = U0
2,i (i < ! ); P0

2 = 2ω \
Ã

[

N<ω

U0
2,N

!

:

Then the topology ¿P ′2 is the refinement of ¿C1 by turning each point of the finite sets U0
2,N

(N < ! ) into an open set. Clearly, P0
2 is the complement of a dense countable subset in

(2ω; ¿C1), so in particular P0
2 is Π0

2(¿C1) and ¿C1-residual. As a complement of the dense

¿P ′2-open set
S
N<ω U0

2,N , we also have that P0
2 is ¿P ′2-nowhere dense.

Let A ⊆ X be Σ0
2(¿) and take a continuous one-to-one mapping ' : (2ω; ¿C1)→ (X ; ¿)

such that ' ¡ 1(A) ∩ P0
2 is of ¿P ′2 |P ′2-second category in P0

2. Then ' ¡ 1(A) ⊆ (2ω; ¿C1) is

Σ0
2(¿C1) and ' ¡ 1(A)∩P0

2 is of ¿P ′2 |P ′2 -second category; thus ' ¡ 1(A) is of ¿C1-second category,

as well. Since a Σ0
2(¿C1) set in (2ω; ¿C1) is of second category only if its interior is nonempty,

' ¡ 1(A) contains a nonempty ¿C1-open set so ' ¡ 1(A) ∩ U0
2,N 6= ∅ for some N < ! . Then

' ¡ 1(A), having nonempty interior, is of ¿P ′2-second category.
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If A is not Σ0
2(¿), we apply Theorem 1.2 for A0 = A, A1 = X \ A. These sets

cannot be separated by a Σ0
ξ(¿)-set, so since P0

2 is the complement of a countable dense

subset of (2ω; ¿C1), there is a continuous one-to-one mapping ' : 2ω → X with ' (P0
2) ⊆ A,

' (2ω \ P0
2) ⊆ X \ A. So as we have seen above, ' ¡ 1(A) = P0

2 is indeed ¿P ′2-meager.

We turn to the » ≥ 3 case. The Polish space (Cξ; ¿C» ) is obviously homeomorphic

to (C1; ¿C1) (see e.g. [4], Theorem 7.4 on page 35). We show that {Pξ; ¿P»} fulfills the

requirements for every 3 ≤ » < ! 1.

Let A ⊆ X be Σ0
ξ(¿) for some » < ! 1 and take a continuous one-to-one mapping

' : Cξ → X such that ' ¡ 1(A) ∩ Pξ is of ¿P» |P» -second category in Pξ. Then ' ¡ 1(A) ⊆ Cξ

is Σ0
ξ(¿C» ) and ' ¡ 1(A) ∩ Pξ is ¿P» |P» -residual in G ∩ Pξ for some basic open set G. So

according to Claim 4.6, ' ¡ 1(A) is of ¿P» -second category, as required.

Suppose now that A is not Σ0
ξ(¿). We apply Theorem 1.2 for A0 = A, A1 = X \ A.

These sets cannot be separated by a Σ0
ξ(¿)-set, so since Pξ is Π0

ξ(¿C» ) but not Σ0
ξ(¿C» ),

there is a continuous one-to-one mapping ' : Cξ → X with ' (Pξ) ⊆ A, ' (2ω \Pξ) ⊆ X \A.

So by Definition 4.2.3, ' ¡ 1(A) = Pξ is indeed ¿P» -meager.

Finally suppose that for some cardinal ¸ < 2@0 , in our model the the union of a

¸ number of meager sets is meager in Polish spaces. Let Ai (i < ¸ ) be Σ0
ξ(¿) and

A =
S
i<λ Ai be Borel. Since ' ¡ 1(A) ∩ Pξ is of ¿P» |P» -second category in Pξ, by our

assumption ' ¡ 1(Ai) ∩ Pξ is also of second category in (Pξ; ¿P» |P» ) for some i < ¸ . So by

the first statement, ' ¡ 1(Ai) ⊆ ' ¡ 1(A) is of ¿P» -second category. This finishes the proof.¥

4.4 Constructible coverings

In this section we give the extension of Theorem 3.10.

Theorem 4.22. Let 1 < » < ! 1 be such that » = »0 + 1 where »0 is a successor. Let

(X ; ¿) be an uncountable Polish space and P ⊆ X be a proper Π0
ξ(¿) set. Then there is a
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mapping Φ: S0
ξ (P)→ P0

ξ (P) such that B ⊆ Φ(B ) and

P \
[

i<ω

Φ(B i) 6= ∅ (B; B i ∈ S0
ξ (P); i < ! ):

Pro of. Fix our ». First we construct Φ = Φξ for (X ; ¿) = (Cξ; ¿C» ) and P = Pξ. For

every B ∈ S0
ξ (Pξ) fix a decomposition B =

S
j<ω Bj where Bj is Π0

ξ′(¿C» ) (j < ! ). Since

the class Π0
ξ′(¿C» ) has the separation property (see e.g. [4], (22.16) Theorem; and if » = 2

note that C2 is zero dimensional) we can take a sequence (∆n(B ))n<ω ⊆ ∆0
ξ′(¿C» ) such

that

[

i· n

B i ⊆ ∆n(B ) ⊆ Cξ \
[

i· n

P ξ
(i) (n < ! ):(4.13)

Set

Φξ(B ) =
\

m<ω

[

m· n<ω

∆n(B ):

It is clear that Φξ(B ) is Π0
ξ(¿C» ) and (4.13) implies B ⊆ Φξ(B ) ⊆ Pξ. It remains to show

that if B i ∈ S0
ξ (Pξ) with its fixed decomposition B i =

S
j<ω B i

j (i < ! ) then we can find

a point in P \ S
i<ω Φξ(B i).

We apply Claim 4.18 for An =
S
i· n ∆n(B i) (n < ! ). We obtain that P \S n<ω An 6= ∅.

Since

Φξ(B i) ⊆
[

i· n<ω

∆n(B i) ⊆
[

n<ω

An;

we have P \ S
i<ω Φξ(B i) 6= ∅, which completes the proof of the special case.

If (X ; ¿), P are arbitrary, by Theorem 1.2 we can take a continuous one-to-one map

' : (Cξ; ¿C» )→ (X ; ¿) such that ' ¡ 1(P) = Pξ. For B ∈ S0
ξ (P) let

Φ(B ) = (P \ ' (Pξ)) ∪ ' (Φξ(' ¡ 1(B ))):

Since homeomorphism preserves the Borel class of sets this definition makes sense and

fulfills the requirements.¥
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With a more careful approach one could prove Theorem 4.22 for » = »0+ 1 where »0 is

a limit ordinal. We think that this is the maximum one can do in ZFC, that is Theorem

4.22 is consistently false when » is a limit ordinal. It seems that proving Theorem 4.22

for such a » is equivalent with an affirmative answer to the question of A. Miller for Π0
ξ

generated ideals, the consistency of which is not established at the moment. We return

to this problem in Chapter 8.



          

Chapter 5

Testing the di®erence hierarc hy

In this chapter we show that for 0 < » ≤ 3 a proper Dη(Σ
0
ξ) set cannot be well approx-

imated by a Dη′(Σ
0
ξ) set for ´ 0 < ´ . As usual in this paper, approximation is measured

by Baire category in a suitable topology. The interesting feature of this is that such a

testing is possible even if Dη(Σ
0
ξ) is not closed under taking countable union; this is why

the result we obtain is weaker than what we have got used to for the Borel hierarchy.

The reasons for restricting » are twofold. The more important one is that argument

which follows is not applicable for » = ´ = ! . The less important, aesthetic reason is that

for »≤ 3 all the ideas which are new comparing to the previous chapters appear without

serious technicalities. We will discuss possible generalizations after the proof of Claim 5.5

and in Chapter 8.

We start with the definition of the relevant spaces. From now on in this section let

0 < »≤ 3 and 0 < ´ < ! 1.

De¯nition 5.1. Take sequences (Cξ(®); ¿C»(α)) and {Pξ(®); ¿P»(α)} (® < ! 1) of copies of

the Polish space (Cξ; ¿C» ) and the Π0
ξ(¿C» ) topological Hurewicz test pair {Pξ; ¿P»} defined

in Definition 4.19. Let

59
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Cξ,η =
Y

α<η

Cξ(®); ¿C»;´ =
Y

α<η

¿C»(α) (0 < ´ < ! 1):

The difference operator will act on

Uξ,η(®) =
[

β· α

Ã
Y

γ<β

Cξ(° )× (Cξ(¯ ) \ Pξ(¯ ))×
Y

β<γ<η

Cξ(° )

!

(® < ´ < ! 1):

We set

Vξ,η(®) =
Y

γ<α

Pξ(° )× (Cξ(®) \ Pξ(®))×
Y

α<γ<η

Cξ(° ) (® < ´ < ! 1);

Vξ,η(´ ) =
Y

γ<η

Pξ(° );

Wξ,η(®) =
Y

γ<α

Pξ(° )×
Y

α· γ<η

Cξ(° ) (®≤ ´ < ! 1):

Now for every 0 < ´ < ! 1 let

Pξ,η = Dη

³
(Uξ,η(®))α<η

´
=

[
{Vξ,η(®) : ®≤ ´ ; ® is odd ↔ ´ is even};

Qξ,η = Cξ,η \ Pξ,η =
[
{Vξ,η(®) : ®≤ ´ ; ® is odd ↔ ´ is odd}

and define the topologies

¿<ξ,η =
Y

α<η

¿<P»(α) ; ¿<ξ,η(®) =
Y

γ<α

¿<P»(γ) ×
Y

α· γ<η

¿P»(γ) (®≤ ´ < ! 1);

¿ξ,η = ¿<ξ,η(0)[{Wξ,η(®) : ®≤ ´ }]:

It is clear that Uξ,η(®) is Σ0
ξ(¿C»;´ ) (® < ´ < ! 1). Observe that Pξ,η, Qξ,η (0 < ´ < ! 1)

are ¿ξ,η-open sets and that the sets Vξ,η(®) (® ≤ ´ ) are pairwise disjoint. Notice that

Wξ,η(´ ) = Vξ,η(´ ) and ¿<ξ,η = ¿<ξ,η(´ ) (0 < ´ < ! 1). The testing theorem can be stated as

follows.



         

61

Theorem 5.2. Let 0 < » ≤ 3 and 0 < ´ < ! 1 be fixed and consider a Dη(Σ
0
ξ(¿C»;´ )) set

A ⊆ Cξ,η. Let G be ¿<ξ,η-open; and if » = 1 suppose that W1,η(´ ) ∈ G in addition. Then if

A ∩Qξ,η is ¿ξ,η-residual in G ∩Qξ,η then A ∩ Pξ,η is of ¿ξ,η-second category in G ∩ Pξ,η.

We formulate a corollary of this theorem.

Corollary 5.3. Let 0 < »≤ 3 and 0 < ´ < ! 1 be fixed.

1. If A ⊆ Cξ,η is a Dη(Σ
0
ξ(¿C»;´ )) set and Qξ,η ⊆ A then A ∩ Pξ,η is of ¿ξ,η-second

category.

2. If Ǎ ⊆ Cξ,η is a Ďη(Σ
0
ξ(¿C»;´ )) set and Pξ,η ⊆ Ǎ then Ǎ ∩ Qξ,η is of ¿ξ,η-second

category.

Pro of. The first statement is the special G = Cξ,η case of Theorem 5.2, while the

second follows from Theorem 5.2 applied to A = Cξ,η \ Ǎ and G = Cξ,η.¥

Corollary 5.3 has already the feature of dichotomy we are looking for: it allows to

derive from the information that a set A is simply structured the conclusion that either

it does not contain Qξ,η or it is big in category in Cξ,η \Qξ,η, and vice versa.

The proof of Theorem 5.2 is based on Claim 5.5 stating that sets like Wξ,η(´ ) behave

as topological Hurewicz test sets with the topology ¿ξ,η. Before stating and proving it we

need the usual lemma on the coincidence of topologies.

Lemma 5.4. Let 0 < ´ < ! 1 and ®≤ ´ be fixed. Then

1. for » = 1, if G is ¿<1,η-open and W1,η(´ ) ∈ G then G ∩ V1,η(° ) 6= ∅ (° ≤ ´ );

2. for » = 2; 3, Vξ,η(®) is a ¿<ξ,η(° )-dense set (®≤ ° ≤ ´ );

3. for » = 2; 3, Wξ,η(®) is a ¿<ξ,η(° )-dense Π0
2(¿<ξ,η) set (®≤ ° ≤ ´ );

4. if G is basic ¿<ξ,η(0)-open and G ∩ Vξ,η(®) 6= ∅ then G is basic ¿<ξ,η(° )-open (° ≤ ®);
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5. if G is basic ¿ξ,η-open and G ∩ Vξ,η(®) 6= ∅ then there is a basic ¿<ξ,η(®)-open set G0

such that G ∩ Vξ,η(®) = G0∩ Vξ,η(®);

6. the topologies ¿ξ,η|V»;´ (α) and ¿<ξ,η(° )|V»;´ (α) (° ≤ ®) coincide;

7. if G is basic ¿<ξ,η(0)-open and G∩Wξ,η(®) 6= ∅ then G is basic ¿<ξ,η(° )-open (° ≤ ®);

8. if G is basic ¿ξ,η-open and G∩Wξ,η(´ ) 6= ∅ then there is a basic ¿<ξ,η-open set G0 such

that G0∩Wξ,η(´ ) = G ∩Wξ,η(´ );

9. the topologies ¿ξ,η|W»;´ (η) and ¿<ξ,η(° )|W»;´ (η) (° ≤ ´ ) coincide.

Pro of. Since ¿<1,η = ¿C1; ´ , 1 is obvious. By Definition 4.19, both Pξ(¯ ) and Cξ(¯ )\Pξ(¯ )

are ¿<P»(β)-dense (¯ < ®) sets, so 2 follows. By Theorem 4.7.1 and Claim 4.5.1, Pξ(¯ ) is a

¿<P»(β)-residual Π0
2(¿<P»

(¯ )) set (¯ < ®), so we have 3.

For 4, let G be basic ¿<ξ,η(0)-open with G ∩ Vξ,η(®) 6= ∅. If for some ° < ®, PrC° (G)

is proper basic ¿P»(γ)-open then PrC° (G) ∩ Pξ(° ) = ∅ hence G ∩ Vξ,η(®) = ∅, which is not

the case. So PrC° (G) is ¿<P»(γ)-open (° < ®), thus 4 holds.

For 5, let G be basic ¿ξ,η-open, say G = G0∩ Wξ,η(¯ ) where G0 is basic ¿<ξ,η(0)-

open and ¯ ≤ ´ , such that G ∩ Vξ,η(®) 6= ∅. Since Vξ,η(®) ⊆ Wξ,η(° ) (° ≤ ®) and

Vξ,η(®)∩Wξ,η(° ) = ∅ (® < ° ≤ ´ ), we have G∩Vξ,η(®) = G0∩Vξ,η(®) 6= ∅. Thus by 4, G0

is basic ¿<ξ,η(®)-open so 5 holds.

Since ¿<ξ,η(° ) (° ≤ ®) is finer than ¿<ξ,η(®) and coarser than ¿ξ,η, 5 immediately gives 6.

For 7, observe that Wξ,η(®) =
S
α· β· η Vξ,η(¯ ). Thus G∩Vξ,β 6= ∅ for some ®≤ ¯ ≤ ´ .

So by 4, G is basic ¿<ξ,η(° )-open (° ≤ ¯ ), as required.

For 8, let G be a basic ¿ξ,η-open set, say G = G0∩Wξ,η(¯ ) where G0 is basic ¿<ξ,η(0)-open

and ¯ ≤ ´ , and suppose that G ∩Wξ,η(´ ) 6= ∅. From Wξ,η(´ ) ⊆ Wξ,η(° ) (° ≤ ´ ) we get

G0∩Wξ,η(´ ) = G ∩Wξ,η(´ ) 6= ∅ thus from 7 we have that G0 is ¿<ξ,η-open, as stated.
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Since ¿<ξ,η(° ) (° ≤ ´ ) is finer than ¿<ξ,η and coarser than ¿ξ,η, 9 immediately follows

from 8, so the proof is complete.¥

Claim 5.5. Let 0 < ´ < ! 1, (Y; ¾) be an arbitrary nonempty Polish space and G ⊆
Cξ,η×Y be a nonempty ¿<ξ,η×¾-open set, such that if » = 1 then G∩ (W1,η(´ )× Y ) 6= ∅ in

addition. If A ⊆ Cξ,η×Y is Σ0
ξ(¿C»;´ ×¾) and A∩ (Wξ,η(´ )× Y ) is of (¿ξ,η ×¾) |W»;´ (η)£ Y -

second category in G ∩ (Wξ,η(´ )× Y ) then there is a nonempty basic ¿<ξ,η × ¾-open set

G0 ⊆ G such that A is ¿ξ,η ×¾-residual in G0 and G0 ∩ (Wξ,η(´ )× Y ) 6= ∅.

Pro of. Before starting the proof, observe that for » = 2; 3 by Lemma 5.4.3, G ∩
(Wξ,η(´ )× Y ) 6= ∅ for every nonempty ¿<ξ,η ×¾-open set G.

For » = 1 we have that ¿<1,η = ¿C1; ´ and that A is ¿C1; ´ × ¾-open so every basic

¿C1; ´ ×¾-open set G0 can be chosen which satisfies G0 ⊆ G∩A and W1,η(´ ) ∈ PrC1; ´ (G0).

Let now » = 2 or » = 3. Since A is Σ0
ξ(¿C»;´ × ¾), there is a Π0

ξ¡ 1(¿C»;´ × ¾) set

B ⊆ A and a nonempty basic ¿ξ,η ×¾-open set G? ⊆ G such that G? ∩ (Wξ,η(´ )× Y ) 6= ∅
and B is (¿ξ,η ×¾) |W»;´ (η)£ Y -residual in G? ∩ (Wξ,η(´ )× Y ). By Lemma 5.4.8 there is a

basic ¿<ξ,η ×¾-open set G0 for which G0 ∩ (Wξ,η(´ )× Y ) = G? ∩ (Wξ,η(´ )× Y ). Then by

Lemma 5.4.9, B is
¡
¿<ξ,η ×¾

¢
|W»;´ (η)£ Y -residual in G0 ∩ (Wξ,η(´ )× Y ). We show that B

is ¿ξ,η ×¾-residual in G0; then by B ⊆ A, G0 fulfills the requirements.

For » = 2 we have ¿<2,η = ¿<2,η(´ ) = ¿C2; ´ . So by Lemma 5.4.9,

(¿2,η ×¾) |W2; ´ (η)£ Y =
¡
¿<2,η(´ )×¾

¢
|W2; ´ (η)£ Y =

¡
¿C2; ´ ×¾

¢
|W2; ´ (η)£ Y :

Hence B is
¡
¿C2; ´ ×¾

¢
|W2; ´ (η)£ Y -residual in G0∩ (W2,η(´ )× Y ). By Lemma 5.4.3 we have

that W2,η(´ ) × Y is ¿C2; ´ ×¾-residual in X × Y so the Π0
1(¿C2; ´ ×¾) set B contains G0.

This proves the » = 2 case.

For » = 3 suppose that B is not ¿3,η×¾-residual in G0. Since C3,η \B is Σ0
2(¿C3; ´ ×¾),

there is some nonempty basic ¿3,η×¾-open set G0⊆ G0 and Π0
1(¿C3; ´ ×¾) set F ⊆ C3,η \B
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such that F is ¿3,η×¾-residual in G0, that is G0⊆ F which gives clτ<
3; ´ £ σ(G0) ⊆ F . We can

assume that G0 is not ¿<3,η(0)-open, so G0 = (W3,η(®)× Y )∩G00 for some ®≤ ´ where G00

is basic ¿<3,η(0)×¾-open; thus by Lemma 5.4.7, G00 is ¿<3,η(®)×¾-open. Then for some finite

set I ⊆ ´ , PrC3(γ)(G00) is basic ¿<P3(γ)-open (° ∈ I ∩ ®), PrC3(γ)(G00) is basic ¿P3(γ)-open

(° ∈ I \ ®) and PrC3(γ)(G00) = C3(° ) (° ∈ ´ \ I ). By Lemma 5.4.3 we have

G00⊆ clτ<
3;´ (α)£ σ(G0) ⊆ clτ<

3;´ £ σ(G0):(5.1)

By Lemma 4.21,

intτ<
P3(° )

(clτ<
P3(° )

(PrC3(γ)(G00)) 6= ∅ (° ∈ I ):

So by the regularity of PrY (G00) in Y ,

intτ<
3; ´ £ σ(clτ<

3; ´ £ σ(G00)) 6= ∅

which by (5.1) gives

H = intτ<
3; ´ £ σ(clτ<

3; ´ £ σ(G0)) 6= ∅:

Since G0 is regular ¿<3,η ×¾-open,

H ⊆ intτ<
3; ´ £ σ(clτ<

3; ´ £ σ(G0)) = G0;

and from clτ<
3; ´ £ σ(G0) ⊆ F we have H ⊆ F . Since B is

¡
¿<3,η ×¾

¢
|W3; ´ (η)£ Y -residual in

G0 ∩ (W3,η(´ )× Y ) and by Lemma 5.4.3, W3,η(´ ) is ¿<3,η-residual in C3,η, B is ¿<3,η × ¾-

residual in G0. But H ⊆ G0 \ B , a contradiction.¥

In our present approach the validity of this claim limits our capacities in testing the

difference hierarchy. It is fairly simple to see that the proof of the lemma can be repeated

for 3 < » < ! , 0 < ´ < ! 1; it is an imitation of the proof of Theorem 4.7 for the Π0
ξ(¿C»;´ )

set Wξ,η. Also, if ´ < ! then the statement of the lemma follows for every 0 < » < ! 1

from the fact that {Pξ; ¿P»} is a topological Hurewicz test pair, using Kuratowski-Ulam
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Theorem as in the proof of Claim 4.5.5. The handicap of this approach is that Claim 5.5

is false for » = ´ = ! . This failure is the main reason why we restrict our attention to

»≤ 3.

In the proof of Theorem 5.2 the product structure of Definition 5.1 must be exploited.

So we prove it in the following more general form. When Y is a single point, we get back

Theorem 5.2.

Theorem 5.6. Let 0 < » ≤ 3 and 0 < ´ < ! 1 be fixed. Let (Y; ¾) be an arbitrary

nonempty Polish space and consider a Dη(Σ
0
ξ(¿C»;´ ×¾)) set A ⊆ Cξ,η×Y . Let G ⊆ Cξ,η×Y

be ¿<ξ,η ×¾-open, and for » = 1 suppose that G ∩ (W1,η(´ )× Y ) 6= ∅ in addition. Then if

A∩(Qξ,η × Y ) is ¿ξ,η×¾-residual in G∩(Qξ,η × Y ) then A∩(Pξ,η × Y ) is of ¿ξ,η×¾-second

category in G ∩ (Pξ,η × Y ).

Pro of. We prove the statement by induction on ´ . Let first ´ = 1, then A is a

Σ0
ξ(¿C»;1×¾). By Claim 4.20, Claim 4.10 and Claim 4.5.5, {Pξ×Y; ¿P»×¾} is a topological

Hurewicz test pair in Cξ,1 × Y , so the statement follows from Claim 4.6.

Suppose now that 1 < ´ < ! 1 and that the statement holds for ´ 0 < ´ . Let A =

Dη((Aα)α<η) with Σ0
ξ(¿C»;´ × ¾) sets Aα (® < ´ ) satisfying Aβ ⊆ Aα (¯ ≤ ® < ´ ). We

have that Wξ,η(´ ) × Y ⊆ Qξ,η × Y is ¿ξ,η × ¾-open. By assumption for » = 1 and by

Lemma 5.4.3 for » = 2; 3, G ∩Wξ,η(´ ) × Y 6= ∅ so A is of ¿ξ,η × ¾-second category in

G∩Wξ,η(´ )× Y . Thus there is a minimal ® such that the parity of ® and ´ are different

and for some basic ¿ξ,η × ¾-open set G? ⊆ G, Aα of ¿ξ,η × ¾-second category in the

nonempty G? ∩ (Wξ,η(´ )× Y ). Then by Lemma 5.4.8 there is a ¿<ξ,η ×¾-open set G0 such

that G? ∩ (Wξ,η(´ )× Y ) = G0∩ (Wξ,η(´ )× Y ) 6= ∅.

We apply Claim 5.5 for Aα and G0; we obtain that for some nonempty basic ¿<ξ,η ×¾-

open set G0 ⊆ G0, Aα is ¿ξ,η × ¾-residual in G0, and G ∩ (W1,η(´ )× Y ) 6= ∅. So in

particular, Aα is ¿ξ,η × ¾-residual in G0 ∩ (Vξ,η(®)× Y ), which is nonempty by Lemma
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5.4.1 if » = 1 and by Lemma 5.4.2 if » = 2; 3. But the parity of ® and ´ differ, so

Vξ,η(®) × Y ⊆ Pξ,η × Y . That is if Aα \
S
β<α Aβ is also of ¿ξ,η × ¾-second category in

G0 ∩ (Vξ,η(®)× Y ) then we are done.

Suppose that this is not the case. Then there is a ¯ < ® and a basic ¿ξ,η ×¾-open set

G?
0 ⊆ G0 such that G?

0∩(Vξ,η(®)× Y ) 6= ∅ and Aβ is ¿ξ,η×¾-residual in G?
0∩(Vξ,η(®)× Y ),

and the parity of ¯ and ® differ, that is parity of ¯ and ´ coincide. By Lemma 5.4.5,

there is a basic ¿<ξ,η(®)×¾-open set G0
0 such that G?

0∩ (Vξ,η(®)× Y ) = G0
0∩ (Vξ,η(®)× Y ).

Since G0 is basic ¿<ξ,η ×¾-open, we can and do assume that G0
0 ⊆ G0. Then by Lemma

5.4.6, Aβ is ¿<ξ,η(®)×¾-residual in G0
0∩ (Vξ,η(®)× Y ). By passing to a subset if necessary,

we assume that PrC»(α)(G0
0) is proper ¿P» (®)-open, that is

PrC»(α)(G0
0) ⊆ Cξ(®) \ Pξ(®):(5.2)

Set ˜́ = ®,

Ỹ =

Ã
Y

α· γ<η

Cξ(° )

!

× Y; ¾̃=

Ã
Y

α· γ<η

¿P»(γ)

!

×¾

and G̃ = G0
0. With this setting, using (5.2),

G̃ ∩
³

Wξ,~η(˜́)× Ỹ
´

= G0
0 ∩ (Vξ,η(®)× Y ) 6= ∅(5.3)

and by Lemma 5.4.9,

(5.4) (¿ξ,~η × ¾̃) | ~G\ (W»; ˜́( ~η)£ ~Y ) =
¡
¿<ξ,~η × ¾̃

¢
| ~G\ (W»; ˜́( ~η)£ ~Y ) =

=
¡
¿<ξ,~η × ¾̃

¢
|G′0\ (V»;´ (α)£ Y ) =

¡
¿<ξ,η(®)×¾

¢
|G′0\ (V»;´ (α)£ Y ):

We apply Claim 5.5 in Cξ,~η× Ỹ for Aβ, which by (5.3) and (5.4) is (¿ξ,~η × ¾̃) |W»; ˜́( ~η)£ ~Y -

residual in the nonempty G̃ ∩
³

Wξ,~η(˜́)× Ỹ
´

. We get that for some nonempty basic

¿<ξ,~η × ¾̃-open set G̃0 ⊆ G̃, Aβ is ¿ξ,~η × ¾̃-residual in G̃0 and G̃0 ∩
³

Wξ,~η(˜́)× Ỹ
´
6= ∅. In

particular, G̃0 ∩
³

Vξ,~η(° )× Ỹ
´
6= ∅ (° ≤ ˜́) by Lemma 5.4.1 if » = 1 and by Lemma 5.4.2

if » = 2; 3, and Aβ is ¿ξ,~η × ¾̃-residual in G̃0 ∩
³

Vξ,~η(° )× Ỹ
´

(° ≤ ˜́).
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Now G̃0 ⊆ G is ¿ξ,η × ¾-open and Vξ,~η(° ) × Ỹ is also ¿ξ,η × ¾-open (° ≤ ˜́). So A

is ¿ξ,η ×¾-residual in G̃0 ∩
³

Vξ,~η(° )× Ỹ
´

for every ° ≤ ˜́ with parity different from the

parity of ˜́. By (5.2) and G̃0 ⊆ G0
0,

PrC»(α)(G̃0) ⊆ Cξ(®) \ Pξ(®);

so we have G̃0 ∩ (Vξ,η(° )× Y ) = G̃0 ∩
³

Vξ,~η(° )× Ỹ
´
6= ∅ (° ≤ ˜́). Then by Lemma 5.4.6,

(5.5) (¿ξ,η ×¾) | ~G0\ (V»;´ (γ)£ Y ) =
¡
¿<ξ,η(0)×¾

¢
| ~G0\ (V»;´ (γ)£ Y ) =

=
¡
¿<ξ,~η(0)× ¾̃

¢
| ~G0\ (V»;´ (γ)£ Y ) =

=
¡
¿<ξ,~η(0)× ¾̃

¢
| ~G0\ (V»; ˜́(γ)£ ~Y ) = (¿ξ,~η × ¾̃) | ~G0\ (V»; ˜́(γ)£ ~Y ) (° ≤ ˜́):

We get that A is ¿ξ,~η × ¾̃-residual in G̃0 ∩
³

Vξ,~η(° )× Ỹ
´

for every ° ≤ ˜́ with parity

different from the parity of ˜́. Since Aβ is also ¿ξ,~η × ¾̃-residual in G̃0 ∩
³

Vξ,~η(° )× Ỹ
´

(° ≤ ˜́), this is possible only if Dβ

³
(Aγ)γ<β

´
is ¿ξ,~η × ¾̃-residual in G̃0 ∩

³
Vξ,~η(° )× Ỹ

´

for every ° ≤ ˜́ with parity different from the parity of ˜́.

Set ´ = ¯ ,

Y =

Ã
Y

β· γ<α

Cξ(° )

!

× Ỹ ; ¾=

Ã
Y

β· γ<α

¿P»(γ)

!

× ¾̃;

A = Dη

³
(Aγ)γ<η

´
and G = G̃0∩H 6= ∅ where H is nontrivial only on the ¯ th coordinate

and PrC»(β)(H ) is proper basic ¿P»(β)-open, i.e. PrC»(β)(H ) ⊆ Cξ(¯ ) \ Pξ(¯ ). Since G̃0 is

basic ¿<ξ,~η × ¾̃-open, it is ¿<ξ,~η(¯ ) × ¾̃-open and so G is basic ¿<ξ,η ×¾-open. As above, we

have

G0 ∩
³

Vξ,η(° )× Y
´

= G0 ∩
³

Vξ,~η(° )× Ỹ
´
6= ∅ (° ≤ ´ )
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so by Lemma 5.4.6,

(5.6)
³

¿ξ,η ×¾
´
|G0\ (V»;´ (γ)£ Y ) =

³
¿<ξ,η(0)×¾

´
|G0\ (V»;´ (γ)£ Y ) =

=
¡
¿<ξ,~η(0)× ¾̃

¢
|G0\ (V»;´ (γ)£ Y ) =

=
¡
¿<ξ,~η(0)× ¾̃

¢
|G0\ (V»; ˜́(γ)£ ~Y ) = (¿ξ,~η × ¾̃) |G0\ (V»; ˜́(γ)£ ~Y ) (° ≤ ´ ):

Since A = Dη

³
(Aγ)γ<η

´
is ¿ξ,~η × ¾̃-residual in G̃0 ∩

³
Vξ,~η(° )× Ỹ

´
, we get that A is

¿ξ,η ×¾-residual in G ∩
³

Vξ,η(° )× Y
´

for every ° ≤ ´ with parity equal to the parity of

´ . That is, A is ¿ξ,η ×¾-residual in G∩
³

Qξ,η × Y
´

. So by the induction hypothesis A is

of ¿ξ,η ×¾-second category in G∩
³

Pξ,η × Y
´

. Since A = Dβ

³
(Aγ)γ<β

´
⊆ A, this means

that A is of ¿ξ,η ×¾-second category in Pξ,η × Y . We have

Vξ,η(° )× Y = Vξ,η(° )× Y (° < ´ )

so by Lemma 5.4.6,

(5.7)
³

¿ξ,η ×¾
´
|V»;´ (γ)£ Y =

³
¿<ξ,η(0)×¾

´
|V»;´ (γ)£ Y =

=
¡
¿<ξ,η(0)×¾

¢
|V»;´ (γ)£ Y =

=
¡
¿<ξ,η(0)×¾

¢
|V»;´ (γ)£ Y = (¿ξ,η ×¾) |V»;´ (γ)£ Y (° < ´ ):

Since ¯ and ´ have the same parity,

Pξ,η × Y = Pξ,β ×
Y

β· γ<η

Cξ(° )× Y =

[
{Vξ,η(®) : ® < ¯ ; ® is odd ↔ ¯ is even} ⊆ Pξ,η × Y:

So A is of ¿ξ,η ×¾-second category in Pξ,η × Y , which completes the proof.¥

Possible further extensions of testing theorems will be discussed in Chapter 8.



          

Chapter 6

I-convergent functions

It is a fact of life that the class of continuous real functions is not closed under pointwise

convergence: instead, we obtain a realization of the Baire-1 functions. On the other hand,

it is an easy exercise that the pointwise limit of a sequence of continuous functions with

length ! 1 is necessarily continuous.

This problem and other properties of the pointwise convergence of transfinite sequences

of real functions has been first considered by W. Sierpiński [20]. In particular, he studied

which class of functions will be closed under such convergencies. Since most of the classes,

for example the class of Baire-» functions for »≥ 2, are not, T. Natkaniec [17] introduced

a stronger notion of pointwise convergence. We recall the precise setting in the following

definition.

De¯nition 6.1. Let ¸ be a cardinal, (X ; ¿) be a Polish space, (Y; d) be a separable metric

space and consider an ideal I on ¸ . We say that a sequence of functions f α : X → Y (® <

¸ ) I-converges to the function f : X → Y , in notation f α →I f , if

{® < ¸ : f α(x) 6= f (x)} ∈ I

for every x ∈ X .

69
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Similarly, we write f α →d
I

f if for every " > 0 and x ∈ X we have

{® < ¸ : d(f (x); f α(x)) > "} ∈ I:

In case of the ordinary ! 1 convergence, as used in [5] and [20], we have ¸ = ! 1 and

I = [! 1]· ω, that is the ideal of countable subsets of ! 1. However, our motivating theorem,

answering Problem 1 in [17] on page 490, is related to the particular case, when the ideal

contains the finite subsets of ! 1, that is I< = [! 1]<ω.

Theorem 6.2. Let (X ; ¿) be a Polish space, (Y; d) be a separable metric space, and for a

fixed » < ! 1 consider a family f α : X → Y (® < ! 1) of Baire-» functions. If f : X → Y

is such that f α →d
I<

f , then f is Baire-».

We note here that the original question asked by T. Natkaniec referred to I<-con-

vergence. However, it is easy to see that I<-convergence implies d
I <

-convergence, so the

result above is formally stronger than the required. The sufficiency of dI <
-convergence was

pointed out to the author by Petr Holický.

As W. Sierpiński showed ([20], Theorem 1 on page 133 and Theorem 2 on page 137),

for the class of continuous and Baire-1 functions Theorem 6.2 holds also for I = [! 1]· ω

instead of I<. On the other hand, it is independent for every 2 ≤ » < ! 1 whether there

is a [! 1]· ω-convergent sequence of Baire-» functions whose limit function is Borel but not

Baire-» (observe that the d
I <

-convergence implies the [! 1]· ω-convergence). The first part

of the following theorem has already been proved by W. Sierpiński ([20], Section 6, pages

139 and 140) and further discussed by P. Komjáth ([5], Theorem 3, page 499). Its second

part, related to Problem 3 in [17] on page 490, is a simple analogue of Theorem 6.2.

Theorem 6.3. Let (X ; ¿) be a Polish space, (Y; d) be a separable metric space.

1. (W. Sierpiński, P. Komjáth) Assuming CH , there exists an [! 1]· ω-convergent se-

quence of real Baire-2 functions whose limit function is not Borel.
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2. Let ¸ < 2@0 be an infinite cardinal with cf(¸ ) > ! and set J = [¸ ]<λ. For a fixed

» < ! 1, consider a family f α : X → Y (® < ¸ ) of Baire-» functions and a Borel

function f : X → Y . If f α →d
J

f and in our model the union of ¸ meager sets is

meager in Polish spaces, then f is necessarily Baire-».

The assumption on the additivity of meager sets holds under M A(¸ ) (see e.g. [3],

Theorem 1.2 on page 505 or [16], Theorem on page 170). The convergence of transfinite

sequences of Baire-2 functions of length ! 2 has also been investigated by P. Komjáth

(see [5], Theorem 4 and Theorem 5 on page 500). It is consistent (with 2@0 = ! 2 and

M A(! 1)) that every real function can be obtained as such a limit. It is also consistent,

under more complicated assumptions, that the limit function is necessarily Baire-2. The

case when the underlying space X is not necessarily Polish but merely metric has been

considered in [2] and [19]. Transfinite convergence of derivatives is examined in [1] while

in [18] transfinite convergence of Baire-» functions if treated under various set theoretic

assumptions.

In order to establish the connection between function classes and sublevel sets we will

use the following classical result (see e.g. [4], Chapter II, Theorem 24.3 on page 190).

Theorem 6.4. Let (X ; ¿) be a Polish space, (Y; d) be a separable metric space. Then for

every 1 ≤ » < ! 1, a function f : X → Y is Baire-» if and only if f ¡ 1(U) ⊆ X is Σ0
ξ+1 (¿)

for every open set U ⊆ Y .

In the metric space (Y; d), the open ball centered at x ∈ Y with radius ½is denoted by

Bd(x; ½). After these preparations, Theorem 6.2 and Theorem 6.3.2 are simple corollaries

of Theorem 1.6.

Pro of of Theorem 6.2. By Theorem 1 on page 133 and Theorem 2 on page 137 of

[20], the statement holds for »≤ 1. So let 2 ≤ » < ! 1 be fixed and suppose that f α →d
I<

f

for a family f α : X → Y (® < ! 1) of Baire-» functions.
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Suppose that f is not Baire-». As the pointwise limit of the functions {f α : ® < ! },
f is clearly Borel, so by Theorem 6.4, there is an open ball Bd(x; ½) ⊆ Y such that

f ¡ 1(Bd(x; ½)) is Borel but not Σ0
ξ+1 (¿). Set

H (") = f ¡ 1(Bd(x; ½− ")); Hα(") = f ¡ 1
α (Bd(x; ½− "))

for every ® < ! 1 and 0 < " < ½. Note that by Theorem 6.4, Hα(") is in Σ0
ξ+1 (¿) for every

® < ! 1 and 0 < " < ½.

Since H (0) is not Σ0
ξ+1 (¿), by Theorem 1.6.2 there is a continuous one-to-one map

' : (2ω; ¿C1)→ (X ; ¿) such that

(i) ' (Pξ+1 ) ⊆ H (0), and

(ii ) ' ¡ 1(H (0)) ⊆ 2ω is of first category in the topology ¿P»+1
.

By (i), there is an "0 > 0 such that ' ¡ 1(H ("0))∩Pξ+1 is of ¿P»+1
|P»+1

-second category.

Let J1(") denote that set of those indices ® < ! 1 for which ' ¡ 1(Hα(")) is of ¿P»+1
-second

category.

We prove that ! 1 \ J1(") is finite for every " < "0. Suppose that this is not true and

take a countably infinite set J 0(") ⊆ ! 1 \ J1("). By the definition of d
I <
− convergence,

" < "0 implies that

H ("0) ⊆ H 0(") :=
[

α2J ′(ε)

Hα(");

so we have that ' ¡ 1(H 0(")) ∩ Pξ+1 is of ¿P»+1
|P»+1

-second category in Pξ+1 ; that is, since

H 0(") is Σ0
ξ+1 (¿), by Theorem 1.6.1 ' ¡ 1(H 0(")) is of ¿P»+1

-second category. This is a

contradiction, since by the definition of J1("), ' ¡ 1(H 0(")) is ¿P»+1
-meager.

So J1(") is of cardinality ! 1 for every " < "0. In particular, given that (2ω; ¿P»+1
) has

countable base, there is a ¿P»+1
-open set U ⊆ 2ω such that for a countably infinite set of

indices J 00⊆ J1("0=2) we have that ' ¡ 1(Hα("0=2)) is ¿P»+1
-residual in U whenever ®∈ J 00.
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Hence for

H 00 =
\

α2J ′′

Hα("0=2);

' ¡ 1(H 00) is also ¿P»+1
-residual in U, so by (ii ) we can find a point x0 ∈ H 00\ H (0). Thus

f α (® < ! 1) is not d
I <

-convergent since

J 00⊆
n

® < ! 1 : d(f (x0); f α(x0)) >
"0

2

o

is infinite; a contradiction. The proof is complete.¥

Pro of of Theorem 6.3.2. Again, for »≤ 1 the statement follows from the proofs of

Theorem 1 on page 133 and Theorem 2 on page 137 of [20] ; so let »≥ 2. Now f is Borel

by assumption; and the proof is the same as for Theorem 6.2, until the definition of J1.

Now we show that card (¸ \ J1(")) < ¸ for every " < "0.

Suppose that this is not true and take a set J 0(") ⊆ ¸ \ J1(") of cardinality ¸ . By the

definition of dJ − convergence, " < "0 implies that

H ("0) ⊆ H 0(") :=
[

α2J ′(ε)

Hα(");

so we have that ' ¡ 1(H 0("))∩Pξ+1 is of ¿P»+1
|P»+1

-second category in Pξ+1 ; that is, by the

extension of Theorem 1.6.1, since H 0(") is the union of the ¸ number of Σ0
ξ+1 (¿) sets Hα(")

(®∈ J 0(")), ' ¡ 1(H 0(")) is of ¿P»+1
-second category. Now this contradicts the assumption

that the union of a ¸ number of meager sets is meager in (2ω; ¿P»+1
), since by the definition

of J1("), ' ¡ 1(Hα(")) (®∈ J 0(")) is ¿P»+1
-meager.

We continue as above; J1(") is of cardinality ¸ for every " < "0. In particular, given

that cf(¸ ) > ! and (2ω; ¿P»+1
) has countable base, there is a ¿P»+1

-open set U ⊆ 2ω such

that for a set of indices J 00 ⊆ J1("0=2) of cardinality ¸ we have that ' ¡ 1(Hα("0=2)) is

¿P»+1
-residual in U whenever ® ∈ J 00. Since in our model the intersection of a ¸ number
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of ¿P»+1
-residual sets is again ¿P»+1

-residual, for

H 00 =
\

α2J ′′

Hα("0=2);

' ¡ 1(H 00) is also ¿P»+1
-residual in U, so by (ii ) we can find a point x0 ∈ H 00\H (0). Again,

this contradicts the d
J -convergence. The proof is complete.¥



      

Chapter 7

Generalized separation and

reduction

It is well known that a pair of disjoint analytic sets can be separated by a Borel set. If

we need to estimate the Borel class of this separating set then Theorem 1.2 is very useful:

we only need to test the pair of analytic sets via injections of 2ω. Since analytic sets also

have the generalized separation property, that is for every sequence (Ai)i<ω of analytic

sets with
T
i<ω Ai = ∅ there is a sequence (B i)i<ω of Borel sets such that Ai ⊆ B i (i < ! )

and
T
i<ω B i = ∅, one can request a test for the complexity of the B i’s. We cannot refuse

such a demand so we present test sets corresponding to this problem. If topologization

seems to be artificial for Theorem 1.2, here the topological feature of our Hurewicz test

sets will be essential, namely for the proof that testing generalized separation is possible;

this application is the main motivation of this section.

The concepts are similar that of [7]. On the other hand we do not follow the spirit of

[7], that is we do not define closed games, neither will be reducing maps be one-to-one.

We will have to refer to Borel determinacy, so in particular this proof is not effective. We

also restrict our attention to sequences of Borel sets; all these simplification to make the

75
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argument as short as possible for having a nice application of topological test sets.

First we examine the problem of generalized separation; generalized reduction will

follow by taking complements.

7.1 Witnessing generalized separation

We aim to prove the following theorem.

Theorem 7.1. For every 0 < » < ! 1, there exists a Polish space (Dξ; ¿D» ) homeomorphic

to (C; ¿C) and ∆0
ξ+1 (¿D» ) sets Rξ(n) ⊆ Dξ (n < ! ) such that the following hold.

1. If B i ⊆ Dξ is a Π0
ξ(¿D» ) set and Rξ(i) ⊆ B i (i < ! ) then

T
i<ω B i 6= ∅.

2. If (X ; ¿) is a Polish space and (Ai)i<ω is a sequence of Borel sets in X such that
T
i<ω Ai = ∅ then

(a) either there is a sequence (B i)i<ω of Π0
ξ(¿) sets such that Ai ⊆ B i (i < ! ) and

T
i<ω B i = ∅,

(b) or there is a continuous map ' : Dξ → X such that ' (Rξ(i)) ⊆ Ai (i < ! ).

Observe that if 2b holds then the map ' indeed shows that 2a fails: if (B i)i<ω a

sequence of Π0
ξ(¿) sets such that Ai ⊆ B i ⊆ X (i < ! ) then

T
i<ω ' ¡ 1(B i) 6= ∅ follows

from 1 using Rξ(i) ⊆ ' ¡ 1(B i) (i < ! ), so
T
i<ω B i 6= ∅. So this theorem is of Hurewicz

type.

Before starting the construction we feel obliged to clarify why the testing is set up

only for Π0
ξ sets and not for Σ0

ξ sets. We have three reasons for this, the first is a corollary

of Theorem 7.1.

Corollary 7.2. If in Theorem 7.1 case 2a holds then the sequence (B i)i<ω can be chosen

such that B i ∈ ∆0
ξ(¿) (i < ! ).
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Pro of. Since the class Π0
ξ has the generalized separation property in Polish spaces

(see e.g. [4], (22.16) Theorem on page 172), the statement follows.¥

That is generalized reduction with Π0
ξ sets is stronger than generalized reduction with

Σ0
ξ sets. The following result says that in a particular case Theorem 1.2 gives an answer

to the problem for Σ0
ξ sets .

Claim 7.3. Let A0; A1 ⊆ X be disjoint analytic sets. Then there are disjoint Σ0
ξ(¿) sets

B0; B1 ⊆ X such that Ai ⊆ B i (i = 0; 1) if and only if A0 can be separated from A1 by a

Σ0
ξ(¿) set and vice versa, A1 can be separated from A0 by a Σ0

ξ(¿) set.

Pro of. If we have the disjoint Σ0
ξ(¿) sets B0; B1 ⊆ X such that Ai ⊆ B i (i = 0; 1)

then the separation is obviously possible in both directions. Suppose now that a Σ0
ξ(¿)

set B 0
i separates Ai from A1¡ i (i = 0; 1). The class Σ0

ξ has the reduction property in

Polish spaces (see again [4], (22.16) Theorem on page 172), thus we have disjoint Σ0
ξ(¿)

sets B i ⊆ B 0
i (i = 0; 1) such that B0 ∪ B1 = B 0

0 ∪ B 0
1. Since B 0

i ∩ A1¡ i = ∅ (i = 0; 1), we

have B i ∩ A1¡ i = ∅ (i = 0; 1). But A0 ∪ A1 ⊆ B 0
0 ∪ B 0

1 = B0 ∪ B1, so we get Ai ⊆ B i

(i = 0; 1). The proof is complete.¥

The next clam is simply trivial.

Claim 7.4. Let 0 < » < ! 1 be fixed and let #i → ». Let (Ai)i<ω be a decreasing sequence

of analytic sets in X such that
T
i<ω Ai = ∅. If there is a sequence (B i)i<ω of Π0

ξ(¿) sets

such that Ai ⊆ B i (i < ! ) and
T
i<ω B i = ∅ then there is a sequence (B 0

i)i<ω satisfying

Ai ⊆ B 0
i (i < ! ) and

T
i<ω B 0

i = ∅ such that B 0
i is Σ0

ϑi
(¿) (i < ! ).

Pro of. Write B i =
T
j<ω B i(j ) where B i(j ) is Σ0

ϑj
(¿) (j < ! ) and B i(j ) ⊆ B i(k) (k ≤

j < ! ; i < ! ). Set B 0
i =

T
j· i Bj(i), then B 0

i is Σ0
ϑi

(¿) (i < ! ). Since Ai ⊆ Aj ⊆ Bj ⊆ Bj(i)

(j ≤ i < ! ) we have Ai ⊆ B 0
i (i < ! ). We also have

T
i<ω B 0

i =
T
i,j<ω Bj(i) =

T
i<ω B i = ∅,

which completes the proof.¥
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Claim 7.3 and Claim 7.4 handle the two extreme situations in generalized separation:

when we have only two sets which are disjoint or we have infinitely many sets which

are decreasing. The cases in-between can be handled with similar tricks but the sepa-

ration conditions become numerous and complicated, so we omit them and turn to the

construction of test sets for generalized separation by Π0
ξ sets.

De¯nition 7.5. For » = 1 let (D1; ¿D1) = (! + 1; oω+1 ). Let ¸ 1 : ! × ! → ! be the

bijection defined by

¸ 1(n; i) =
1

2
(i + n + 1)(i + n) + n (n; i < ! )

and set R1(n) = {¸ 1(n; i) : i < ! } (n < ! ) and R1 = {! }.
For 1 < » < ! 1, let (Cξ(i); ¿C»(i)), {Pξ(i); ¿P»(i)} (i < ! ) be copies of the space (Cξ; ¿C» )

and Π0
ξ Hurewicz test pair {Pξ; ¿P»} defined in Definition 4.19. Set

Dξ =
Y

i<ω

Cξ(i); ¿D» =
Y

i<ω

¿C»(i) ;

P̂ξ(n) =
Y

i<n

Cξ(i)× Pξ(n)×
Y

n<i<ω

Cξ(i);

¿P̂»(n) =
Y

i<n

¿<P»(i) × ¿P»(n) ×
Y

n<i<ω

¿<P»(i)

and

Rξ(n) =
³

Dξ \ P̂ξ(n)
´
∩

\

m<ω,m6= n

P̂ξ(m) =
Y

i<n

Pξ(i)× (Cξ(n) \ Pξ(n))×
Y

n<i<ω

Pξ(n);

Rξ =
\

i<ω

P̂ξ(i) =
Y

i<ω

Pξ(i); ¿<R»
=

Y

i<ω

¿<P»(i) ;

.

We state a trivial lemma on the Borel class of the preceding sets.
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Lemma 7.6. For every 1 < » < ! 1, P̂ξ(n) is a Π0
ξ(¿D» ) set and Rξ(n) is a ∆0

ξ+1 (¿D» ) set

(n < ! ).

Next we show that the sets Rξ(n) do the job for Theorem 7.1.

Claim 7.7. Let 0 < » < ! 1 be fixed and suppose that B i ⊆ Dξ is a Π0
ξ(¿D» ) set and

Rξ(i) ⊆ B i (i < ! ). Then Rξ ∩
T
i<ω B i 6= ∅.

Pro of. Consider first » = 1. If B i is Π0
1(¿D1) then ! ∈ clτD 1

(R1(i)) ⊆ B i (i < ! ) so

indeed ! ∈ R1 ∩
T
i<ω B i.

Let now 1 < » < ! 1. By Claim 4.5.5,
n

P̂ξ(n); ¿P̂»(n)

o
(n < ! ) is a topological Hurewicz

test pair in the Polish space

Ã

Dξ;
Y

i<n

¿<P»(i) × ¿C»(n) ×
Y

n<i<ω

¿P <
» (i)

!

:

Moreover, also by Claim 4.5.5, Theorem 4.7 holds for P̂ξ(n) with the presentation inherited

from the presentation of Pξ defined in (4.9-4.11) of Definition 4.19. We also have ¿<
P̂»(n)

=

¿<R»
(n < ! ). So by Theorem 4.7.1, P̂ξ(i) (i < ! ) hence Rξ is ¿<R»

residual in Dξ. We show

that B i (i < ! ) is also ¿<R»
-residual in Dξ, this will complete the proof.

Fix some i < ! . Since Dξ \ P̂ξ(i) is ¿P̂»(i)-residual and P̂ξ(j ) is also ¿P̂»(i)-residual

(j < ! ; j 6= i), Rξ(i) and thus B i are also ¿P̂»(i)-residual in Dξ (i < ! ). Since B i is

Π0
ξ(¿D» ) , it is also

Π0
ξ

Ã
Y

i<n

¿<P»(i) × ¿C»(n) ×
Y

n<i<ω

¿P <
» (i)

!

:

Thus Corollary 4.8.4 can be applied and gives that B i is ¿<
P̂»(i)

-residual, that is ¿<R»
-residual

in Dξ, as stated.¥

The next task is to find the appropriate image of Rξ(n) (n < ! ) if generalized separa-

tion by Π0
ξ sets is not possible. Fix a 1 < » < ! 1. Let ¸ ξ : ! → rξ! be a bijection; using
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Dξ = (2r» )ω by Claim 4.20, let Λξ : C → Dξ denote the corresponding homeomorphism.

We define the Borel game Gξ, which is the heart of the proof of Theorem 7.1.

Let Ai; G; H ⊆ Dξ be Borel sets such that Ai ⊆ G (i < ! ). In the game Gξ((Ai)i<ω; G; H )

players I and II play

I ®(0) ®(1)

: : :

II ¯ (0) ¯ (1)

where ®(i); ¯ (i) ∈ {0; 1} (i < ! ), and II wins if and only if

Λξ(¯ ) ∈ G and

* Λξ(®) ∈ Rξ(i) =⇒ Λξ(¯ ) ∈ Ai (i < ! );

Λξ(®) ∈ Rξ =⇒ Λξ(¯ ) =∈ H ;

else I wins.

We associate maps to the strategies of I.

De¯nition 7.8. Fix a 1 < » < ! 1 and let ¾be a strategy of I in Gξ. Then ½σ : Dξ →
Dξ denotes the function mapping to a y ∈ Dξ the unique x ∈ Dξ such that the run

{Λ¡ 1
ξ (x); Λ¡ 1

ξ (y)} is according to ¾.

Note that ½σ is continuous. In the sequel we will use this property in the form that

½¡ 1
σ keeps the Borel class of sets.

By the following claim the determinacy of the game Gξ indeed proves Theorem 7.1.

Claim 7.9. For every 1 < » < ! 1, in the game Gξ a winning strategy

1. for player I gives a sequence (B i)i<ω of Π0
ξ(¿D» ) sets such that Ai ⊆ B i (i < ! ) and

(G \ H ) ∩ T
i<ω B i = ∅;
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2. for player II gives a continuous map ' : Dξ → G such that ' (Rξ) ∩ H = ∅ and

' (Rξ(i)) ⊆ Ai (i < ! ).

Pro of. Consider first a winning strategy ¾ for I. Let B i = ½¡ 1
σ (P̂ξ(i)) (i < ! ). By

Lemma 7.6, B i is Π0
ξ(¿D» ) (i < ! ). So it remains to show that Ai ⊆ B i and that

(G \ H ) ∩ T
i<ω B i = ∅.

Suppose that for some i < ! we have a y ∈ Ai \ B i, that is y ∈ Ai \½¡ 1
σ (P̂ξ(i)). Since

Ai \ ½¡ 1
σ (P̂ξ(i)) = Ai ∩ ½¡ 1

σ (Dξ \ P̂ξ(i)), there is some x ∈ Dξ \ P̂ξ(i) such that the run
©

Λ¡ 1
ξ (x); Λ¡ 1

ξ (y)
ª

in Gξ is according to ¾. We have

Dξ \ P̂ξ(i) = Rξ(i) ∪
[

j<ω,j6= i

³
Dξ \

³
P̂ξ(j ) ∪ P̂ξ(i)

´ ´
:

But if x ∈ Rξ(i) then II wins since y ∈ Ai ⊆ G while if x =∈ Rξ(i) and

x ∈
[

j<ω,j6= i

³
Dξ \

³
P̂ξ(j ) ∪ P̂ξ(i)

´ ´

then x =∈ Rξ(j ) (j < ! ) and x =∈ Rξ so II wins already by y ∈ G. This contradicts the

definition of ¾and proves that Ai ⊆ B i (i < ! ).

Suppose now that y ∈ (G \ H ) ∩ T
i<ω B i, that is y ∈ G \ H and

y ∈ ½¡ 1
σ (P̂ξ(i)) (i < ! ):(7.1)

Let x ∈ Dξ be arbitrary such that the run
©

Λ¡ 1
ξ (x); Λ¡ 1

ξ (y)
ª

in Gξ is according to ¾. Then

by (7.1), x ∈ T
i<ω P̂ξ(i) so x =∈ Rξ(j ) (j < ! ). Thus II wins by y ∈ G \ H , which again

contradicts the choice of ¾and proves (G \ H ) ∩ T
i<ω B i = ∅.

Let now ¾be a winning strategy of II. Let ' : Dξ → Dξ map to an x ∈ Dξ the unique

y ∈ Dξ such that the run
©

Λ¡ 1
ξ (x); Λ¡ 1

ξ (y)
ª

in Gξ is according to ¾. This map is clearly

continuous. We have ' (Dξ) ⊆ G, ' (Rξ) ∩ H = ∅ and if i < ! and x ∈ Rξ(i) then

' (x) ∈ Ai since the strategy ¾ is winning for II. This completes the proof.¥
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From this Theorem 7.1 will follow by standard arguments (see [7], Corollary 2 and

Theorem 3); that we give in the remaining part of this section. We have to extend the

results to arbitrary Polish spaces; for this we need the following result (see e.g. [7],

Theorem on page 455).

Theorem 7.10. (Saint Raymond) Let (E; ¿E), (F; ¿F ) be compact metrizable spaces and

(Q; ¿Q) be a Polish space. If h : E → F is a continuous surjection and f : E → Q is a first

class function then h has a first class section (i.e. there is a Baire-1 function s: F → E

such that h(s(y)) = y (y ∈ F )) such that f ◦ s: F → Q is also a first class function.

This theorem is applicable for a class of sets Γ if this Γ can be built up from Σ0
2 sets

on some canonical way.

De¯nition 7.11. Let D ⊆ 2ω and let (C(n))n<ω be a sequence of arbitrary subsets of

some base set X . The the Hausdorff operation associated to D acts on the sequence

(C(n))n<ω as

D ((C(n))n<ω) = {x ∈ X : {n < ! : x ∈ C(n)} ∈ D}:

A class Γ is called a Σ0
2 generated Hausdorff class if there is a basis D ⊆ 2ω such that in

every Polish space (X ; ¿) the members of Γ are the sets of the form D ((C(n))n<ω) where

(C(n))n<ω ⊆ Σ0
2(¿).

We recall that each class Σ0
ξ (1 < » < ! 1) is a Σ0

2 generated Hausdorff class (see e.g.

[4], (23.5) Exercise on page 180.) The following corollary is a variant of the so-called

transfer lemma (for a version, see e.g. [7], Corollary 2 on page 455). It will allow us to

extend our results to arbitrary compact spaces.

Corollary 7.12. Let (E; ¿E), (F; ¿F ) be compact metrizable spaces, h : E → F be a con-

tinuous surjection and Γ be a Σ0
2 generated Hausdorff class. Suppose that (Ai)i<ω is a
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sequence of subsets of F , T ⊆ F and there is a sequence (H i)i<ω ⊆ Γ of subsets of E

satisfying h¡ 1(Ai) ∩ H i = ∅ (i < ! ) and
S
i<ω H i = h¡ 1(T). Then there is a sequence

(B i)i<ω ⊆ Γ of subsets of F satisfying Ai ∩ B i = ∅ (i < ! ) and
S
i<ω B i = T .

Pro of. Let H i = D ((Ci(n))n<ω) where D is a basis for Γ and Ci(n) is Σ0
2(¿E) (i; n < ! ).

Let f i,n : E → [0; 1] be a first class function such that Ci(n) = {x ∈ E : f i,n(x) > 0} (i; n <

! ). Set f : E → [0; 1]ω£ ω, f =
Q

i,n<ω f i,n. From Theorem 7.10 for h and f we get a first

class section s of h such that f ◦s is also of first class, that is Vi(n) = {y ∈ F : f i,n(s(y)) >

0} is a Σ0
2(¿F ) set. Thus for B i = D ((Vi(n))n<ω) we have B i ∈ Γ (i < ! ). It is clear

that s¡ 1(H i) = B i (i < ! ). Since s¡ 1(h¡ 1(T)) = T and
S
i<ω H i = h¡ 1(T), we obtain

S
i<ω B i = T . From s¡ 1(H )i = B i we have s(B i) ⊆ H i, which gives B i = h(s(B i)) ⊆ h(H i)

(i < ! ). Since H i ∩ h¡ 1(Ai) = ∅ implies h(H i) ∩ Ai = ∅ (i < ! ), we have B i ∩ Ai = ∅
(i < ! ) which completes the proof.¥

It remains to finish with the proof of Theorem 7.1. We prove a slightly stronger

extension; Theorem 7.1 is the
T
i<ω Ai = ∅ case of Theorem 7.13 together with Claim 7.7.

Theorem 7.13. Let 0 < » < ! 1. In the Polish space (X ; ¿) let (Ai)i<ω be a sequence of

Borel sets. Then

1. either there is a sequence (B i)i<ω of Π0
ξ(¿) set such that Ai ⊆ B i (i < ! ) and

T
i<ω B i =

T
i<ω Ai,

2. or there is a continuous map ' : Dξ → X such that ' (Rξ) ∩
T
i<ω Ai = ∅ and

' (Rξ(i)) ⊆ Ai (i < ! ).

Pro of. First we show that 2 excludes 1. If a map ' satisfies the conditions of 2

then by Claim 7.7, Rξ ∩
T
i<ω ' ¡ 1(B i) 6= ∅. This implies ' (Rξ) ∩

T
i<ω B i 6= ∅ so since

' (Rξ) ⊆ X \ T
i<ω Ai, we have

T
i<ω B i 6=

T
i<ω Ai.
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To return to the proof of the theorem, set H =
T
i<ω Ai, and let first » = 1. If

T
i<ω clτ (Ai) = H then we have 1. Else let xω ∈

T
i<ω clτ (Ai) \ H . Since xω ∈ clτ (Ai)

(i < ! ), we have

Ai ∩ Bτ (xω; 1=n) 6= ∅ (i; n < ! )

where Bτ (xω; 1=n) is the open ball around xω with radius 1=n (n < ! ). So we can pick

points xλ1(n,i) ∈ Ai ∩ Bτ (xω; 1=n) (i; n < ! ). Let ' : D1 → X be defined by ' (i) = xi

(i ≤ ! ). This map is clearly continuous, ' (R1(i)) ⊆ Ai (i < ! ) and ' (R1) =∈ H , as

required.

Let now 1 < » < ! 1 and let (Ai)i<ω be a sequence of Borel sets in (X ; ¿) such that
T
i<ω Ai = H . Let (X̂ ; ¿̂) be a Polish compactification of (X ; ¿) (see e.g. [4], (4.14)

Theorem); then X ⊆ X̂ is a Π0
2(¿̂) set. Take a continuous surjection h : Dξ → X̂ and

consider the game

Gξ((h¡ 1(Ai))i<ω; h¡ 1(X ); h¡ 1(H )):

This game is clearly Borel so by Borel determinacy either player I or player II has a

winning strategy.

If player I has a winning strategy then by Claim 7.9.1 we have a sequence (Ui)i<ω of

Π0
ξ(¿D» ) sets such that h¡ 1(Ai) ⊆ Ui (i < ! ) and

(h¡ 1(X ) \ h¡ 1(H )) ∩
\

i<ω

Ui = ∅:

That is by

h¡ 1(H ) ⊆ h¡ 1(Ai) ⊆ h¡ 1(X ) (i < ! )

we have

h¡ 1(X ) ∩
\

i<ω

Ui = h¡ 1(H ):(7.2)
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Let (E; ¿E) = (Dξ; ¿D» ), (F; ¿F ) = (X̂ ; ¿̂), Γ = Σ0
ξ(¿D» ), T = X̂ \ H and H i = Dξ \

(h¡ 1(X ) ∩ Ui) (i < ! ). Since h¡ 1(Ai) ⊆ h¡ 1(X ) ∩ Ui implies h¡ 1(Ai) ∩ H i = ∅ (i < ! )

and
[

i<ω

H i = Dξ \
Ã

h¡ 1(X ) ∩
\

i<ω

Ui

!

= Dξ \ h¡ 1(H ) = h¡ 1(T)

by (7.2), we can apply Corollary 7.12 to get a sequence (Vi)i<ω of Σ0
ξ(¿̂) sets such that

Ai ∩ Vi = ∅ and
S
i<ω Vi = X̂ \ H . Then B i = X \ Vi is Π0

ξ(¿), Ai ⊆ B i (i < ! ) and
T
i<ω B i = H , as required.

If Player II has a winning strategy then we have a continuous map Ã : Dξ → h¡ 1(X )

such that Ã(Rξ) ∩ h¡ 1(H ) = ∅ and Ã(Rξ(i)) ⊆ h¡ 1(Ai) (i < ! ). Then for ' = h ◦ Ã,

' : Dξ → X is also continuous and satisfies ' (Rξ) ∩ H = ∅, ' (Rξ(i)) ⊆ Ai (i < ! ). This

completes proof.¥

7.2 Generalized reduction

Generalized reduction follows from Theorem 7.13 by taking complements.

Theorem 7.14. Let 0 < » < ! 1. In the Polish space (X ; ¿) let (Ai)i<ω be a sequence of

Borel sets. Then

1. either there is a sequence (B i)i<ω of Σ0
ξ(¿) set such that B i ⊆ Ai, B i ∩ Bj = ∅

(i; j < ! ; i 6= j ) and
S
i<ω B i =

S
i<ω Ai,

2. or there is a continuous map ' : Dξ → X such that ' (Rξ) ⊆
S
i<ω Ai and ' (Rξ(i))∩

Ai = ∅. (i < ! ).

Pro of. By repeating the argument in the proof of Theorem 7.13 one easily obtains

that by Claim 7.7, 2 excludes 1. Set A0
i = X \ Ai (i < ! ). By Theorem 7.13, either there
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is a sequence (B 0
i)i<ω of Π0

ξ(¿) set such that A0
i ⊆ B 0

i and
T
i<ω A0

i =
T
i<ω B 0

i or there is a

continuous map ' : Dξ → X such that ' (Rξ) ∩
T
i<ω A0

i = ∅ and ' (Rξ(i)) ⊆ A0
i (i < ! ) .

In the first case let B 00
i = X \ B 0

i (i < ! ). The class Σ0
ξ has the generalized reduction

property so there is a Σ0
ξ(¿) set B i ⊆ B 00

i (i < ! ) such that B i ∩ Bj = ∅ (i; j < ! ; i 6= j )

and
S
i<ω B i =

S
i<ω B 0

i =
S
i<ω Ai; which is 1.

In the second case we have ' (Rξ(i)) ∩ Ai = ∅ (i < ! ) and ' (Rξ) ⊆ X \ T
i<ω A0

i =
S
i<ω Ai; which is 2. So the proof is complete.¥

For reduction by Π0
ξ sets the same remarks apply as for separation by Σ0

ξ sets (see

Corollary 7.2, Claim 7.3, Claim 7.4 and their discussion).
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Concluding remarks

We constructed Π0
ξ topological Hurewicz test pairs for every 0 < » < ! 1 and we proved

the applications announced in the introduction. To conclude this thesis we would like

to present some problems which were left open implicitly or explicitly in the preceding

chapters.

Problem 8.1. Extend Theorem 4.7 or Theorem 5.2 to the entire Borel-Wadge hierarchy.

The aesthetic motivation for this is the fact that Theorem 1.2 has its extension to all

the Borel-Wadge degrees (see [6] and [8]). The real motivation is that it is not clear at

all how one could get rid of the rigid structure of the sets Pξ (0 < » < ! 1), which were

practically our only examples of Hurewicz test sets. The reason why we did not prove

Theorem 5.2 for 3 < » was the failure of Claim 5.5 for » = ´ = ! . But the reason for

this failure is that we cannot allow too much flexibility in the structure of our topological

Hurewicz test sets so the proofs get lost in technicalities. An approach which is able

to handle the entire Borel-Wadge hierarchy will hopefully be free of these superfluous

complications.

Next let us recall the theorem of S. Solecki mentioned in the introduction ([21], The-

87
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orem 1 on page 1023).

Theorem 8.2. (S. Solecki) Let I be a family of closed subsets of a Polis space (X ; ¿).

Let A ⊆ X be a Σ1
1(¿) set. Then either A can be covered by a countable union of members

of I or there is a Π0
2(¿) set G ⊆ A such that F ∩ G relatively meager in G for every

F ∈ I.

Less formally this result says that if a ¾-ideal I is generated by its Π0
1 members

the problem whether an analytic set belongs to I or not depends only on sets of low

complexity, namely on Π0
2 sets. This led to the formulation of Question 1.5 and Question

3.16. It is important to note that these questions are already refuted by the following

unpublished result of A. Kechris and M. Zelený.

Theorem 8.3. (A. Kechris-M. Zelený) Assume V = L . Then there is an analytic set

A ⊆ C and a ¾-ideal I strongly generated by its Π0
2(¿C) members such that I contains

every Borel subset of A.

However, in view of Theorem 3.15 it seems to be interesting to look for an alternative

counterexample. Mostly because in the proof of Theorem 3.15, CH was used for having

only ! 1 many sets to handle, so this result is more “descriptive” than “set theory”.

Problem 8.4. Prove (without V = L) for every 2 ≤ » < ! 1 that the answer to Question

1.5 and/or to Question 3.16 is consistently negative.

We know that using the approach of nested sequences applied in the proof of Theorem

3.15 it can be proved that Question 1.5 has a negative answer under CH ; this will be

published elsewhere. The reason why we could not include it in this thesis is the same as

above: the proof gets extremely technical due to the fact that the structural conditions

on P4 are so restrictive that this set cannot be used. We admit that we used PL instead
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of P3 for the same reason. And we also admit that this approach seems to be completely

inadequate to handle the 4 ≤ » < ! 1 case. It seems that Problem 8.4 is in close relation

also to the question whether Theorem 4.22 holds for » = »0+ 1 where »0 is a limit ordinal.

Problem 8.5. Prove for every 2 ≤ » < ! 1 that the answer to Question 1.5 and/or to

Question 3.16 is consistently positive.

We have no results in this direction. It can easily happen that the conditions for a

positive answer are much more natural and easier to handle. Since the proof of Theorem

8.2 is as elegant as numerous its corollaries are, it would be nice if an analogous statement

was true for higher Borel classes, at least consistently.

Problem 8.6. Make the arguments in Chapter 7 effective.

It seems to require only endurance. But a lot more than effective generalized separation

and reduction might be achieved. We could ask for a much closer analogy with the Baire

Category Theorem and related techniques than what we have up till now through our

topological Hurewicz test pairs. Namely for 1 < » < ! 1, we intend to have some machinery

which isolates a “maximal” Σ0
ξ set inside a given Borel set which behaves like “taking the

interior”. The best candidate for the framework of such a theory seems to be the effective

machinery. It may allow to define topologies ¿P to a much larger family of Π0
ξ set in such

a way that {P; ¿P} is a topological Hurewicz test pair. We may have an elegant, natural

proof for Theorem 4.22 and for ideal generation theorems in general. And we may be in

the position to answer Question 1.5 and Question 3.16: in the negative by repeating the

relatively simple argument of the proof of Theorem 3.15 and in the positive by repeating

the absolute simple argument of the proof of Theorem 8.2 with a properly chosen notion

of an “effective closure”.
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