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Abstract

In this thesis we examine the functors Dgy of Schneider and Vigneras
([17]) and D¢ of Breuil ([3]) generalizing the so called Montréal functor D of
Colmez ([4]).

Let G = G(F) be the F-points of a F-split reductive group G defined
over Z, for a finite extension F'|Q, with connected centre and split Borel
B = TN. Let o be the ring of integers in a finite extension K|Q,, and w € o
be an uniformizer.

In chapter 2 we compute Dgy attaching a module over the Iwasawa al-
gebra A(Ny) of certain compact subgroup Ny < N to a B-representation for
irreducible modulo @ principal series of the group G = GL,(F).

Chapter 3 and some parts of chapter 4 are joint work with Gergely
Zabradi. We show that Breuil’s [3] pseudocompact (¢, T')-module D¢ ()
attached to a smooth o-torsion representation m of B = B(Q,) is isomorphic
to the pseudocompact completion of the basechange Og @A ()¢ 5;/(71) to
Fontaine’s ring (via a Whittaker functional ¢: Ny = N(Z,) — Z,) of the
étale hull %(ﬂ) of Dgy .

Both in [17] and [3] the functional ¢ was generic. In the last chapter we
examine the case when ¢ is chosen to be ¢ = ¢, the projection of Ny onto a
root subgroup of a simple root « of G, which is nongeneric. We extend the
results of Breuil to this situation, moreover we define an étale action of the
submonoid 7 < T" on the noncommutative multivariable version D/, ()
of D{(m) enabling us to go backwards to the representations of G. We also
show some disadvantages of this choice of /.

i
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Chapter 1

Introduction

1.1 Local Langlands correspondence

At first, we catch a glimpse of local class field theory (see for example [19])
as an antecedent of the local Langlands conjectures.

Let p be a prime number and @, be the p-adic field. Let F'|Q, be a field
extension—in general it can be any local field—, F* be the multiplicative
group of F', and E be an algebraically closed field.

The main theorem of local class field theory gives the Artin homomor-
phism 0 : GL;(F) ~ F* — Gal(F|F)®, which induces an isomorphism on
the profinite completion F* of F*.

Since GL1(F') is abelian, the irreducible E-representations of GLj(F)
are the homomorphisms GL;(F) — E*, which are this way related to the
homomorphisms Gal(F|F)® — E* corresponding to one dimensional FE-
representations of the absolute Galois group of F.

The precise statements depend on the field E, and we do not explain
them in details here.

The local Langlands conjectures are generalizations of this, namely for
GL, the aim is to relate certain irreducible E-representations of GLy,(F)
with certain continuous n dimensional E-representations of Gal(F|F). This
correspondence shall be compatible with different structures (such as e- and
L-factors) on these representations.

In the situation £ = Qy (¢ # pis a prime number) and hence also if £ = C
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Harris and Taylor (JI1]), and independently Henniart (J[12]) estabilished the
correspondence.

However, the p-adic version £ = @p of the conjectures (which are closely
related to the p-characteristic version) seems to be much more involved. A
satisfactory explanation comes from the representation theory of GL,(F):
there are much more p-adic representation than f-adic. By now the corres-
pondence for GL2(Q,) is very well understood through the work of Colmez
[4], [5] and others (see [1] for an overview). In other cases the conjecturial
picture is not clear yet.

One can see the problem even for GLo(F') with F' # Q, as follows: On
the Galois side nothing really different happens as we change from Q, to
F. On the other hand, the dimension of GLy(F') as a p-adic analytic group
is bigger than that of GL2(Q),), consequently the representation theory of
GL;(F) is much more complicated than that of GL(Q,). In particular there
is no possible naive 1-1 correspondence (see [2]).

Since that many efforts have been done to generalize parts of Colmez’s
results. The aim of this thesis is to examine and compare the functors of
Schneider-Vigneras ([17]) and Breuil ([3]) going towards the Galois side (we
call these “generalized Montréal” functors).

1.2 The correspondence for GLZ(Qp)

To review Colmez’s work let K|Q, be a finite extension with ring of integers
o, uniformizer w and residue field k.

The starting point is Fontaine’s [I3] theorem that the category of o-torsion
Galois representations of Q, is equivalent to the category of torsion (¢, I')-
modules over Og = lim o/w"((X)).

Recall that a (¢, ')-module D is an Og-module with additional actions
of the Frobenius ¢ and the group I' = Gal(Q,(pp~)/Q,) which are commu-
tative, satisfying the étale property: the map O¢ ®, D — D, A®d — Ap(d)
is an isomorphism or equivalently

p—1

D~ P Io(D)=EP01+X)e(D).

XeO¢g /9(O¢) =0

Let Ag, be those elements f € Og which have coeflicients in Z, (the ring
of p-adic integers) and A be the p-adic completion of the maximal unramified
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extension Ay’ of Ag,. We have actions of p and I'on A. Let I'and x : I' — Zj
be the cyclotomic character with kernel 7.

The category equivalence of Fontaine is realized by these exact functors:
For an étale (¢,')-module D, V(D) = (0 A ®0, D)#=! is a Galois repre-
sentation of Q,. For a Galois representation V, D(V) = (A ®z, V)* is an
étale (¢, I')-module.

One of Colmez’s breakthroughs was that he managed to relate p-adic (and
mod p) representations of G = GL2(Q,) to (¢, T')-modules, too.

The so-called “Montréal-functor” D associates to a smooth o-torsion rep-
resentation 7 of the standard Borel subgroup B® of G a torsion (¢p,T')-
module over Og. We can construct it in the following way:

Let T® < B® be the maximal torus and Ny = é Zip

pact open subgroup of the unipotent radical of B, T\, be the submonoid
{t € T|tNot™' C No} in T, and B, = NyT.

Let II be a smooth (the action of G is locally constant) o-representation
of G@ of finite length. For a certain (sufficiently small) generating B, -
subrepresentation M of IT (which is denoted by I3} (W) in [4]) D(IT) is defined
as the localization MVY[1/X] of the Pontryagin dual of M. The functor
IT — D(IT) is contravariant and exact.

) be a com-

The way Colmez goes back to representations of G? requires the following
construction.

Let D be an étale (¢, I')-module over &€ = Og[1/p|. For all d € D there
are unique d; € D such that d = 3>~ (1 + X)’p(d;). Set ¢(d) = dy, thus o
Q, \ {0} @p> )

0 1

equivariant sheaf of K-vectorspaces over Q,, with global sections

is a left inverse of . With the help of that we can define a (

DKQ, = {(d(n))neN!Vn cd™ ¢ D,¢(d(n)) _ d(nq)}

This can be done for the smallest compact i-invariant generating
O¢t = 0[[X]]-submodule D* < D as well.

After choosing a character 0: Q) — 0" we can extend this sheaf to a G-
equivariant sheaf 9): U — DX U (U C P! open) of K-vectorspaces on the
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projective space P*(Q,) = G? /B®. This sheaf has the following properties:
(i) the centre of G acts via 6 on D X P*; (i) we have D K; Z, = D as

Zp\ {0} Zy
0

] (where we regard Z, as an open

a module over the monoid

subspace in P! = Q, U {c0}).

Whenever D is 2-dimensional and ¢ is the character corresponding to the
Galois representation of /\2 D wvia local class field theory, we set
II(D) = D X; P'/D* X5 P!, where

D*R; P! = {z € DX P'|Resg, (v) € D* K5 Q,}

is a G-invariant submodule of D X P!, TI(D) is an irreducible smooth rep-
resentation of G2,

We have D(II(D)) = D, where D = Hom(D, £) is the dual (o, I')-module.
Moreover the G-representation of global sections DX;P! admits a short exact

sequence
0— I(D)” - DX P' — II(D) — 0.

It also turns out, that this relation has the other required properties as
well.

1.3 Generalized Montréal functors

By now there are more different approaches to generalize Colmez’s functor
D to reductive groups G other than GL2(Q,). We briefly recall these gener-
alized Montréal functors here.

The approach by Schneider and Vigneras [17] starts with the set B () of
generating B, -subrepresentations W < . The Pontryagin dual
WY = Hom,(W, K/o) of each W admits a natural action of the inverse
monoid B;l. Moreover, the action of Ny < B;l on WV extends to an action
of the Iwasawa algebra A(Ny) = o[[No]]. For Wi, Wy € B, () we also have
Wi NWy € By(n) (Lemma 2.2 in [I7]) therefore we may take the inductive
limit Dgy (7) = @We&(ﬂ) WVY. In [17] it is denoted by D(7), however, in
order to avoid confusion we denote it by Dgy (7) (also note that the notation
V is used for the o-torsion representation that we denote by m). In gen-
eral, Dgy () does not have good properties: for instance it may not admit a

4
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canonical right inverse of the 7', -action making Dgy (7) an étale T',-module
over A(Ny). However, by taking a resolution of m by compactly induced
representations of B, one may consider the derived functors D, of Dgy
for i > 0 producing étale T -modules D%, (7) over A(Ny). Note that the
functor Dgy is neither left- nor right exact, but takes injective (resp. sur-
jective) maps to surjective (resp. injective) maps. The fundamental open
question of [I7] whether the topological localizations Ay(No) ®a(ng) Dy ()
are finitely generated over A,(Ny) in case when 7 comes as a restriction of a
smooth admissible representation of G of finite length. One can pass to usual
1-variable étale (¢, I')-modules—still not necessarily finitely generated—over
Og via the map ¢: Ay(Ny) — Og which step is an equivalence of categories
for finitely generated étale (o, ')-modules (Thm. 8.20 in [1§]).

More recently, Breuil [3] managed to find a different approach, producing
a pseudocompact (ie. projective limit of finitely generated) (¢, T')-module
D{(m) over Og when 7 is killed by a power @" of the uniformizer w. In [3]
(and also in [I7]) ¢ is a generic Whittaker functional, namely ¢ is chosen to
be the composite map

S uat
0: No = No/(No N[N, N)) == [ N " Z, .

a€A

Breuil passes right away to the space of Hy-invariants 770 of m where H,
is the kernel of the group homomorphism ¢: Ny — Z,. By the assumption
that 7 is smooth, the invariant subspace 7f° has the structure of a module
over the Twasawa algebra A(Ny/Hy)/@" = o/w"[[X]]. Moreover, it admits
a semilinear action of F' which is the Hecke action of s = £(p): For any
m € 7o we define

F(m) = Try, jsmys— (sm) = Z usm .
ueJ(Ho/sHps™1)

So 70 is a module over the skew polynomial ring A(Ny/Hy) /" [F] (defined
by the identity FX = (sXs')F = ((X + 1)? — 1)F). We consider those
(i) finitely generated A(Ny/H,)/w"[F]-submodules M C wHo that are (i7)
invariant under the action of I' and are (iii) admissible as a A(Ny/Hy)/w"-
module, ie. the Pontryagin dual M = Hom, (M, o/w") is finitely generated
over A(Ny/H,)/w". Note that this admissibility condition (ii7) is equivalent
to the usual admissibility condition in smooth representation theory, ie. that
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for any (or equivalently for a single) open subgroup N’ < Ny/Hj the fixed
points MY form a finitely generated module over o. We denote by M (7'l0)
the—via inclusion partially ordered—set of those submodules M < 70 sat-
isfying (i), (1), (ii7). Note that whenever M;, M, are in M(7f°) then so is
M, + M,. 1t is shown in [4] (see also [6] and Lemma 2.6 in [3]) that for
M € M(rt0) the localized Pontryagin dual MV[1/X] naturally admits a
structure of an étale (p,')-module over o/w"((X)). Therefore Breuil |3
defines
D{ () = Jm MY[1/X] .
MeM(nHo)

By construction this is a projective limit of usual (¢, I')-modules. Moreover,
D¢ is right exact and compatible with parabolic induction [3]. It can be char-
acterized by the following universal property: For any (finitely generated)
étale (¢, I')-module over o/@"((X)) = o/@"[[Z,)][([1] — 1)7'] (here [1] is the
image of the topological generator of Z, in the Iwasawa algebra o/@"[[Z,]])
we may consider continuous A(Np)-homomorphisms 7 — D via the map
(: Ng — Z, (in the weak topology of D and the compact topology of 7).
These all factor through (7V)g, = (7H°)". So we may require these maps
be 1~ and I-equivariant where I' = £(Z, \ {0}) acts naturally on (7)Y
and 1, (7f0)V — (7H0)V is the dual of the Hecke-action F: wHo — gfo
of s on 7o, Any such continuous v,- and I'-equivariant map f factors
uniquely through D/ (7). However, it is not known in general whether DY ()
is nonzero for smooth irreducible representations 7 of G (restricted to B).

Even more recently Scholze and Grosse-Klénne proposed different meth-
ods, which are just mentioned here. For G = GL,(F') Scholze ([20]) uses a
finiteness result of the p-adic cohomology of the Lubin-Tate tower to get a
representation of the Galois group Galg, he also gets an additional action of
a central division algebra D/F. Grosse-Klonne (|I4]) uses the G-equivariant
coefficient system on the Bruhat Tits building attached to m with some ad-
ditional information to construct a functor of this type, which is also exact
and for GL2(Q,) is the same as the classical functor D.

1.4 Summary of results

The thesis is mostly based on the papers [9] and [10].
In chapter 2 we compute Dgy for principal series representations of
G = GL,(F).
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In order to that, we need to understand the B,-module structure of
the principal series. In section 2.2 we decompose G into open Ny-invariant
subsets Uy, indexed by the elements w of Weyl group. The action of B,
respects this structure in the following sense: if w,w’" € W, y € U, and
b € By such that b~y € U/, then w’ < w for certain ordering on W.

With the help of this we prove in section 2.3 that there exists a minimal
element M, in the set of generating B, -subrepresentations of 7: namely the
B, -submodules generated by the "characteristic functions" of the sets U,w
for w in W.

Now we have Dgy(m) = My - the dual of this minimal B, -subrepresen-
tation. We do not know whether it is finitely generated or it has rank 1 as a
module over the modulo p Iwasawa algebra Q(NVy). However, we show that
in some sense only a rank 1 quotient of Dgy () is relevant if we want to get
an étale (o, I')-module.

In the last section we point out some properties of My, which sheds some
light on why the picture for principal series is more difficult compared to the
case of subquotients defined by the Bruhat filtration.

In chapter 3 we relate the functors Dgy and D/.

Our first result is the construction of a noncommutative multivariable
version of DJ(m). Let 7 be a smooth o-torsion representation of B such
that w"m = 0. The idea here is to take the invariants 7% for a family
of open normal subgroups Hy < Hy with (o, Hr = {1}. Now I' and
the quotient group Ny/Hj act on 7% (we choose H;, so that it is normal-
ized by both I' and Np). Further, we have a Hecke-action of s given by
Fy, = Try, jsms— © (s-). As in [3] we consider the set My (7"*) of finitely
generated A(Ny/Hy)[Fy]-submodules of w7+ that are stable under the action
of I' and admissible as a representation of Ny/Hj. In section 3.1 we show
that for any My € My(nfl*) there is an étale (p,T')-module structure on
M,'[1/X] over the ring A(Ny/Hy)/@"[1/X]. So the projective limit

DYo(m) =lm  lm  MY[L/X]

k>0 My e My, (k)

is a pseudocompact étale (p,I')-module over A, (Np)/w" =
lim, A(No/Hy)/@w"[1/X]. Moreover, we also give a natural isomorphism
L 1.0o(M)H, = DY () showing that DY, (7) corresponds to D¢ (7) via (the



CEU eTD Collection

projective limit of) the equivalence of categories in Thm. 8.20 in [I8]. Moreover,
the natural map wv — Dg’(ﬂ) factors through the projection map
DYy o(m) = D{(m) = D¢y (m)u,- Note that this shows that DY, ()
is naturally attached to m—mnot just simply via the equivalence of categories
(loc. cit.)—in the sense that any - and T'-equivariant map from 7 to an
étale (o, T')-module over o/w"((X)) factors uniquely through the correspond-
ing multivariable (p, I')-module.

In section 3.2 we develop these ideas further and show that the nat-
ural map 7 — D/, (7) factors through the map 77 — Dgy(r). In
fact, we show (Prop. 3.2.4) that D¢, () has the following universal prop-
erty: Any continuous 1,- and I'-equivariant map f: Dsy — D into a fi-
nitely generated étale (¢, I')-module D over A;(Ny) factors uniquely through
pr = pr,.: Dsy(m) = D¢, (7). The association 7 + pr, is a natural trans-
formation between the functors Dgy and DZ&OO. One application is that
Breuil’s functor ng vanishes on compactly induced representations of B (see
Corollary 3.2.3).

In order to be able to compute D¢, () (hence also D¢ ()) from Dgy ()
we introduce the notion of the étale hull of a A(Ny)-module with a i-action
of T’y (or of a submonoid T, < T';). Here a A(Np)-module D with a i-action
of T, is the analogue of a (¢,T")-module over o[[X]] in this multivariable
noncommutative setting. The étale hull D of D (together with a canonical
map ¢t: D — 5) is characterized by the universal property that any -
equivariant map f: D — D’ into an étale T'.-module D" over A(Ny) factors
uniquely through ¢. Tt can be constructed as a direct limit liglteT+ ©; D where

0; D = A(No) ®g, a(vo) D (Prop. 3.3.4). We show (Thm. 3.3.9 and the remark

thereafter) that the pseudocompact completion of Ay(No) ®a () Dgy(m) is
canonically isomorphic to D, . (7) as they have the same universal property.

In order to go back to representations of G we need an étale action of 7'y
on D, (), not just of £(Z, \ {0}). This is only possible if tHot ™' < H for
all ¢ € T, which is not the case for generic /. So in the last chapter we equip
D¢y oo(m) with an étale action of T (extending that of {(Z, \ {0}) < T})
in case ¢ = /, is the projection of Ny onto a root subgroup N, o = Z, for
some simple root « in A. Moreover, we show (Prop. 4.1.5) that the map
pr: Dgy(m) — D¢, . (7) is y-equivariant for this extended action, too. Note
that DY, (m) may not be the projective limit of finitely generated étale



CEU eTD Collection

T -modules over Ay(Ny) as we do not necessarily have an action of 7'y on
MY[1/X] for M € M(m"°), only on the projective limit.

Let P < (G be a parabolic subgroup with Levi decomposition P = LpNp.
We show in section 4.2 that the compatibility with parabolic induction [3]
Theorem 6.1 goes through in this situation:

v .
Dy (IndS. mp) = D (:P) R ?f N, C Lp 7
0/@"((X))®o/mnOrdzy, (mp)” if No C Np

where Ord is the ordinary part similar to the definition of Emerton (cf Defini-
tion 3.1.9 in [7]).

We present the results of section 4 in [I0], where a G-equivariant sheaf
2) on G/ B is attached to DY, () and a natural transformation 8g,p from
()Y to m — 9) is constructed, which is compatible with a reverse functor.

In section 4.4 we show some disadvantages of the choice ¢ = /,:
ng vanishes for the twist of a modulo p supercuspidal representation 7
of GL2(Q,) by a character x. Moreover D/ is not exact even for extensions

2)

of principal series mp = 7 ® y.
The mostly folklore computation with (¢, I')-modules which is needed for
the latter result is carried out in section 4.5.

1.5 Notations

Let F, K < @p finite extensions of Q,. Let op, respectively ox be the rings of
integers in F, respectively in K, wr € op and wgx € ox be the uniformizers,
vr and v be the standard valuations and kr = op/wror, kx = ok /wkok
be the residue fields.

Let G = G(F) be the F-points of a F-split connected reductive group
G defined over Z, with connected centre and a fixed split Borel subgroup
B = TN. Put B = B(F), T = T(F), and N = N(F). We denote by
@, the set of roots of T in N, by A C ®, the set of simple roots, and by
Uy : G, — N, for a € ®,, a F-homomorphism onto the root subgroup
N, of N such that tu,(z)t™' = u,(a(t)z) for z € F and ¢t € T(Q,), and
No = [l,ca, Ualor) is a subgroup of N. We put Noo = ua(or) for the
image of u, on op.



CEU eTD Collection

Let W = Ng(T)/Za(T) denote the Weyl group of G and < denote
the strong Bruhat ordering of W (see [15] II. 13.7): we say w’ < w for
w # w € W if there exist transpositions wy,ws,...,w; € W such that
w = wwywsy . .. w; and [(w) > (wwy) > (wwiws) > -+ > l(wwiws ... w;).

We denote by 7 the monoid of dominant elements ¢ in T(Q,) such
that vp(a(t)) > 0 for all @« € &, by Ty C T, the maximal subgroup,
by Ty, the subset of strictly dominant elements, i.e. vp(a(t)) > 0 for all
a € &, and we put By, = NyT'y, By = NyTy. The natural conjugation
action of T’y on Ny extends to an action on the Iwasawa ogx-algebra A(Ny) =
ok [[No]]. For t € T\ we denote this action of t on A(Ny) by ;. The map
wr: AM(Ng) — A(Np) is an injective ring homomorphism with a distinguished
left inverse ¢y : A(Ny) — A(Ny) satisfying ¢y o ¢y = ida(ny) and ¥ (ug(N)) =
Pi(ps(AN)u) =0 for all u € Ny \ tNot~' and X € A(Ny).

Each simple root « gives a F-homomorphism z, : N — G, with section

Tr
Uy. We denote by /, : Ny — F Iy Ly, T€SP. Lo: O — Ny, the restriction

of x,, resp. u,, to Ny, resp. op.

Since the centre of G is assumed to be connected, there exists a cochar-
acter £: F* — T such that a o £ is the identity on F™ for each o € A. If
F =Q, weput I' = {(Z;) < T and often denote the action of s = {(p) by

P = Ps-

For an og-representation 7 let 7Y = Hom,, (7, K/ok) be the
Pontryagin dual of 7. Pontryagin duality sets up an anti-equivalence between
the category of torsion ox-modules and the category of all compact linear-
topological ox-modules.

By a smooth og-torsion representation of G (resp. of B = B(F')) we mean
a torsion ox-module 7 together with a smooth (ie. stabilizers are open) and
linear action of the group G (resp. of B). 7 is admissible if for any U < G
open subgroup, the vector space kr ®,, 7 is finite dimensional.

For example, if G = GL, and ' = Q,, B is the subgroup of upper
triangular matrices, N consists of the strictly upper triangular matrices
(1 on the diagonal), T is the diagonal subgroup, Ny = N(Z,), the simple
roots are au, ..., a,_1 where o;(diag(ty,...,t,)) = tit;rll, To, sends a matrix
to its (i, 4 1)-coefficient, u,,(+) is the strictly upper triangular matrix, with
(1,7 4 1)-coefficient - and 0 everywhere else.

10
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Let C*(G) (respectively C°(G)) denote the set of locally constant
G — kg functions (respectively locally constant functions with compact
support), with the group G acting by left multiplication (¢f : z — f(¢ 'z)
for f € C(G) and g,z € G).

Let Gy < G be a compact open subgroup and A(Gj) denote the completed
group ring of the profinite group Gy over ox. Any smooth ox-representation
7 is the union of its finite Gy-subrepresentations, therefore 7" is a left A(G))-
module (through the inversion map on Gy).

Let Q(Goy) = A(Go)/wrxA(Gp). Q(Np) is noetherian and has no zero
divisors, so it has a fraction (skew) field. If M is a Q(Np)-module, by the
rank of M we mean dimy, (Frac(2(No)) ®avg) M).

Let {: Ny — Z, (for now) any surjective group homomorphism and denote
by Hy < Ny the kernel of ¢. The ring A,(Ny), denoted by Ag,(No) in [17], is
a generalisation of the ring Og, which corresponds to Aid(NSZ)) where Né2) is
the Z,y-points of the unipotent radical of a split Borel subgroup in GLg. We
refer the reader to [I7] for the proofs of some of the following claims.

The maximal ideal M(Hy) of the completed group og-algebra
A(Hy) = ok[[Ho]] is generated by wy and by the kernel of the augmenta-
tion map o [[Ho]] = ok-

The ring Ay(Ny) is the M(Hy)-adic completion of the localization of
A(Ny) with respect to the Ore subset Sy(Np) of elements which are not in the
ideal M(Hy)A(Np). The ring A(Ny) can be viewed as the ring A(Hy)[[X]]
of skew Taylor series over A(Hp) in the variable X = [u] — 1 where u €
Ny and /(u) is a topological generator of ¢(Ny) = Z,. Then Ay(Np) is
viewed as the ring of infinite skew Laurent series »_ _, a, X" over A(H,)
in the variable X with lim,,, - a, = 0 for the compact topology of A(Hy).
For a different characterization of this ring in terms of a projective limit
Ay(Ny) = gnnkA(No/Hk)[l/X]/w% for H, <« Ny normal subgroups con-
tained and open in H, satisfying Mo Hr = {1} see also [23].

For a finite index subgroup G, in a group G; we denote by J(G,/G,) C G,
a (fixed) set of representatives of the left cosets in G;/G.

11
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Chapter 2

The Schneider-Vigneras functor
for principal series

2.1 Principal series

In this chapter fix n € N, and let G = GL,(F), and Gy = GLy(0F).

Let B be the set of upper triangular matrices in GG, T' the set of diagonal
matrices, N the set of upper triangular unipotent matrices. Let N~ be
the lower unipotent matrices - the opposite of N - and Ng = NN Gy - a
totally decomposed compact open subgroup of N - those matrices wich has
coefficients in op.

By the abuse of notation let w € W denote also the permutation matrices
- representatives of W in G (with w;; = 1 if w(j) = 4, and w;; = 0 otherwise),
and also the corresponding permutation of the set {1,2,...,n}. For w € W
denote length of w—the length of the shortest word representing w in the
terms of the standard generators of W—by l(w).

Let the kernel of the projection pr : Gy — GLy(kp) be UM, This is
a compact open pro-p normal subgroup of Gy. We have G = GyB and
UM c(N-NUW)B.

Let

X=X1®X2® - Qxn: T = ki

be a locally constant character of T' with x; : F* — ki multiplicative. Note
that for all i we have x;(1 + mpor) = 1 and y;(0}) C kp Nk} <F, . Since
T ~ B/|B, B], also denote the correspondig B — kj, character by x. Let

m=Ind§(x) = {f € C*(G)Vg € G,b€ B: f(gb) = x '(b)f(9)}

12
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m is called a principal series representation of GG. 7 is irreducible exactly when
for all i we have x; # xi+1 ([16], theorem 4). For any open right B-invariant
subset X C G we write Indjy = {f € Ind5(x)|fle\x = 0}.

We can understand the stucture of 7 better (see [2], section 4.), by the
Bruhat decomposition G' = |J,,o,y BwB. Fix a total ordering < refining
the Bruhat ordering < of W, and let

wlzidW—<Tw2—<Tw3—<T---—<Twn!:w0.

Let us denote by G, = U1§zgm Bw;B - a closed subset of G. We obtain a
descending B-invariant filtration of 7 by

T = Ind$\ 9 (x) = {F € md$(x)|Flg, =0} (0 <m <nl),

with quotients m,_ /7, via f +—  f(w,) isomorphic to
(W, X) = C(N/N}, ) (see [17], section 12), where N, = N Nw,Nw,',
with N acting by left translations and T acting via

(te)(n) = x(w,, twn,) (™ nt).
For any w € W put
No={n € NN¥i<jw (i) <w™'(j) :nyy =0} = NNwN w™ <N,

and No,, = NoNN,. Then we have the following form of the Bruhat decom-
position G' = [, .y NwwB.

2.2 The action of B, on G

The first goal is to partition G' to Ny-invariant open subsets {U,|w € W}
indexed by the Weyl-group, which are respected by the B -action in the sense
that if v € U, b € B, then there exists w’ < w in W such that b='z € U,,.

Definition Let for any w € W r, : N~ NGy — G(kp),n~ — pr(wn-w™1),
R, = ’LUT’;I(N(]{?F)), R = Uygew Ry

We have that

=1, if w™(i) =5
_ o =0, if w=(i) < j
Ry = { (aij) € G|Vi,j : ag € op, if w™i(i) > j and w(j) > i
H4)

€ wrop, if w

13
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For n = 3 in details (with 0 = or and @w = wp):

oy
g
=

w w w
1 00 1 0 O 010 1 00
id=1{1 010 wo 1 0 (23)=11 00 wo o 1
0 0 1 wo wo 1 0 0 1 wo 1 0
010 0 1 0 0 0 1 o o 1
(12)=( 1 0 0 1 0 0 (123)=( 1 0 0 1 00
0 0 1 wo wo 1 010 wo 1 0
010 o 1 0 0 0 1 o o 1
(132)=( 0 0 1 o wo 1 (13)=10 10 o 10
1 00 1 0 0 1 00 1 00

Let N(kg) be the kp-points of N (the upper triangular unipotent matrices
with coefficients in kg). kp has canonical (multiplicative) injection to
op C F, hence any subgroup H(kr) < N(kp) is mapped injectively to Ny
(however this is not a group homomorphism). We denote this subset of Ny

Proposition 2.2.1 A set of double coset representatives of UM \ G/B is

Uwew Nw (kp)w. Every element of G can be written uniquely in the form rb
withr € R and b € B.

Proof By the Bruhat decomposition of G(kr) a set of double coset repre-
sentatives of UM\ Go/(BNGy) is the set as above. Since G = G B, we have
the first part of proposition.

Let ¢ = unwb € G with u € UV, w € W, n € Ny(kr) and b € B.
Then g = w(w™'nw)u'b with v/ = w™n"tunw € UM, But then there exist
n' € N-NUW and ¥ € B such that ' = n'b'. Then g = w(w 'nwn’)(b'b),
where w™'nwn’ € r;'(N(kr)) because of the definition of N,,.

e~

For any w € W we clearly have UYN,, (krp)wB = R,B. Hence the
uniqueness follows: if rb = 1’ then there exists w € W such that r,»" € R,
and 0’01 = (" lw ) (wr) € BN N~ = {id}. O

—_——

Definition For any w € W let U, = UVN,, (kr)wB. This way we parti-
tioned G into open subsets indexed by the Weyl group. We obviously have
U, = R,B.

Corollary 2.2.2 For any w € W we have that Uy, is (left) No-invariant.

14
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Proof Let ' € Ny and © = unwb € UWNy(kp)wB. We have
Ny = Now(N,, N Ny), thus n'n = mm/ for some m € Ny, and m’ € N, N Ny,

—_—

moreover we can write m = mymg € (N, N UW)Ny, (kr). By the definition
of N},

n/x = (n’un/flml)mow(wflm/wb) S U(l)Nw(kF)wB7

meaning that U, is Ny-invariant. ([l

Proposition 2.2.3 Let y € U, = R,B, nt € By = N/, and
r=t"n"lyec Uy = RyB. Then v < w.

Proof Let y = rb with r € R, and b € B. By the previous proposition we
may assume that n = id. If ¢t = diag(t1,te,...,t,) € Go, then

v =ww 't w(w r)w tw) (w it wb),

where w™ 't w(w™r)w™tw € r'(N(kr)), because it is in N~ and the
coefficients under the diagonal have the same valuation as those in w™lr.
T, as a monoid is generated by 7' N Gy, the center Z(G) and the elements
with the form (wp, wp,...,wpr,1,1,...,1), hence it is enough to prove the
proposition for such t¢-s.

Sofix t = (tl = wF,tQ = wF,...,tl = wF,Zfl+1 = 1,tl+2 = 1,...,tn = 1),
r = (r;;) and try to write z in the form as in Proposition 2.2.1. For all
j=0,1,2,...,n we construct inductively a decomposition z = (¢7))~1()p0)
together with w¥) € W, where

e wUT) < wl for j < n and such that the first j columns of w") are
the same as the first j columns of w+b,

o t0) = diag(tY)) € T with

e 7V € R, and if we change the first j columns of rU) to the first j
columns of (t9)71r() it is still in R, (by de definition of V) it is
enough to verify the condition for (t4))=1r()),

e ) € B.

15
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Then w™ < w1 < w2 < ... < w® = w. However for j = n we have
t = id, hence w™ = w’ by disjointness of the sets R,B for v € W, so we
have the proposition.
For j = 0 we have t(© = ¢ 7 = p©® = p and w® = w. From j to
J+ 1
o If wW(j+ 1) < [, then let wl*tY = W) so tUt) = e;(lj)(jﬂ)t(j),
where for 1 < k < n we denote e, = ex(wp) the diagonal matrix
with wp in the k-th row and 1 everywhere else. We can choose

rOH) = e G iy Ve, and bUHD = 7 bV,

Then the first j columns of (tYFV)~1rU+D are equal of those of

(tU))~1r0) and the entries at place (i, + 1) with i # wU+D(j + 1) are
multiplied by wr. Because of the conditions for r(j), this is in R, ;+1).
The other conditions for wU*Y tU+) rG+D and v+ obviously hold.

o If wW(j+1) > and if vp(rl’) ) > 1 for all i <[, then it suffices to
Choose w(j+1) — w(]))t(]“”l) — t(])7/r’(.7+1) — T(‘]) and b(]+1) — b(.])

e Assume that w9 (j + 1) > [ and that there exists i < [ such that

VF<T§£-)+1) = 0. Let ¢ be the maximal such i. Then choose
wUTD(j + 1) =g, and tUT) = ¢, 10,

Let v’ = e;olr(j)ejﬂ((?”g?ﬁl)’l -w), where e;(«) is the diagonal matrix
with a € F'in the j-th row and 1 everywhere else. Note that r] .., =1
and 1’ differs from %) only in the io-th row and the j+1-st column. But
(tUFD) =1’ is not in GLy,(or) - for example VF(TQO,(wU))*l(iO)) = —1, and
there might be some other elements of " in the ip-th row and columns
between the j + 2-nd and j' = (w")~(iy)-th.

To see this note first that w9 (j+1) > 1 > g, so (w)71(iy) # j+1. In
particular the right multiplication with e;;; does not change the entry
at place (ig, (W) ™1(4y)). Since r) € R, ), the defining conditions of
R, and that (w)™'(ig) # j + 1 imply (w¥)~'(ig) > j + 1. Thus
(tz(g))’l = (ti,) "t = @', since iy < . By the definition of R, we have

) = 1. Therefore 7’

io,(w(j))fl(io) zo,(w(j))*l(io)

= wz' which has valuation

But note, that in the j + 1-st column of 7’ the ig-th element is 1, all the
other has valuation at least 1. Thus the first j+1 columns of (£U+1))=1¢/

16
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satisfy the condition for the first j + 1 columns of (tU+1))~1rG+D _ this
is meaningful, because we already fixed the first j+1 columns of wU*1),

So we want to find rU+Y) = /¥ with ¥ € B such that the first j + 1
columns of & is those of the identity matrix, and
U=+ € R (41 for some wl) < wl+D),

Let jo = j + 1, and if j; < j' then

Jivr = min{h|j + 1 < h,rj , ¢ op, w9 (j;) > w9 (h)}.

We claim that the set on the right hand side contains j’ if j; < j/. We
prove it by induction on ¢. For ¢ = 0 we already verified it. Assume
by contradiction that w'@(j;) < ip = w¥(5'). Since j* > j; we get
l(g)j € wrop, because 1Y) € R, ;). But then ri,5, € or, because
' € e;'rl) - Mat(or), contradicting the defining conditions of j;. Thus

we have w(j;) > ig = wV)(5').

r

Let s be minimal such that j, = j’ and set j,.; = n+ 1. We claim that
rUHD) will be in R+ with w0 = w® (5,1, 75) sz, js—1) - - - (Jo, J1)-
Then the condition w+Y) < w0 holds, because the multiplication from
right with each transposition (j;, j;+1) decreases the inversion number
and the length respectively, by the definition of j;,1.

For the existence of a v/ € B such that 'V’ € R,;+1) we prove the
following statements inductively:

Lemma 2.2.4 For all j +1 < k <n there exist

— '™ € B such that the first k column of r'®) = r'b'*) satisfy the
defining condition for the first k column in R, i+, and if we have
k < n then r'® and v"*+Y differ only in the k + 1-st column.

— a linear combination s*) of the columns j+1,5+2,..., k in r'®)
for which we have

1, if i =g
sM=2{ 0, if (wVH))=1(5) <k, and i # g
wrx, for some x € op otherwise

(k)

and the mazimal i such that vp(s;”) = 1 is w9 (jy), where i’ is

so, that j; < k < jyi1.

17
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Proof This holds for k = j + 1 with &’U*1) =id, #/U*t) = ¢/ and sU+)
the j 4+ 1-st column of /. To verify the condition for sU+Y note that

Zwm(ﬁl) i) = @F and if i > j + 1, then by the definition of R, we
0 -1,0)

have that r(J) , has valuation at least 1 and r (ij+1) = wr (T i it
has valuatlon at least 2.

Assume that we have /®) §® and s®). Let i/ be so that

» < k < jyi1 and 8’ be the k + 1-st column of 7/(*) (Which is equal

Wlth the k + 1-st column of /, thus for i # iy we have s, = rf k)+1) and

s" = 5 — T((k)kﬂ)s(k).

the k + 1-st column of /(%) to s” with multiplication from right by an
element 0" € B. Moreover s; = 0, and the element in s” with minimal
valuation and biggest row mdex is the wV*V (k + 1)-st:

Then by the conditions on s’ we can change

—If yp(rzglg’)kJrl)) > 0 then for i # ip we have s, = s/ = sg—rzgﬁ?kﬂ)sl(k)
mod wp, hence the element with minimal valuation is in the row

wY T (k+1) = w9 (k+1) (because r¥) € R, and jyy 1 # k-+1).

- If VF(TE(k)k+1)) < 0 then it is -1 and for ¢ # iy we have

s) = 7“((1),%1) - Tglg)kﬂ) . sl(-k). Where on the right hand side the

first term has positive valuation for i > w)(k 4 1) and 0 valu-
ation for i = w") (k+1) (because r¥) € R, ), and the second has
valuation 0—1+1 for i = w9 (j;) and at least 1 for i > w®(jy)
(by the induction hypothesis on s(k)). Moreover ji # k + 1, be-
cause jy < k, hence w")(ji) # wW (k +1).

If w9(y) < wWk + 1) then juy # k + 1 and
w(k +1) = wUD(k +1). If w9 () > w(J)(k’ + 1) then
jisr =k +1and wUt(k +1) = w0 (i) = w9 ().

By multiplying this column with (s;’](jﬂ)(kﬂ))*1 we get the element
/(1) (we also have to multiply the k + 1-st row of b” with szj(jﬂ)(kﬂ),

this is b’(k“)). This satisfies the condition for the k4 1-st row of R, ;1
because the defining conditions for ) € R, ), s and the equality

{il(@ D)1 (@) < b+ 1} = {il ()71 (0) < b+ 13\ {w (i)} U {io}.

The last thing to verify is the ex1ste(n)ce of an appropriate hnear com-
k _
bination s*+1. Tet s+l = sk) — S 41 (b 1) Srn 41 (k1)) L. §". Since

18
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(k)

( (k+1)
VE\S 4G40 (k1)

) > 0, we have vg(s;” ) > 0 if i # iy, and by the previ-

ous argument also sq(f(ﬂf)(j,) =0forj <k+1landj #j+1.
If wiY(k +1) > w9 (j), then S,Ef()j+l)(k+1) > 1 and s*+D) = 5

mod w2. If wV)(k + 1) < w"Y(jy) then by the definition of R, 1)
for all i > wU™(k + 1) we have v(s?) > 1 and again s = s

mod w. If wi (k4 1) = wl(jy), then by the definition of R, we
have 8;«0(”(2/) = rE =0, 5" 0— Tz(k) (k) and

W (j,1),k+1) wl+D (k1) io,k+1) 5w (5,)
_ ok (k) /(k) (k) -1 1(k) k) _ ./(k) -1
= s )_Sw(j)(ji,)<_T(io,k+1)sw(j)(]’i,)) ‘(5/_7“(i0,k+1)3( )> = (Moykr1)) s,

which satisfies the condition because s’ is the jy,; = k + 1-st column
of ') and because of the definition of R,,. O

To finish the proof we set V = o™, rUt) = o'y ¢ R 41 and
pl+1) — (y(n))—l(ﬁé}jﬂ e )9 e B.

O

Corollary 2.2.5 For any w € W we have BwB = NywB C Uy<,Uy. In
particular for any 0 < mg < n! we have that

U Uu. €G\Guper = |J BumB.

m>mo m>mo

Proof Let x = n,wb € N,wB. Then there exists ¢t € T, such that
n = tnyt™' € Ny. Thus z = t " 'n'wlw tw)b = t7'n'wd” with b" € B.
By the previous proposition for w = w -id € R,B and (n')~'t € By,
there exist w' < w, ry € Ry and b € B such that t'n'w = 7,0V, hence
x =1y (b'") € Uy. The second assertion follows from that:

U Uu.=G\ |J Uu.cG\ |J BwwB=G\Gpy.

m>mg 1<m<mg 1<m<mg

O

Remark We can achieve the results of this section not only for GL,, but
different groups: let G’ = G/(F') be such that
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e (&' is isomorphic to a closed subgroup in G which we also denote by G,

e In (¢’ a maximal torus is 7" = T'N G’, a Borel subgroup B’ = BN G’
with unipotent radical N’ = N N G’, such that Ng/(1T") = Ne(T) N G
and hence W/ < W with wy € W/, with representatives w’ of W’ in
Gy < Gy such that the representatives w of W in G can be written in
the form w = w't such that t € T'N Gy.

o Gy =GoNG with G = G{B’ and
o U'M) =UW NG such that U' (N~ NU'W)B’ for N'~ = woN'w.

For example these condititons are satisfied for the group SL,,.

The proof of the first proposition works for such G’, and from a decom-
position x = 7'V’ € R, B’ C G’ we get some r € R,, and b € B such that
x =rb € G. Hence the B’ -action on G’ respects the restriction of < to W’
in the sense that if x € R,yB’ and b’ € B’ then there exists w” < w’ in W’
such that ¥~'z € R, B’

2.3 Generating B, -subrepresentations

For any torsion ox-module X with og-linear B-action denote the (partially
ordered) set of generating B -subrepresentations of X (those B, -submodules
M of X for which BM = X) by B, (X).

For example Indg“’o(x) ~ C'°(Ny) is the minimal generating B -subrep-
resentation of the Steinberg representation m,_; = Ind5"°?(y) ~ C>®(N).
(cf [17], Lemma 2.6)

Proposition 2.3.1 Let X be a smooth admissible and irreducible torsion oy -
representation of G. Then My = B+XU<1) s a generating B -subrepresen-
tation of X. For any M € By(X) there exists a t, € T, such that
t My C M.

Proof X is a wyg vectorspace as well, because wrg X < X, hence by the
irreducibility it is either 0 or X, and since X is torsion wg X = X gives
X =0.

BMj is a B-subrepresentation, and also a Gy-subrepresentation (because
UM 9Gy). GoB = BGy = G, so BMj is a G-subrepresentation of X. M, is
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not {0}, since UM is pro-p and since X is irreducible BM, = X, hence M,
is generating. And M, is clearly a B,-submodule of X.

X is admissible, hence XU" has a finite generating set, say R. Let M
be as in the proposition. For any r € R there exists an element ¢, € T, such
that t,r € M ([17], Lemma 2.1). The cardinality of R is finite, hence for
ty =1, eptr we have t;'t, € T, for all r € R, and then ¢, M, C M. O

From now on let 7 = Ind$(x) as before and My = BonV". Then 7V

(as a vector space) is generated by

fr : { urb — X(l)(b> (7” c U(l) \ G/B _ U va\(_k/p)w>

y #urb — st

If we denote the coset UDwB also with w, then 7V is generated by

{fwlw € W} as an Nyp-module. Hence any f € M, can be written in the
form Y7, \ingt; fu, for some \; € kg, n; € Ny, t; € Ty and w; € W.

Proposition 2.3.2 My is minimal in By (7).

Remark In [I7] section 12 Schneider and Vigneras treated the case of the
subquotients 7, 1/m,. Unfortunately My does not generally give the min-
imal generating B, -subrepresentation of ,, 1 /m,, on this subqoutient, since
that their method does not work on the whole 7. It is not true even for
GL;3(Q,): an explicit example is shown in Corollary 2.5.2.

Proof By the previous proposition, it is enough to show, that for any ¢’ € T,
we have My C B, t'M,.

If ¥ € Gy, then t"!' € T, thus we have B,t' = B,, and
B t'My = By My = My. The same is true for central elements t' € Z(G). So
it is enough to prove for ¢ = (wp,wp,...,wr,1,1,...,1) that
My C Bt M.

Let jo € N be such that ¢ = wp and ¢} ., = 1. We need to show, that
for all w € W we have f,, € B.t'My. We prove it by descending induction
on w with respect to <.

Let us denote N\ = {n € NNUD Vi < j, (jo—1)(j — jo) < 0: ny; = 0},
Nujo = Ny NN and

Juwjo = J (N jo J Nuwjot' ™) € Non U,

It is enough to prove the following:
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Lemma 2.3.3 Let g = ZmerjO mt' fo,.  Then x(w™'t'w)f, — g is in
2w’:w<w’ N(]fw’-

We claim that for » € R,, we have

VL) = x(wHtw), if Vi < jo < j,w (i) >w (j) : rij € wror,
v 0, otherwise.

t' fuo(r) = f(£'~17) is nonzero if and only if #'~'r € UMwB. Following the
proof of Proposition 2.2.3, it is equivalent to that for all 1 < j < n we have
w = w" and that the first j column of (t0))~'r) is as the first j column of
UWw. This holds if and only if r;; € wop for all i and j as above. Then
we have r(™ = #'~lrw~'#'w and b™ = w(#')"'w, hence our claim.

Therefore x(w™t'w) fulv, = > mt' f|v,. Hence by the induction
hypothesis and Proposition 2.2.3 it suffices to prove that ¢ is UM-invariant.

To do that, first notice that since f, is U(M-invariant, we have that
t'f, is UM¢~Linvariant. Moreover, since for all m € J,; we have
m € Ny NUWD C ¢ Not'~', m normalizes tUDt—1, mt'f, is also UMD ~1-
invariant, and so is g.

On the other hand, we can write

g= > mf'fu= t’(t’lmt’)fwzt’( 2. nfw)

mer,jO mEJw,jO nEt’—le,jOt’/Nw7j0

mEdeO

where the sum in the bracket on the right hand side is obviously ¢'~'N,, ;,t'-
invariant, hence g is IV, j,-invariant.

Denote N,,; = N, N Nj([)l). Then N, j, centralizes t'"'N/, ;" let
Ng = id + mo € t/_lN/ t',ne Nw;j()?

wij ’

(niln()n - nO):ch = (nilmon - m())xy - Z (nil)xs<m0>stnty - (mO):chy
<s<t<y

and by the definition NJ(;), (mg)s is 0, unless s < jo < t and hence
(1) zsmsingy = 0, unless = s and y = .

By the definiton of N, we have w™'N,, , w C B, so for any u € UM and
ng € 71N, t' C Gy we have nguw = (noung " )w(w™'now) € UYwB, and

hence f, is "N’ . t-invariant.
w;,Jjo
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Altogether for any representative n € J,, j,

nfw(n()x) = fw(n_lnox) = fw(n()n_ll') = fw(n_1x> = nfw(x)a

meaning that nf,, is t’*lN;’jOt’—invariant, and t'nf, is N, . -invariant. So g
is also N, ; -invariant.

U is contained in (UM Ny 0, N, . ), so g is UD-invariant, and
we are done. O

Corollary 2.3.4 For any f € My there exists t € T such that f can be
written wn form Zle Ainit fo, for some \; € kx,n; € Ny and w; € W.

Define the kx[B]-submodules My, = >, - Bif, , < Ind%"(x). We
obtain a descending filtration My = Moo > M3 > -+ > My, = 0. Then

Myp—1 = Indgf”0 (x) is the minimal generating subrepresentation of m,_;.

Proposition 2.3.5 Let 1 <m < nl, w = wy, 1 and n' € Ny, = N, N Ny
andt € Ty. Then g =n'tf, —tfu € Mom.

Proof For w' < wwe have tf,|y , = n'tf,|v,, = 0 and following the proof of
Proposition 2.2.3 we get n't f, |y, = tfw|v,. Moreover g is tU ¢ ! invariant,
thus it is contained in » tfw , C Mom. d

m/>m—1

Corollary 2.3.6 For any f € M, there exists t € T such that f can be
written in form Zle Aingit fu, for some A\; € ki, w; € W and n; € Ny,

Remarks 1. 7 is the modulo wg reduction of the p-adic principal series
representation. This can be done with any [ € N for the modulo @,
reduction. Then the wg-torsion part of the minimal generating B -
representation is exactly M,.

2. This can be carried out in the same way for groups G' = G'(F') as
in the previous section satisfying moreover Ny C G’. For example
G’ = SL,, has this property (but its center is not connected), or G’ = P
for arbitary P < G parabolic subgroup has also (but these are not
reduvtive).
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2.4 The Schneider-Vigneras functor

Following Schneider and Vigneras ([I7], section 2) we introduce the functor
D from torsion ox-modules to modules over the Iwasawa algebra of N.
Let us denote the completed group ring of Ny over ox by A(Ny), and

define
Dgy(p) = lim MY,
MeBL (p)

as an A(Np)-module, equipped with a natural T;l—action .

On Dgy(m) the action of wy is 0, hence we can view it as a
Q(NO) = A(N())/’ZDKA(N())—IHOdUIG.

By Proposition 2.3.2 we have

Proposition 2.4.1 The Q(Ny)-module Dgy(m) is equal to M, .

Remarks 1. We do not now whether Dgy () is finitely generated or it
has rank 1 as an (Ng)-module.

2. On M, we have an action of UM: if x € UM, n € Ny, t € T, and
w € W then we can write n 'zn = niny € UM with ny € Ny and
ny € B-TNUW (with B~ = N~T), thus

xntfw = n(n_lzn)tfw = (nnl)t(t_1n2t)fw = (nnl)tfw € MOa

since t~'nyt € UM and f, is UM-invariant. Thus on Dgy (7) there is
an action of A(UM), therefore an action of A(I) (with I denoting the
Iwahori subgroup).

Till this point we considered only the A(Np)-module structure of Dgy (7).
Now we shall examine the i-action as well. We need to get an étale module
from Dgy (), thus we examine the ¢-invariant images of Dgy () in an étale

module.
Let D be a topologically étale (see [I8] the first lines of Section 4) (¢, I')-
module over Q(Ny), with the following properties:

e D is torsion-free as an Q(Ny)-module,
e on D the topology is Hausdorff,

e D has a basis of neighborhoods of 0, containing ¢-invariant (Ny)-
submodules (O < D open such that ¢;(0) C O for all t € T, ).
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Theorem 2.4.2 If D is as above and F : Dgy(m) — D is a continuous
Y-invariant map (where ¢ is the canonical left inverse of ¢ on D), then F
factors through the natural map Fy : Dgy(m) — Dgy(mm_1): there exists a
continuous V-invariant map G : Dgy(mm_1) = D such that F = Fy 0 G.

Proof Dgy(m) — tors is in the kernel of F' (the torsion submodules exist,
because the rings are Ore rings).

In My/(My N mu_1) there are no nontrivial kg [Ny]-divisible elements,
because if f € M, the image of it in My/(Mo N mn—1) is [ = fle\BuwoB-
Assume by contradiction that [’ is kx[Ng|-divisible. If it is nontrivial, then
there exists bw,,b € G such that f(bw,b) # 0 with some m < n! Let
n' € Ny, = NoNwy Now,," with n’ # id, and [n/] — [id] € kx[No]. Then for
any g € My we have

([7] = id])g(wn) = g0 win) = g(wm) = 9w (wy, 0 win)) = g(wn) =0,

because w, 'n'"lw,, € N. Thus f’ is not divisible by [n'] — [id].
It follows that F' factors through (My N my_1)Y: The fact that there are
no nontrivial divisible submodules in My/(My N 7, —1) implies that for any
(closed) submodule the maps f ~— Af are not surjective for all
A € kg[No]Y. Hence dual maps are not injective for all A - it has no tor-
sionfree quotient arising as a dual of a submodule of My/(My N 7,-1), thus

(Moy/(Mo N mm—1))” < Dgy(m) — tors. Now consider the exact sequence

0— MO N1 — MO — M()/(M() N 7Tn!—1) — 0.

We claim that F' factors through My, | as well. If f € (Mo N mp1)"
such that f|u,,, , =0, then ¢y (u™" f)|-1as,,, , = 0 for all u € Ny:

The -action on Dgy(m) comes from the T,-action on 7, hence
(w7 ) = (w )t ) = flux) =0if 2 € My1.

For all O C D open subset there exists t € T, such that
Ker(f = fliwg,n,) € F7'(0), since F is continuous and
UtET+ t " Mo —1 = Tom—1. If O is ¢ and Ny-invariant as well, then

F(f)y= Y up(F(th(u™'f) CO.
u€Ny/tNot—1

Then F(f) =0 by the Hausdorff property.
By [I7], Proposition 12.1, we have Dgy (m-1) = My, _;, which completes
the proof. O
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Remarks 1. For this we do not need the I'-action of D, the statement is
true for D étale p-modules with continuous Ny and ¢-action.

2. Let D' be the maximal quotient of Dgy (), which is torsionfree, Hauss-
dorff and on which the action of v is nondegenerate in the following
sense: for all d € D'\ {0} and t € T there exists u € Ny such that
i (ud) # 0. Then the natural map from D’ to Dgy(mn_1) is bijective.

3. By [22] section 4 if F = Q,, we have that D%(m,_1) = Dgy(mu_1) and
D¥(m—1) = 0 for i > 0.

Following [I7] we choose a surjective homomorphism
¢ : Ny — Q,. Then we can get (¢, I')-modules from Dgy (7): Let Ag(Ny) de-
note the ring Ay, (No) of [17] with N; = Ker(¢), with maximal ideal M,(Ny),
Qg(No) = Ag(No)/wKAg(NU) and Dg(’]'() = QZ(N()) ®Q(N0) st(’ﬁ).

Corollary 2.4.3 Let D be a finitely generated topologically étale (o, T')-module
over Qy(Ny), and F' : Dy(m) — D a continuous map. Then F' factors through
the natural map F{: Do(m) — Dy(mp1-1).

Proof If D is a finitely generated topologically étale (p,I')-module over
Q4(Np), then it automatically satisfies the conditions above:

D is étale, hence §y(Ny)-torsion free (Theorem 8.20 in [18]), thus Q(Ny)-
torsion free as well. It is Hausdorff, since finitely generated and the weak
topology is Haussdorff on ,(Ny) (Lemma 8.2.iii in [17]).

We only need to verify the condition for the neighborhoods. The sets
M(No)*D + Q(No) @iy X (D)™ (where £(D) is the étale (¢, T')-module
attached to D at the category equivalence [18] Theorem 8.20) are open (-
invariant Q(Ny) submodules and form a basis of neighborhoods of 0 in the
weak topology of D.

Thus Dgy(mw) — Dy(w) — D factors through Dgy(w) — Dgy(mm_1),
hence the corollary. 0

2.5 Some properties of M

In this section we point out some properties of M, which make the picture
more difficult than the known case of subqoutients m,,_; /7. Recall (|17]

26



CEU eTD Collection

section 12) that m,,_1/m, =~ 7(Wm, ), which has a minimal generating B, -
subrepresentation

M(wp, x) = C*(No/N,,, N No) € By (m(wpm, X))-
Proposition 2.5.1 Letn =3, F = Q,, then My N mu_1 2 Mo 1.

Corollary 2.5.2 Thus My N my—1 is not equal to the minimal generating
By -subrepresentation of w1, which is C*(Ny) = Mo -1 ([I77] section 12).

Proof Assume that x = x1 ® x2 ® x3 : T' — kj is a character, such that
neither xi/x2, nor y2/xs is trivial on o}. Similar construction can be carried
out in the other cases.

Let <7 be the following total ordering of the Weyl group of G refining

the Bruhat ordering:

1 00 010 1 00
w, = 010 <7 Wo = 1 00 <7 ws = 0 01 <7
0 01 0 01 010
010 0 01 0 01
<7 W4 = 0 0 1 <7 W5 = 1 00 <7 W = 010 = Wy.
1 00 010 1 00
And let
pP-1p*-1 (1 a b p*> 0 0
h = 010 0 1 0 | fu, € My,
a=0 b=0 \ 0 0 1 0 01
1 pd-1p3—1 a b 1 1 a b
f=h-— 5 h( 1 00 ) 01 0 | fus-
xa(p?) 4= i 010 00 1
Then it is easy to verify that f € My N 75, and that f(z) # 0 for
p? 0 1
z = 1 0 0 € BuwgB \ NowoB.
p 1 0
Thus f ¢ Mys = By fs € {f € w|supp(f) < NowoB}. O
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However, if f € My N 75 then supp(f) is contained in BwoB N|J,.; RiB:
A straightforward computation shows that for any n € Ny, t € T\, w € W
and

e for any r € R, we have ntf,(r) = ntf,(w;). Let v’ = w; € G,

e for any r € R,, we have ntf,(r) = ntf,(r") for

a 10 a 1 0
= 1 0 0 | €Gs, wherer=| 1 0 0 |,
5/ 0 1 B/ ,y/ 1
e for any r € R, we have ntf,(r) = ntf,(r") for
1 0 0 1 00
=\ o -8y v 1 | €Gs, wherer=| o ~ 1
0 10 810

Thus if i < 4 and r € R,,, then since ' ¢ BwoB we have f(r) = f(r') = 0.

Proposition 2.5.3 The quotients My —1/Mom—1 N7 via f— f(-wy,) are
isomorphic to M (wy,, x)-

Proof It is obvious, that f(-w,) = 0 implies fl|g,.\¢,,., = 0 and
f € Mym-1 N7y Hence the map Mo—1/Mom—1 N 7T — M (Wi, X),
f = f(wy,) is injective.

Let to = diag(wp ', @k ?,...,wr,1) € Ty, and for any | € N let
U = Ker(Gy — G(op/whor)). For x =rb € R,,, B we have

!  x7NY), it r e UMwy,
Z 1o, (rb) = { 0, if not.
ne(NonUM) /ty Noty*
The image of these generate M (w,,, x) as an Ng-module, so f — f(-w,,) is
surjective. O

Since My m < T, M(wp,, x) is naturally a quotient of Mg ,,—1 /Mo m, we
have Doy (Tpm—1/mm) < (Mom—1/Mom)".

Proposition 2.5.4 Form = 1 and m = nl —n+1,nl —n+2,....,n!
(Mom—1/Mom)" = Dsy(Tm—1/mm). For other m-s it is not true, for example
ifn=3, F=Q, and m = 2,3.
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Proof By the previous proposition it is enough to show that
My = My 1 Ny, for m =1 and m > n! —n.

For m = 1 the quotient is obviously kg, for m > n! — n we have
W < Wy, implies w = wy,, so if f € By fo, N7m_1 = Byfy,, NmTu_1, then
supp(f) C U(l)Rq(Ulz,le. But

MO,n!—l =~ COO<N0> = {f € 7T-n!—l‘Sllpp(f) C U(I)an!—1B}'

The fuction f constructed in the beginning of this section is in
My Ny \ Mps. The same can be done for m = 3. O
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Chapter 3

Comparison of functors

3.1 A Ay(Ny)-variant of Breuil’s functor

Our first goal is to associate a (¢, I')-module over Ay(Nyg) (not just over O¢) to
a smooth o-torsion representation 7 of G in the spirit of [3] that corresponds
to D{(m) via the equivalence of categories of [I§] between (¢, T')-modules

over Og and over Ay(N).
From now on let 0 = ox, w = wg. Let Hy be the normal subgroup of Ny
generated by s*Hys™*, ie. we put

Hk = <n08kH(]Siknal ’ nog € N0> .

H}, is an open subgroup of Hy normal in Ny and we have (),., Hr = {1}. De-
note by Fy the operator Try, /om, s—10 (s-) on 7 and consider the skew polyno-
mial ring A(Ny/Hy)/w"[Fy] where EF\A = (sAs7})F, for any

A € A(No/Hy,) /", The set of finitely generated A(Noy/Hy)[Fy]-submodules
of ¥ that are stable under the action of I and admissible as a representation
of Ny/Hy is denoted by M, (wf*).

Lemma 3.1.1 We have F = FO and Fk © Ter/SkHOS*k o (3k> —
Ter/SkH()ka o (Sk’) o) FO as mapS on 7THD_
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Proof We compute

Fy 0 Tryg, jok prgs—+ © (s) = Tr, jsmps— © (5°) 0 Trpy, jok prys—+ © (sF) =

k+1
Ter/SHk871 o TrsHksfl/Skﬁ*lHosfkfl O (S

k+1

Ter/Sk+1Hos—k—1 o (8 +

TI'Hk/SkHOs—k o TrskHos—k/Sk+1Hos—k—1 o (8
k

Trp, sk mgs—+ © (57+) © Trpy /sprgs—1 © (s-

Tty ok mos—r © (8°) 0 Fy .
U

Note that if M € M(wH0) then Try, jgepos—r 0 (M) is a s*Nos™ Hy-
subrepresentation of 7%, So in view of the above Lemma we define M, to
be the Ny-subrepresentation of 7/* generated by Try, jokHys—+ © (s*M), ie.
My, = NoTry, ks © (s*M). By Lemma 3.1.1 My, is a A(No/Hy)/w"[F)-
submodule of .

Lemma 3.1.2 For any M € M(mw™°) the Ny-subrepresentation M, lies in
Mk(ﬂ'Hk).

Proof Let {my,...,m,} be a set of generators of M as a A(Ny/H,) /=" [F]-
module. We claim that the elements Ter/skHOs—k(Skmi) (t=1,...,7) gen-
erate Mj, as a module over A(Ny/Hy,)/w"[Fy]. Since both Hj and s* Hys™*
are normalized by s* Nys™*. for any u € Ny we have

Trp, /o s+ © (sFus™) = (sPus™) o Trp, sk s+ - (3.1)

Therefore by continuity we also have
Trpr, jstprps © (8" As™5) = (8" As™") 0 Trpg, ot prgs
for any A € A(Ny/Hy)/@". Now writing any m € M as m = Z;Zl A Fiim,

we compute

Trpr, jstrrgs—t © (55 Y N Fmy) = ($"As ™) FY Trpg, jgn prgr (5°m;) €
j=1

j=1

T

€Y A(No/Hy) /@ [Fil Tty st g (8m;)

Jj=1

31



CEU eTD Collection

For the stability under the action of I' note that I' normalizes both Hy,
and s*Hys~* and the elements in ' commute with s.

Since M is admissible as an Ny-representation, s*)M is admissible as a
representation of s Nys=*. Further by (3.1) the map Trp, /st s+ 1 sk Nys—F-
equivariant therefore its image is also admissible. Finally, M} can be written
as a finite sum

Z UTer/SkHos—k(SkM)

’LLEJ(N()/SkN()S_ka)
of admissible representations of s*Nys~" therefore the statement. O

Lemma 3.1.3 sz a simple root o € A such that {(Nuo) = Z,. Then for
any M € M(rw0) the kernel of the trace map

Tro,/m,: Vi = > UTr g, ok s (8" M) — NoF¥(M)  (3.2)

UEJ(Na,0/5¥ No,05~F)

is finitely generated over o. In particular, the length of Y,'[1/X] as a module
over o/w"((X)) equals the length of MY [1/X].

Proof Since any u € N,o < Ny normalizes both Hy and Hj and we have
NaoHy = Ny by the assumption that ¢(N,o) = Z,, the image of the map
(3.2) is indeed NoEF*(M). Moreover, by the proof of Lemma 2.6 in [3]
the quotient M/NoF*(M) is finitely generated over o. Therefore we have
MY[1/X] = (NoF*(M))V[1/X] as a module over o/w"((X)). In particular,
their length are equal:

= lengtho/wh((x))Mv[l/X] = lengtho/wh((x))(Nng(M))V[l/X] .
We compute
= lengtho/wh((x Mv[l/X} = lengtho/wh(( k(X)) (SkM)V[l/X}
> lengtho/w h((pk (X )))(Ter/skHos k(SkM))V{l/X]
= lengtho/wh((x))(o/w HX]] ®O/wh[[@ 09l Ter/skHos k(S M)) 1/X}
> lengtho/wh X))ka{l/X]

By the existence of a surjective map (3.2) we must have equality in the above
inequality everywhere. Therefore we have Ker(Try,,m,)"[1/X] = 0, which
shows that Ker(Try,, m, ) is finitely generated over o, because M is admissible,
and so is Ker(Trp,/m,) < M. O
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The kernel of the natural homomorphism
A(No/Hy) /=" — A(No/Ho)/w = k[[X]]

is a nilpotent prime ideal in the ring A(Ny/H})/w". We denote the local-
ization at this ideal by A(Ny/Hy)/w"[1/X]. For the justification of this
notation note that any element in A(Ny/Hy)/@"[1/X] can uniquely be writ-
ten as a formal Laurent-series Zn>>7oo a, X™ with coeflicients a,, in the finite
group ring o/w"[Hy/Hy|. Here X—by an abuse of notation—denotes the ele-
ment [uo] — 1 for an element uy € Ny < Ny with {(ug) =1 € Z,. The ring
A(Ny/Hy)/@"[1/X] admits a conjugation action of the group I' that com-
mutes with the operator ¢ defined by ¢(\) = sAs™! (for

A € A(No/Hy)/w"[1/X]). A (¢,T)-module over A(Ny/Hy)/w"[1/X] is a
finitely generated module over A(Ny/H})/w"[1/X] together with a semilin-
ear commuting action of ¢ and I'. Note that ¢ is no longer injective on the
ring A(No/Hy)/w"[1/X] for k > 1, in particular it is not flat either. How-
ever, we still call a (p,')-module Dy, over A(No/H})/ww"[1/X] étale if the
natural map

1® p: A(NO/Hk)/wh[l/X] X, A(No/Hy)/wh[1/X] Dy — Dy,

is an isomorphism of A(Ny/Hy)/w"[1/X]-modules. For any M € M)
we put
M,;/[l/X] = A(NO/Hk)/wh[l/X] QA(No/Hy)/wh Ml;/

where (-)¥ denotes the Pontryagin dual Hom,(-, K/o).

The group No/Hj acts by conjugation on the finite Hy/H) < No/Hy.
Therefore the kernel of this action has finite index. In particular, there
exists a positive integer r such that s"N, s < Ny/Hj commutes with
Hy/H). Therefore the group ring o/w"((¢"(X)))[Ho/H}] is contained as a
subring in A(Ny/Hy)/w"[1/X].

Lemma 3.1.4 As modules over the group ring o/w"((¢"(X)))[Ho/Hy] we
have an isomorphism

MY[1/X] = o/@"((¢" (X)) [Ho/ Hi] ®ojet ((or(x)) Ya [1/X] -

In particular, M,/[1/X] is induced as a representation of the finite group
Hy/Hy, so the reduced (Tate-) cohomology groups H'(H', MY [1/X]) vanish
for all subgroups H' < Hy/Hy and i € Z.
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Proof By the definition of M, we have a surjective o/w"[[¢"(X)]][Ho/H})-
linear map

[ O/WhHSOT(X)”[HO/Hk] Qo (jor(x)) Ye — My
sending A ® y to Ay for A € o/w"[[p"(X)]][Ho/Hy) and y € Y}. Further, by
Lemma 3.1.3 the kernel of the restriction of f to the Hy/H-invariants

(o/@" (" (X))][Ho/ Hy] @ ey Yie) ™o/ = Z h) ®Y;

is finitely generated over o. By taking the Pontryagin dual of f and inverting
X we obtain an injective o/w"((¢"(X)))[Ho/H}]-homomorphism

SYL/X): MY L)X = (o/@"[[¢"(X))|[Ho/ Hi] ®gponifor (xy Ya) ' [1/X] =
= o/w"((¢" (X)) [Ho/ H] ®oen((orxy) (Y [1/X])

that becomes surjective after taking H,/Hj-coinvariants. Since M,/[1/X] is
a finite dimensional representation of the finite p-group Hy/Hj over the local
artinian ring o/@"((X)) with residual characteristic p, the map fV[1/X] is
in fact an isomorphism as its cokernel has trivial Hy/Hj-coinvariants. O

Denote by Hy _/Hy, the kernel of the group homomorphism
s(-)s™t: No/Hy, — No/Hj, .

It is a finite normal subgroup contained in Ho/Hy, < No/Hj. If k is big
enough so that Hy is contained in sHys ' then we have H, _ = s 'Hys,
otherwise we always have H;, _ = Hy N s 'Hys. The ring homomorphism

¢: AN(No/Hy) /" — A(No/Hy) /"

factors through the quotient map A(Ny/Hy)/w" — A(No/Hy,)/w". We
denote by ¢ the induced ring homomorphism

& A(No/Hy-)/@" = A(No/Hy) /"
Note that ¢ is injective and makes A(Ny/Hy)/w" a free module of rank

v = |Coker(s(-)s*: No/Hy — No/H})| =
= p|Coker(s(-)s™': Hyo/Hy — Ho/Hy)| =
= p|Ker(s(-)s™*: Hy/Hy — Ho/Hy)| = p|Hy,_ ) Hy|

over A(Ny/Hy, ) /"
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Lemma 3.1.5 We have a series of isomorphisms of A(No/Hy)/w"[1/X]-
modules

_ _ (1
Tt = Tog o (A(No/Hi) /3" @ s i1y e M) [1/X]
1 2

) Hom ) (MNo/ H), MY [1/X])

& Homa a0 (A(No/ H), (MY [1/X]) ") &
& A(No/ Hy) ®A(No/Hy, )5 My [1/ X ] &

& A(No/Hi) @aivosm, 6 (Y11 XD,

9 A(No/Hy) /" @) jeone My [1/X]

Proof (1) follows from the adjoint property of ® and Hom. The second iso-
morphism follows from noting that the action of the ring A(Ny/Hy) over itself
via ¢ factors through the quotient A(Ny/Hy —) therefore Hy, _ acts trivially on
A(No/Hy) via this map. So any module-homomorphism

A(No/Hy) — M[1/X] lands in the Hj _-invariant part M) [1/X]7k~ of
M;/[1/X]. The third isomorphism follows from the fact that A(Ny/Hy) is a
free module over A(Ny/Hy, ) via ¢. The fourth isomorphism is given by (the
inverse of) the trace map Try, p,: (M)[1/ X)), — M/[1/X]"~ which
is an isomorphism by Lemma 3.1.4. The last isomorphism follows from the
isomorphism (M/[1/X])g, = = A(No/Hi,—) @awo/ay) My [1/X]. O

Remark Here ¢ always acted only on the ring A(Ny/Hy), hence denoting
¢ the action n +— tnt~! for a fixed t € T, and choosing k large enough such
that tHyt~! > Hj, we get analogously an isomorphism

Tr?;llHkt/Hk : (A(NO/Hk)/wh ot A(No/Hy) /ot M) [1/X] —
- A(NO/Hk)/wh ®A(N0/Hk)/wh,tpt Mk\:/[l/X] :

We denote the composite of the five isomorphisms in Lemma 3.1.5 by
Tr~' emphasising that all but (4) are tautologies. Our main result in this
section is the following generalization of Lemma 2.6 in [3].

Proposition 3.1.6 The map

Trto(1® F)V[1/X]: (3.3)
MY [1/X] — A(No/Hy) /" [1) X] ®qa o ey sen1yx) My [1/X]
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is an isomorphism of N(No/Hy)/w"[1/X]-modules. Therefore the natural
action of I' and the operator

p: MY[1/X] — M[1/X]
fo= (Mleo(leR) /X)) (1 f)
make M) [1/X] into an étale (p,T)-module over the ring A(Ny/Hy)/="[1/X].

Proof Since M, is finitely generated over A(Ny/Hy)/w"[Fy] by Lemma
3.1.2, the cokernel C' of the map

1®Fk A(No/Hk)/wh ®¢,A(N0/Hk)/wh Mk—>Mk (34)

is finitely generated as a module over A(Ny/H},)/w". Further, it is admissible
as a representation of Ny (again by Lemma 3.1.2), therefore C is finitely
generated over o. In particular, we have CV[1/X] = 0 showing that (3.3) is
injective.

For the surjectivity put Yi = 37, n. o/son, os—) UTr gy, kg5 (S"M).
This is an o/w"[[X]]-submodule of M. By Lemma 3.1.3 we have

lengtho/wh((w(x)))(ka[l/X]) =
= [Nao : 8" Naos " [length, jon(x)) (Y [1/X]) = p"l .
By Lemma 3.1.4 we obtain
lengtho/wh,((w(x)))M,:/[1/X] =
= |H0 . Hkl . lengtho/wh((w(x)))ka[1/X] = |H0 : Hk|pTl .
Consider the ring homomorphism
©: AN(No/Hy) /" [1/X] — A(No/Hy) /" [1/X] . (3.5)

Its image is the subring A(sNys 'Hy/Hy)/@"[1/o(X)] over which the ring
A(Ny/Hy)/w"[1/X] is a free module of rank v = | Ny : sNos™ ' Hy| = p|Hj, _
Hg|. So we obtain

plengthy, e xy) A No/Hi) /5" [1/ X] @ a(No 1) et 1/x) My [1/X] =

= length,, (gr+1(x)) A No/ Hi) /@™ [1/ X @y a oy 1) o1 x) My [1/X] =
= Vlengtho((spwrl(X)))A(8N0571Hk/Hk)/wh[1/SO(X)]®<P,A(NO/Hk)/wh[1/X]
@MY [1/X] 2 vength, e My [1/ X s, =

= vlength,r(x))(0/@" [Ho/Hy,~] ®,pen Y, [1/X]) =

= v|Hy : Hy -|p"l = p|Hy : Hy|p"l = plengthy,n(,rxy) My [1/X] .
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Here the equality (x) follows from the fact that the map ¢ induces an iso-
morphism between A(Ny/Hy.)/w"[1/X] and A(sNos™ Hy/Hy,) /@™ [1/0(X)]
sending the subring o((¢"(X))) isomorphically onto o((¢" ™ (X))).

This shows that (3.3) is an isomorphism as it is injective and the two
sides have equal length as modules over the artinian ring o/w"((X)). O

Remark We also obtain in particular that the map (3.4) has finite kernel and
cokernel. Hence there exists a finite A(Ny/Hy)/w"-submodule M, of My
such that the kernel of 1 ® Fj is contained in the image of

A(No/Hy)/w" ®, My in A(No/Hy)/w" ®, M. We denote by M} the image

Note that for £ = 0 we have My = M. Let now 0 < j < k be two integers.
By Lemma 3.1.4 the space of Hj-invariants of My is equal to Try, /m, (M)
upto finitely generated modules over 0. On the other hand, we compute

N()F]k_j(MJ) = NOTrHj/sk*jHjsj*k O (Sk_j’> @) TrHj/stos_j (S]M) —
= NoTrHj/skHOs—k(SkM> = NoTry, /m, © TI'Hk/skHos—k<8kM> =
= TrHj/Hk(NOTer/skHos—k(SkM)) = TrH]/Hk(Mk)
since both H; and H; are normal in N, whence we have
(u-) o Tryg, i, = Try,/m, o (u-) for all u € Ny. So taking H;/Hj-coinvariants

of M}/[1/X], we have a natural identification

MYV X, i, = (ML) X)
= (Tryg, (M) [1/X] = (NoF) ™ (My))V[1/X] = MY[1/X]  (36)

induced by the inclusion NoFf~ (M;) C M" C Mj.
Lemma 3.1.7 We have Try, /p, o Fy, = FjoTry, /m, -
Proof We compute

TI‘HJ/Hk o Fk - TrH]/Hk o Ter/SHk871 o (S) -
TrHj/SHkS_l o (5) = TrHj/sHjs—l o TrsHjs—l/sHks—1<8') =

TrHj/sHjs_l 9] (5')TrHj/Hk = F} o TI‘H],/Hk .
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Proposition 3.1.8 The identification (3.6) is ¢ and I'-equivariant.

Proof It suffices to treat the case when £ is large enough so that we have
Hy_ = s 'Hys. So from now on we assume Hy < sHys ' < sNys™'. As T’
acts both on M} and M; by multiplication coming from the action of I on
7, the map (3.6) is clearly I-equivariant. In order to avoid confusion we are
going to denote the map ¢ on M;/[1/X] (resp. on M;'[1/X]) temporarily by
@y (resp. by ;). Let f be in M} such that its restriction to My, . is zero (see
the Remark after Prop. 3.1.6).

We regard f as an element in (M} /M .)Y < (M})Y. We are going to
compute ¢x(f) and cpj(mej/Hk(M;)) explicitly and find that the restric-
tion of @i(f) to Try, m, (M) is equal to ‘Pj(flTrHj/Hk(M,:))~ Note that we
have an isomorphism MY[1/X] = M;V[1/X] = (M;/M;.)[1/X] (resp.
My 1/ X] & Ty, (M) [1/X]).

Let m € M} < Mj, be in the form

m = Z uFy.(my,)

ueJ((No/Hy)/s(No/Hy)s™1)

with elements m, € M, for u € J((No/Hy)/s(No/Hg)s™'). By the remark
after Proposition 3.1.6 M} is a finite index submodule of M}. Note that the
elements m,, are unique upto My . + Ker(Fy). Therefore i (f) € (M})Y is
well-defined by our assumption that fa;, , = 0 noting that the kernel of Fj
equals the kernel of Trg, g, since the multiplication by s is injective and
we have Fj, = soTry, /m,. So we compute

pe(f)(m) = (1@ Fu)") " (Trm,_ym, (1® f))(m) =

= ((1® F)") "' (1® T, /m () > uky(my)) =
u€J((No/Hy)/s(No/Hy)s™1)
= Ter,—/Hk (f)(Fl;l(quk<muo))) = f(Ter,—/Hk((Siluos)muo»
(3.7)

where ug is the single element in J(Ny/sNys™!) corresponding to the coset of
1. In order to simplify notation put f, for the restriction of f to Try, m, (My)

and
U = J(No/sNos™') N H;sNys™*

Note that we have 0 = ¢;(f.)(uF;(m')) for all m" € M; and
u € J(Ny/sNos )\ U .
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Therefore using Lemma 3.1.7 we obtain

0 (f)(Trymem) = @i (F)(Trmym, D uFi(my)) =

u€J(No/sNos—1)

=@i(f)C Y uFjo Ty, m(my) =

u€J(No/sNos—1)

=" (e, _ym, (s UsTrm, , (ma))) =

uelU

= f(s7usTry, ym(ma)  (3.8)

uelU

where for each u € U we choose a fixed w in sNys™* N Hju. Note that
f(s_lﬂsTrHjﬁ/Hk (m.,)) does not depend on this choice: If uy € sNos™' N Hju
is another choice then we have (u7)™'u € sNys™' N H; whence s~ (uy) 'us
lies in H; — = NoN s 'Hjs so we have

sflﬂsTrHj,_/Hk (my,) = s’lu_lssfl(u_l)’lﬂsTrij_/Hk (my,) =
-

1u_13TrHj’7/Hk (my,) .

Moreover, the equation (3.8) also shows that ¢;(f.) is a well-defined ele-
ment in (Try, /5, (M}))Y. On the other hand, for the restriction of ¢ (f) to
Try, /m, (My) we compute

oe(F)(Trgyymm) = ee( ) DY w > ukby(my)) =

weJ(H;/Hy) uw€J(No/sNos~1)

> S D wuFi(m,)) =

weJ(Hj/Hy) ueJ(No/sNos—1)

- Z F(Tr, i (s wus)my,)) =

uclU
weJ(H;/Hp)N(sNos~1u™1)

= f( Z Tra, _/m, sz‘lﬂsmu) =

v=s~lwuu~tseJ(H;_ /H, ) uelU

- Z f(s_lﬂsTrHjﬁ/Hk (my))

uelU

that equals o;(f.)(Trg;/m,m) by (3.8). Finally, let now f € M, be ar-
bitrary. Since M, is finite, there exists an integer » > 0 such that X" f
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vanishes on My .. By the above discussion we have op (X" f)(Try, u,m) =
i (X" f)(Trg, /g, m). The statement follows noting that o(X") is invertible
in the ring A(No/H;)/="[1/X]. O

So we may take the projective limit MY[1/X] = m, MY[1/X] with
respect to these quotient maps. The resulting object is an étale (¢, I')-module

over the ring
I'%nA(NO/Hk)/wh[l/X} > Ay(Ny) /" .

Moreover, by taking the projective limit of (3.6) with respect to k we obtain
a - and I'-equivariant isomorphism (M [1/X])g, = M;/[1/X]. So we just
proved

Corollary 3.1.9 For any object M € M(nf) the (p,T)-module MV[1/X]
over o/w"((X)) corresponds to MY [1/X] via the equivalence of categories in
Theorem 8.20 in [18).

Note that whenever M C M’ are two objects in M(7H0) then we have
a natural surjective map M’Y [1/X] — MY [1/X]. So in view of the above
corollary we define

Dipo(m) = lm  M/[I/X]= lim MI[1/X].
k>0,MeM(nHo) MeM(nHo)

We call two elements M, M’ € M (7o) equivalent (M ~ M) if the inclu-
sions M C M + M and M’ C M + M’ induce isomorphisms
MV[1/X] = (M + M)V[1/X] = M''[1/X]. This is equivalent to the con-
dition that M equals M’ upto finitely generated o-modules. In particular,
this is an equivalence relation on the set M(mH0). Similarly, we say that
My, M| € My(rf*) are equivalent if the inclusions M C My + M} and
M C My, + M, induce isomorphisms

MY[1/X] 22 (M), + M})V[1/X] = M"[1/X].

Proposition 3.1.10 The maps

M NOTer/skHOs*k(skM)
TrHo/Hk(Mk) < Mk
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induce a bijection between the sets M(mwH°)/ ~ and My, (r*)/ ~. In partic-
ular, we have
Dyoo(m) =lim  lim  M[1/X].
k>0 MkGMk(WHk)

Proof We have TI'HO/Hk(NoTer/skHOs—k(SkM)) = N(]TI'HO/Sk-HOs—k(SkM) =
NoF¥(M) which is equivalent to M. Conversely,

NoTrp, see s (8 Trpy i, (M) = NoTr gy, jor g s+ (8" M) = NoFy (M)
is equivalent to M} as it is the image of the map
1® F: A(No/Hy)/@" @k a(no ) o — M
having finite cokernel. ([l

We equip the pseudocompact Ay(No)-module Dy, (m) with the weak
topology, ie. with the projective limit topology of the weak topologies of
MY[1/X]. (The weak topology on A,(Ny) is defined in section 8 of [17].)
Recall that the sets

O(M, 1) = friy(A(No/Hy) @, X" MY[1/X]") (3.9)

for [,I' > 0 and M € M(nt°) form a system of neighbourhoods of 0 in
the weak topology of Dgg’m(ﬁ). Here fyr; is the natural projection map
s DYy oo(m) — MY[1/X] and MY[1/X]** denotes the set of elements
d € MV[1/X] with ¢"(d) — 0 in the weak topology of MV[1/X] as n — .

3.2 A natural transformation from Dgy to D/,

Lemma 3.2.1 Let W be in B, (7) and M € M(7H). There exists a positive
integer kg > 0 such that for all k > ko we have s*M C W. In particular,
both My, = NoTrpg, semys—+(s"M) and NoF*(M) are contained in W for all
k > ko.

Proof By the assumption that M is finitely generated over A(Ny/Hy) /" [F]
and W is a B, -subrepresentation it suffices to find an integer s* such that we
have s*m; lies in W for all the generators my, ..., m, of M. This, however,
follows from Lemma 2.1 in [I7] noting that the powers of s are cofinal in T,
O
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In particular, we have a homomorphism WY — M, of A(Ny)-modules in-
duced by this inclusion. We compose this with the localization map
M, — M;[1/X] and take projective limits with respect to k in order to
obtain a A(Np)-homomorphism

pryya: WY — MI[1/X] .
Lemma 3.2.2 The map pry,,, is s~ and I'-equivariant.

Proof The I'-equivariance is clear as it is given by the multiplication by ele-
ments of [ on both sides. For the ¥s-equivariance let £ > 0 be large enough so
that Hy is contained in sHys ™' < sNys™! (ie. Hy,_ = s~ 'Hys) and My, is con-
tained in . Let f be in WY = Hom, (W, o/w") such that finysar, , = 0. By
definition we have 9,(f)(w) = f(sw) for any w € W. Denote the restriction
of f to My, by fiu, and  choose an  element

m € M} < M, written in the form

m = Z uFy(my) = Z usTry, /o, (M) -

ueJ(No/sNos~1) ueJ(No/sNos—1)

Then we compute

f\Mk (m) = Z f(u‘STer,—/Hk (mu)) =

u€J(No/sNos~1)

— Z (u_lf)(STth_/Hk (M) =

u€J(No/sNos—1)

- Z ¢5(u_1f)(Ter77/Hk (mu>) =

u€J(No/sNos—1)

N e ) (Fr(ma)) =

u€J(No/sNos—1)

= X el ) (wFk(m) =

u€J(No/sNps™1)

= > up( T ) (m)

u€J(No/sNos—1)

as for distinct u,v € J(Ny/sNys™1) we have up(fo)(vFp(m,)) = 0 for any
fo € (M{)Y. So by inverting X and taking projective limits with respect to

42



CEU eTD Collection

k we obtain

pryar(f) = Z USD(pTW,M(%(U_If)))

u€J(No/sNos—1)

as we have (M})V[1/X] = MY[1/X]. However, since MY[1/X] is an étale
(¢, I)-module over Ay(Ny)/w" we have a unique decomposition of pry, ,(f)
as
prwa(f) = Y up(w(u oy (f))
ueJ(No/sNos~1)
so we must have 1 (pry,/(f)) = pry(¥s(f)). For general f € WY note
that NosM . is killed by ¢(X") for » > 0 big enough, so we have

XT¢<er,AI(f)) = ¢(er,A1(S0(XT)f)) =
= PTW,M(%(‘P(XT)JC)) = XTPTWM(%(JC»

The statement follows since X" is invertible in A,(Np). 0J

By taking the projective limit with respect to M € M(xH) and the
injective limit with respect to W € B (7) we obtain a ¢,- and ['-equivariant
A(Np)-homomorphism

pr = lig"ll‘&ler,M: Dgy(m) — Dg/,z,oo(ﬂ) :
w M

Remarks 1. The natural maps 7/ — D{(7) and 7 — D/, (m) both
factor through the map 7 — Dgy (7).

2. The natural topology on Dgy obtained as the quotient topology from
the compact topology on 7V via the surjective map 7" — Dgy(7) is
compact, but may not be Hausdorff in general. However, if B ()
contains a minimal element (as in the case of the principal series see
Proposition 2.3.2) then it is also Hausdorff. However, the map pr
factors through the maximal Hausdorft quotient of Dgy(7), namely
Dgy () = (Nwes, @ W)"'. Indeed, pr is continuous and D/, () is
Hausdorff, so the kernel of pr is closed in Dgy (7) (and contains 0).

3. Assume that A = 1, ie. 7 is a smooth representation in characteristic p.
Then DY, . () has no nonzero A(Ny)/w-torsion. Hence the A(Ny)/wo-
torsion part of Dgy () is contained in the kernel of pr.
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4. If Dgy(m) has finite rank and its torsion free part is étale over A(Ny)
then Ay(No) @a(wg) Dsv () is also étale and of finite rank r over A,(Np).
Moreover, the map A¢(No)®@a(ng)PI : Ae(No)@ang)Dsv () = De p.00(T)
has dense image by Lemma 3.2.1. Thus DY, () has rank at most r
over Ay(Ny).

One can show the above Remark 2 algebraically, too. Let M € M (nHo)
be arbitrary. Then the map 1 ® idyv: MY — MY[1/X] has finite kernel,
so the image (1 ® idyv)(MY) is isomorphic to My for some finite index
submodule M, < M. Moreover, M is a - and I'-invariant treillis in
D = MV[1/X] = M{[1/X]. Therefore the map (1 ® F)" is injective on
My since it is injective after inverting X and M; has no X-torsion. This
means that 1 ® F: o/w"[[X]] ®o/wh(ix]) Mo — My is surjective, ie. we have
My = NoF*(My) for all k > 0. However, for any W € B, () and k large
enough (depending a priori on W) we have NoF*(My) C W, so we deduce
My C ﬂW€B+W.

Corollary 3.2.3 If 7 = Indgoﬂo 18 a compactly induced representation of B
for some smooth o/w"-representation o of By then we have D¢ (m) = 0. In
particular, Dg/ is not exact on the category of smooth o/w"-representations
of B. (However, it may still be exact on a smaller subcategory with additional
finiteness conditions.)

Proof By the 2nd remark above the map 7V — DY () factors through the

maximal Hausdorff quotient Dgy () of Dgy (7). By Lemma 3.2 in [I7], we
have Dgy (7)) = ([, W,)" where the B,-subrepresentations W, are indexed
by order-preserving maps o: T, /Ty — Sub(my) where Sub(m) is the partially
order set of Byp-subrepresentations of mg. The explicit description of the B, -
subrepresentations W, (there denoted by M, ) before Lemma 3.2 in [17] shows
that we have in fact (), W, = {0} whence the natural map 7¥ — D/(n) is
zero. However, by the construction of this map this can only be zero if
D¢ (m) = 0.

Since the principal series arises as a quotient of a compactly induced
representation, the exactness of Dg/ would imply the vanishing of Dg/ on the
principal series, too—which is not the case by Ex. 7.6 in [3]. O

Proposition 3.2.4 Let D be an étale (o, T)-module over Ay(Ny)/w=", and
f : Dsy(m) — D be a continuous 15 and I'-equivariant A(Ny)-homomorphism.
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Then [ factors uniquely through pr, ie. there exists a unique V- and T'-equiv-
ariant A(No)-homomorphism f : D¢, . (7) — D such that f = f o pr.

Proof Note that the uniqueness of f follows from Lemma 3.2.1 since any
continuous A,(Np)-homomorphism of D¢, () factors through M [1/X] for
some M € M(zt). Indeed, if f" is another lift then the image of pr is
contained in the kernel of f — f'.

At first we construct a homomorphism fp, : DY = (D{y.)m, — D,
such that the following diagram commutes:

T )
Dgsy () —= DY, . (7) o D¢ ()
; lﬁo
D———— Dy,
(g

Consider the composite map [’ : 7 — Dgy(7) EN SRR Dpy,. Note that
f" is continuous and Dy, is Hausdorff, so Ker(f’) is closed in 7¥. Therefore
My = (m¥/Ker(f"))" is naturally a subspace in 7. We claim that M, lies
in M(x"). Indeed, My is a quotient of my; , hence My < 70 and it is
I-invariant since f’ is I'-equivariant. M, is admissible because it is discrete,
hence M, is compact, equivalently finitely generated over o/w"[[X]], because
My can be identified with a o/w"[[X]]-submodule of Dy, which is finitely
generated over o/w"((X)). The last thing to verify is that M is finitely
generated over o/w"[[X]][F], which follows from the following

Lemma 3.2.5 Let D be an étale (o, T)-module over o/w"((X)) and Dy C D
be a1 and T-invariant compact (or, equivalently, finitely generated) o/w"[[X]]
submodule. Then DY is finitely generated as a module over o/w"[[X]][F]
where for any m € Dy = Hom,(Dy, 0/w") we put F(m)(f) = m((f)) (for
all f € Dy).

Proof As the extension of finitely generated modules over a ring is again
finitely generated, we may assume without loss of generality that h = 1
and D is irreducible, ie. D has no nontrivial étale (¢, I")-submodule over
o/w((X)).

If Dy = {0} then there is nothing to prove. Otherwise Dy contains the
smallest ¢ and T stable of[X]]-submodule D* of D. So let 0 # m € Dy
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be arbitrary such that the restriction of m to D% is nonzero and consider
the o/w|[[X]][F]-submodule M = o/w|[[X]][F]m of D§ generated by m. We
claim that M is not finitely generated over o. Suppose for contradiction
that the elements F"m are not linearly independent over o/w. Then we
have a polynomial P(z) = """ ja;x" € o/w(z] such that 0 = P(F)m(f) =
m(Y a;bi(f)) = m(P(¥)f) for any f € D* C Dy. However, P(¢)): D — D"
is surjective by Prop. I1.5.15. in [5], so we obtain mps = 0 which is a con-
tradiction. In particular, we obtain that MY[1/X] # 0. However, note
that MVY[1/X] has the structure of an étale (p,I')-module over o/w((X))
by Lemma 2.6 in [3]. Indeed, M is admissible, T'-invariant, and finitely
generated over o/w[[X]][F] by construction. Moreover, we have a natural
surjective homomorphism D = Dy[1/X] = (Dy)"[1/X] — MY[1/X] which
is an isomorphism as D is assumed to be irreducible. Therefore we have
(Dg /M)¥[1/X] = 0 showing that Dy /M is finitely generated over o. In par-
ticular, both M and Dy /M are finitely generated over o/w|[[X]][F] therefore
so is Dy. O

Now Dy = My is a ¢- and I'-invariant o/w"[[X]]-submodule of D there-
fore we have an injection fo: My [1/X] < D of étale (¢,I')-modules. The
map [, : DY — Dy, is the composite map Dy — M/[1/X] < D. It is well
defined and makes the above diagram commutative, because the map

™ = Dgy(r) B DY, () 2 DY (r) = M[1/X]

is the same as 7 — My — My/'[1/X].

Finally, by Corollary 3.1.9 MV[1/X] (resp. Dp,) corresponds to M [1/X]
(resp. to D) via the equivalence of categories in Theorem 8.20 in [18] therefore
fo can uniquely be lifted to a p- and T'-equivariant Ay(Np)-homomorphism
feo: MY[1/X] < D. The map f is defined as the composite
DY, — MYL[1/X] = D. Now the image of f — f o pr is a ¢,-invariant
A(Ny)-submodule in (Hy — 1)D therefore it is zero by Lemma 8.17 and the
proof of Lemma 8.18 in [18]. Indeed, for any z € Dgsy () and k > 0 we may
write (f — fopr)(z) in the form 3o wenpe-s) 4 ((f — Fopr) (0 (u~z)))
that lies in (Hy, — 1)D. O
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3.3 Etale hull

In this section we construct the étale hull of Dgy(7): an étale T'.-module
D—Tg;/(ﬂ') over A(Ny) with an injection ¢ : Dgy (7)) — 5;/(7?) with the following
universal property: For any étale (¢, ')-module D’ over A(Ny), and 15~ and
I-equivariant map f : Dgy(w) — D', f factors through Dgy (7), ie. there
exists a unique - and I'-equivariant A(Ny)-homomorphism f: 15;/(71) — D’

making the diagram

Dy () —~= Dgy ()

fl /
f
D/
commutative. Moreover, if we assume further that D’ is an étale T',-module

over A(Np) and the map f is ¢y-equivariant for all ¢ € T, then the map f is
T’y -equivariant.

Definition Let D be a A(Ny)-module and T, < T’ be a submonoid. Assume
moreover that the monoid T, (or in the case of ¥-actions the inverse monoid
T 1) acts o-linearly on D, as well.

We call the action of T, a y-action (relative to the A(NNp)-action) and
denote the action of ¢ by d — ¢,(d), if for any A € A(Ny), t € T, and d € D
we have p;(Ad) = @i(N)pi(d). Moreover, we say that the p-action is injective
if for all ¢ € T, the map ¢y is injective. The p-action of T, is nondegenerate

if for all t € T, we have

D= > Imuog)= >  ul@(D).
u€J(No/tNot—1) u€J(No/tNot—1)

We call the action of T ! a ¢-action of T, (relative to the A(Np)-action)
and denote the action of t™1 € T, ! by d — (d), if for any X € A(Ny),
t € T, and d € D we have ¥,(p;(N\)d) = Mpy(d). Moreover, we say that the
Y-action of T, is surjective if for all ¢ € T, the map 1 is surjective. The
w-action of T, is nondegenerate if for all t € T, we have

{0} = m Ker(y, ou™") .
u€J(No/tNot—1)

The nondegeneracy is equivalent to the condition that for any ¢ € T, Ker(¢y)
does not contain any nonzero A(Ny)-submodule of D.
We say that a - and a i-action of T, are compatible on D, if
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(p1) for any t € Ty, A € A(Np), and d € D we have ¢, (Api(d)) = P (N)d.

Note that with A = 1 we also have ¢, o ¢, = idp for any t € T, assuming
(e9).

We also consider - and ¢-actions of the monoid Z, \ {0} on A(Ny)-
modules via the embedding &: Z, \ {0} — T. Modules with a y-action
(resp. ¢-action) of Z, \ {0} are called (¢, I')-modules (resp. (,I')-modules).

For example, the natural ¢- and -actions of T’y on A(Ny) are compatible.

Remarks 1. Note that the y-action of the monoid T is in fact an action
of the inverse monoid 7. !. However, we assume T, to be commutative
so it may also be viewed as an action of T,.

2. Pontryagin duality provides an equivalence of categories between com-
pact A(Np)-modules with a continuous -action of T, and discrete
A(Np)-modules with a continuous g-action of T.. The surjectivity of
the 1-action corresponds to the injectivity of y-action. Moreover, the
1-action is nondegenerate if and only if so is the corresponding ¢-action
on the Pontryagin dual.

If Dis a A(Ny)-module with a @-action of T, then there exists a homo-

morphism
A(No) @aNo)ore P = D, A @ d = Ay (d) (3.10)

of A(Np)-modules. We say that the T,-action on D is étale if the above
map is an isomorphism. The p-action of T, on D is étale if and only if it is
injective and for any t € T, we have

D= P uaD). (3.11)
ueJ(No/tNot_l)

Similarly, we call a A(Np)-module together with a @-action of the monoid
Zy \ {0} an étale (¢,I')-module over A(Np) if the action of ¢ = ¢, is étale.
If D is an étale T,-module over A(Ny) then there exists a ¥-action of T,
compatible with the étale p-action (see [L7] Section 6).
Dually, if D is a A(Ng)-module with a t-action of T then there exists a
map

w:D — A(No) @ang)er D
d — Z U & wt(uild> :

uEJ(No/tNot_l)
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Lemma 3.3.1 For any t € T, the map v is a homomorphism of A(Ny)-
modules. It is injective for all t € T, if and only if the Y-action of T, on D
15 nondegenerate.

Proof Fixt € T,. Forany A € A(Ny) and u,v € Ny we put A, = ¥ (u"hw).
Note that for any fixed v € Ny we have

AU = Z UPy (Au,v)

uGJ(No/tNot_l)

and for any fixed u € Ny we have

u A = Z 0 Aun)v ™t

vEJ(No /tNot—1)

So we compute

() = Z u® Y (u ) =

u€J(No/tNot—1)

=Y uenlau ) =

u,v€J(Ng/tNot—1)

= Z UK Au,v¢t(v_1x) -

u,’UGJ(NQ/tNQt_l)

- Z ugpt()\u’v) ® th(U_lx) =

u,v€J(Ng/tNot—1)

= > wed ') =) .

’UEJ(N()/tN()t_l)

The second statement follows from noting that A(Np) is a free right module
over itself via the map ; with free generators u € J(Ny/tNot™1). O

Lemma 3.3.2 Let D be a A(Ny)-module with a -action of T, and t € T.
Then there exists a V-action of T, on @fD = A(No) @a(ng),e. D making the
homomorphism v; V-equivariant. Moreover, if we assume in addition that the
V-action on D 1is nondegenerate then so is the Y-action on @;D.

Proof Let t' € T, be arbitrary and define the action of ¢y on ;D by putting

YA ®d) = > Yy (Apr(')) @ by (W' 1d) for X € A(Ny),d € D,

u/GJ(No/t’Not/_l)
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and extending vy to ¢; D o-linearly. Note that we have

Yy (pr (WA ®d) =
= Z Yo (pp (1A () @ Yy (0~ d) = by (A @ d)

W €J(No/# Not'—1)

Moreover, the map 1y is well-defined since we have

v @d) = Y deQel)en(v) @ e (') =

v'€J(No/t/ Not'—1)

= Y wQaw) @ (') =

’UIEJ(N()/t/N()t/_l)
= S wOeer () ® be(v'd) =
u/ W' €J(No /¥ Not/—1)

= X b)) 8 () =

u/ w'e€J(No/t' Not'—1)

= Z P (Api(u')) @ NU’vv’wt'@/ild) -

U/,UIGJ(NO/t/NOt/_I)
=Y ) @ v (') =
u/7,U/€J(NO/t/NOt/71)
= Y b)) @ e d) = (A ® pud) |

’U/EJ(N[)/t’N()t/_l)

where g, = Yy (u'"'po’). Introducing the notation J' = J(Ny/t' Not'™!)
and J” = J(Ny/t"Not"~1) we further compute

Yo(e(A@d) =g Y Yo (A (W) ® vy (u'1d)) =

u'€J(No/t' Not'—1)

= 3 S e ) (u)) @ o (g (1)) =

u// EJII UIEJI

= 3 e (e pu (u)))) @ thur (Y (o () 1)) =
u’eJ" uweJ

= Yy (A ® d)

showing that it is indeed a v-action of the monoid 7.
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For the second statement of the Lemma we compute

¢t/(bt x)) =
- ¥ S dwlup() @ e (v (u ) =

u'€J(No/t' Not'—1) ue J(No /t Not—1)

= ) S delup ) ® e (i) u )

u'€J(No/t' Not'—1) ueJ(No/tNot—1)

Note that in the above sum wy;(v') runs through a set of representatives
for the cosets Ny/tt' Not'"'t~1. Moreover, v = by (up;(u')) is nonzero if and
only if up,(u') lies in # Not'~! and the nonzero values of v run through a set
J'(No/tNot™') of representatives of the cosets No/tNot™'. In case v # 0 we
have ¥y (¢ (v/) tux) = Yy (o (v) " 'u) by (z). So we obtain

de(u@) = D v@(u(pr(v)r)) =
veJ'(No/tNot—1)

— Z v @ (v My () = 1 (u(2))

’L)GJ/(No/tNot_l)

Assume now that the y-action of T, on D is nondegenerate. Any element
in x € ¢;D can be uniquely written in the form ZuEJ(NO/tNOt,l)u ® Ty
Assume that for a fixed ' € T, we have ¢y (uj 'z) = 0 for all ufy € Ny. Then
we compute

- Z Z Yo (ug tupe (W) @y (u' " ay,)

w'€J(No /t Not'—1) ue J(No /tNot—1)
Put y = uj 'ug,(u'). For any fixed u) the set
{y | u € J(No/tNot ), 0’ € J(No/t' Not'™ )}

forms a set of representatives of Ny/tt'No(tt')~!, and we have ¥y (y) # 0 if
and only if y lies in ¢’ Not'~! in which case we have ¥y (y) = ¢ 'yt’. So the
nonzero values of ¥y (y) run through a set of representatives of Ny/t Nyt 1.
Since we have the direct sum decomposition ¢;D = @veJ(No/tNot—l) v® D
we obtain ¢y (v 'z,) = 0 for all «’ € J(No/t' Not'™') and u € J(Ny/tNot™1)
such that y = uj 'up,(u') is in ' Not'~'. However, for any choice of v/ and u
there exists such a ug, so we deduce z = 0. U
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Proposition 3.3.3 Let D be a A(Ny)-module with a 1p-action of T,.. The
following are equivalent:

1. There exists a unique p-action on D, which s compatible with 1 and
which makes D an étale T,-module.

2. The Y-action 1s surjective and for any t € T, we have

D= ) (| Ker(you). (3.12)
uo€J(No/tNot—1) ueJ(No/tNot~1)
uFug
In particular, the action of v is nondegenerate.

3. The map 1, is bijective for all t € T,.

Proof 1 = 3 In this case the map ¢, is the inverse of the isomorphism
(3.10) so it is bijective by the étale property.

3 = 2: The injectivity of ¢; shows the nondegeneracy of the i-action.
Further if 1 ® d = ¢;(x) then we have ¢,(z) = d so the -action is surjective.
Moreover, t; *(up ® D) equals (MVuoue T (No jnot-1) KT (¥ © u~t) therefore D
can be written as a direct sum (3.12).

2 = 1: Fix t € T,. For any d € D we have to choose y;(d) such that
i (pi(d)) = d. By the surjectivity of ¢, we can choose z € D such that
Yy(x) = d. Using the assumption we can write © = ' v, /ingi-1) Tuo» With

Loy € ﬂ Ker(y, ou™") .

uEJ(No/tNot71)
uFug

By the compatibility (@) we should have
wi(d) € ﬂ Ker(t, ou™)
UGJ(No/tNotfl)

u#1

as we have vy (u) = 0 for all u € Ny \ tNgt ™.
A convenient choice is ¢;(d) = x1, and there exists exactly one such
element in D: if 2’ would be an other, then

x—a' € ﬂ Ker(¢y ou™") = {0} .

uGJ(No/tNot_l)
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This shows the uniqueness of the y-action. Further, z; = ¢;(d) = 0 would
mean that z lies in Ker(vy) whence d = 1);(x) = 0—therefore the injectiv-
ity. Similarly, by definition we also have x,, = ugp; o ¥y (uy'x) for all
ug € J(No/tNot™1). By the surjectivity of the v-action any element in D
can be written of the form v;(uy'z) for any fixed ug € J(No/tNot™!) so we
obtain

upp(D) = ﬂ Ker(y; ou™") .

uo;éuEJ(N()/tN()tfl)

The étale property (3.11) follows from this using our assumption 2. Moreover,
this also shows ¥ (ug;(d)) = 0 for all u € Ny \ tNot~' which implies (1))
using that ¢, o ¢y = idp by construction. Finally, ¢;(A) @i (d) — ¢¢(Ad) lies in
the kernel of 1, o ug! for any ug € J(No/tNot™1), A € A(Ng) and d € D, so
it is zero. 0

From now on if we have an étale T,-module over A(Ny) we a priori equip
it with the compatible ¢-action, and if we have a A(Ny)-module with a 1)-
action, which satisfies the above property 2, we equip it with the compatible
p-action, which makes it étale. The construction of the étale hull and its
universal property is given in the following

Proposition 3.3.4 For any A(Ny)-module D, with a v-action of T, there
exists an étale T,-module D over A(Ny) and a 1h-equivariant A(Ny)-homomor-
phismv: D — D with the following universal property: For any y-equivariant
A(No)-homomorphism f : D — D' into an étale T.-module D' we have a
unique morphism f: D — D of étale T,-modules over A(Ny) making the
diagram

D—>D

| A

D/

commutative. D is unique upto a unique isomorphism. If we assume the
Y-action on D to be nondegenerate then v is injective.

Proof We will construct D as the injective limit of ¢} D for ¢t € T,. Consider
the following partial order on the set T,: we put t; < t5 whenever we have
tyt; ' € T,. Note that by Lemma 3.3.2 we obtain a 1-equivariant isomorphism
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go;;t,lgo;;D = 3, D for any pair t; <t in 7. In particular, we obtain a 1)-
1
equivariant map ¢, 4, : @7, D — @y, D. Applying this observation to ¢} D for
a sequence t; < to < t3 we see that the A(Ny)-modules ¢;D (t € T,) with
the i-action of T, form a direct system with respect to the connecting maps
Lt, 1o~ We put
D = lim ¢; D

as a A(INVg)-module with a y-action of T,. For any fixed ¢’ € T, we have

piD = A(No) @avp)., ling 0 D =

teTy

= liQHA(NO) Aoy P2 D = hg” ey D =D
teTy t'teTy

showing that there exists a unique @-action of 7} on D making D an étale
T.-module over A(Ny) by Proposition 3.3.3.

For the universal property, let f : D — D’ be an 1-equivariant map into
an étale T,-module D’ over A(Np). By construction of the map ¢; on D
(t € T.) we have ¢;(1(z)) = (1 ® x); where (1 ® z); denotes the image of
1®x € ¢iD in D. So we put

F((A@x)) = dApu(f(x)) € D

and extend it o-linearly to D. Note right away that ]7 is unique as it is

pg-equivariant. The map f: D — D’ is well-defined as we have

Flaw (1@ x) = f( Yoo W@ @ 1)) =

UIENO/t/NOt/_l

= Y W et o) & (v ) =

’U/,U'ENQ/ﬂN(ﬁ’fl

= > Flu'pu 0 o (W pu(v)) @ o (v ) =

u/,’UlEN()/t/N()t/_l

= 2 Floe(v') @ bp (V1)) =

’U’GNQ/t'Notlfl

- Z (V) o (f (b (V" 12))) =

v'€Ng /t' Not/—1

= Y @lerodu( (@) = el f(x) = f1 @ 7)

U/ENo/t/Not/_l
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noting that ¢4 is a A(Np)-homomorphism. Here the notation ®; indicates

that the tensor product is via the map ;. By construction f is a homo-
morphism of étale T,-modules over A(Ny) satisfying f o= f.

The injectivity of ¢ in case the -action on D is nondegenerate follows
from Lemmata 3.3.1 and 3.3.2. 0

Example If D itself is étale then we have D =D.

Corollary 3.3.5 The functor D — D from the category of A(Ny)-modules
with a ¥-action of Ty to the category of étale T,.-modules over A(Ny) is ezact.

Proof A(Ny) is a free ¢,(A(Ny))-module, so A(No) @a(ny),e: — is exact, and
so is the direct limit functor. 0J

Corollary 3.3.6 Assume that D is a A(Ny)-module with a nondegenerate
v-action of Ty and f: D — D' is an injective ¢ -equivariant A(Ny)-homomor-
phism into the étale T,-module D' over A(Ny). Then f is also injective.

Proof Since D is nondegenerate we may identify ¢; D with a A(Vp)-submodule
of D. Assume that z =} ;i ingi-1) U @t Tu € ;D lies in the kernel of

f. Then z, = t(u'w) € D C ¢;D C D (u € J(Ny/tNot™)) also lies in

the kernel of f. However, we have f(z,) = f(z,) showing that x,, = 0 for all
u € J(No/tNot™1) as f is injective. O

Example Let D be a (classical) irreducible étale (p, I')-module over k((X))
and Dy C D a v- and I'-invariant treillis in D. Then we have Dy = D unless
D is 1-dimensional and Dy = D! in which case we have Dy = D,.

Proof If D is 1-dimensional then D* = D7 is an étale (i, I')-module over
k[[X]] (Prop. I11.5.14 in [5]) therefore it is equal to its étale hull. If dim D > 1
then we have D = D# C Dy by Cor. 11.5.12 and 11.5.21 in [5]. By Corollary
3.3.6 D# C Dy injects into D and it is ¢- and ¢-invariant. Since D# is
not @-invariant (Prop. I1.5.14 in [5]) and it is the maximal compact of[X]]-
submodule of D on which ¢ acts surjectively (Prop. I1.4.2 in [5]) we obtain
that HO is not compact. In particular, its X-divisible part is nonzero therefore
equals D as the X-divisible part of Dy is an étale (¢, ')-submodule of the
irreducible D. 0
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Proposition 3.3.7 The T':' action on Dgy(7) is a surjective nondegenerate
W-action of T'y.

Proof Let d € Dgy(m) and ¢ € T). Since the action of both ¢ and A(Ny)
on Dgy () comes from that on 7 we have t 1, (\)d = t 1M~ d = M~ 1d,
so this is indeed a t-action. The surjectivity of each 1, follows from the
injectivity of the multiplication by ¢ on each W € B, (m). Finally, if W is
in Bi(m) then so is "W = >_ ;o jingi-1) wW for any t € T,. Take an
element d € Dgy () lying in the kernel of ¢, (u=!") for all u € J(Ny/tNot™1).
Then there exists a generating B, -subrepresentation W of 7 such that the
restriction of t'u~'d to W is zero for all v € J(Ny/tNot™'). Then the
restriction of d to t*W is zero showing that d is zero in Dgy (7) therefore the
nondegeneracy. Alternatively, the nondegeneracy of the -action also follows
from the existence of a i-equivariant injective map Dgy (7)) < D% (7) into
an étale T',-module D% (7) ([17] Proposition 3.5 and Remark 6.1). O

Question Let Dg)‘)/(ﬁ) as in [I7]. We have that Dgo&(w) is an étale T}-
module over A(Ny) ([I7] Proposition 3.5) and f : Dgy(m) — ngo‘)/(ﬁ) is a
y-equivariant map ([I7] Remark 6.1). By the universal property of the étale

hull and Corollary 3.3.6 DSV( ) also injects into Dg‘)/(ﬂ) Whether or not
this injection is always an isomorphism is an open question. In case of the
Steinberg representation this is true by Proposition 11 in [22].

We call the submonoid 77 < T, < T cofinal in T, if for any t € T, there
exists a t’ € T} such that ¢t <¢'. For example £(Z, \ {0}) is cofinal in T},

Corollary 3.3.8 Let D be a A(Ny)-module with a -action of T, and de-
note by D (resp. by D’) the étale hull of D for the i-action of T, (resp. of
T!). Then we have a natural isomorphism D' D of étale T!-modules over
A(Ny). More precisely, if f: D — Dy is a ¥-equivariant A(Ng)-homomorphism
into an étale T.-module Dy then f factors uniquely through v: D — D.

Proof Since T < T, is cofinal in T, we have

lim 5D 2 lim ;D = D.

t'eT! teT,
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By Corollary 3.3.8 there exists a homomorphism pr : @;/(W) — Dy ()
of étale (p,I')-modules over A(Ny) such that pr = pr o (. Our main result in
this section is the following

Theorem 3.3.2\/D¥7@700(7T) is the pseudocompact completion  of

Ay(No) @avg) Dsv () in the category of étale (o,T")-modules over Ay(Ny),
te. we have
Dy oo(m) = 1%19

where D runs through the finitely generated étale (o, T")-modules over Ay(Np)
arising as a quotient of Ay(No) @a(ny) Dsv () by a closed submodule. This
holds in any topology on Ai(No) @ang) Dsv(m) making both the maps

1 ® ¢ DS\/<7T> — Ag(No) ®A(No) ng(ﬂ'), d —~ 1® L(d) and
1 ® pr: Ag(No) @ang) Dsv(m) = D¢y () continuous.

Remark Since the map pr: Dgy(7) — D/, (7) is continuous, there exists
such a topology on Ay(Ny) ®@a(ny) Dsv (). For instance we could take either
the final topology of the map Dgy (1) — A¢(No) ®a(ny) Dsv () or the initial
topology of the map Ay(Nog) @a(ny) Dgy () — D¢y oo ().

Proof The homomorphism pr  factors  through the map
1 ®id: Dgy(m) = Ae(No) @a(ng) Dsv(m) since DY, (7) is a module over
Ay(Np), so we obtain a homomorphism

1 ®pr: Ae(No) @a(ng) 13;/(77) — ng,z,oo(ﬂ)

of étale (¢, I')-modules over Ay(Ny). At first we claim that 1 ® pr has dense
image. Let M € M(x"°) and W € B, (x) be arbitrary. Then by Lemma
3.2.1 the map pryy 5,0 WY — M,/ is surjective for k£ > 0 large enough. This
shows that the natural map

1 & prypar: Ae(No) @avg) WY = Ag(No) @acvg) M, = M/ [1/X]

is surjective. However, 1 ® pry; ,, factors through Ay(No) ®a(ny) Dsv () by
the Remarks after Lemma 3.2.2. In particular, the natural map

1@ pry g Ae(No) @avg) Dsv(m) = My [1/X]

a7



CEU eTD Collection

is surjective for all M € M(70) and k > 0 large enough (whence in fact for
all k£ > 0). This shows that the image of the map

1@ pr: Ae(No) @ang) Dsv(m) = D¢y oo (7)

is dense whence so is the image of 1 ® pr. By the assumption that 1 ® pr is
continuous we obtain a surjective homomorphism

L®pr: JimD — DY, ()
D

of pseudocompact (p,I')-modules over Ay(Ny) where D runs through the
finitely generated étale (¢, I')-modules over Ay(Ny) arising as a quotient of

Ae(No) @) Dsv ().
Let 0 # (xp)p be in the kernel of 1 ® pr. Then there exists a finitely
generated étale (¢, ')-module D over Ay(Ny) with a surjective continuous

homomorphism Ay(Noy) ®a(n,) Dsv(m) = D such that xp # 0. By Proposi-
tion 3.2.4 this map factors through D/, (7) contradicting to the assumption

1/®\p~r(<$D)D) = 0. O

Remark Breuil’s functor ng can therefore be computed from Dgy the fol-
lowing way: For a smooth o/w"-representation m we have

ng(ﬂ) = (l.&nD)Ho g@DHo
D D

where D runs through the finitely generated étale (p, I')-modules over A,(Ny)
arising as a quotient of Ay(No) ®a(ny) Dsv () by a closed submodule.
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Chapter 4

Nongeneric /¢

Assume from now on that ¢ = /,, is a nongeneric Whittaker functional defined
by the projection of Ny onto N, ¢ = Z, for some simple root o € A.

4.1 The action of 7',

Our goal in this section is to define a p-action of T on DY, (7) or equiv-
alently, on D/(m) extending the action of {(Z, \ {0}) < T and making
D¢y () an étale T, -module over Ay(Np). Let t € T, be arbitrary. Note
that by the choice of this ¢ we have tHyt~! C Hy. In particular, T, acts via
conjugation on the ring A(Ny/Hy) = o[ X]]; we denote the action of t € T'y by
. This action is via the character o mapping 7' onto Z,\{0}. In particular,
o[[X]] is a free module of finite rank over itself via ¢;,. Moreover, we define
the Hecke action of ¢ € Ty on 7 by the formula F,(m) := Tr g, a1 (tm)
for any m € w0, For t, ¢ € T, we have

FyoF, = ’I‘rHo/t’Hot’*1 ° (t/') © T‘rfiﬁ)/ﬁ%ﬂt*1 © (t) =

= Trp /o mor—1 © Tropgr—1 jpepge—10—1 0 (H't:) = Fyy
For any M € M(rwH0) we put F;M := NoF,(M).
Lemma 4.1.1 For any M € M(7"°) we have F; M € M(mHv).
Proof We have

F(FfM) = F(NoFy((M)) C NoF'F,(M) =
= NoF(M) = NoFy(F(M)) C F/M .
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So F;y M is amodule over A(Ny/Hy)/w"[F]. Moreover, if my, ... m, generates
M, then the elements Fy(m;) (1 < i < r) generate FM, so it is finitely
generated. The admissibility is clear as Fy'M = - ;n jengi-1) uFt(M) is
the sum of finitely many admissible submodules. Finally, FM is stable
under the action of I as F; commutes with the action of IT. O

By the definition of F*M we have a surjective o/w"[[X]]-homomorphism
1® Fy: o/@"[[X]] Quaniixpee M — F; M
which gives rise to an injective o/w"((X))-homomorphism
(160 F)'[1/X]: (F; M) [1/X] = o/ (X) D0y MYIL/X] . (4)
Moreover, there is a structure of an o/w"[[X]][F]-module on
0/ " [[X]] ®o/ehix) 00 M

by putting F(A ® m) := ¢;(\) ® F(m). Similarly, the group I' also acts on
0/@"[[X]] @ et (x50 M semilinearly. The map 1® F, is F and T-equivariant
as Fy, I, and the action of I' all commute. We deduce that (1 ® F;)V[1/X]
is a - and I'-equivariant map of étlae (¢, I')-modules.

Note that for any ¢t € T, there exists a positive integer k& > 0 such
that ¢ < s, ie. ¢/ := ¢7's" lies in T. So we have F}(F;M) = FiM =
NoF*(M) € M. So we obtain an isomorphism M"[1/X] 2 (F;M)V[1/X] =
(Fr(FpM))V[1/X] as M/NoF*(M) is finitely generated over o.

Lemma 4.1.2 The map (4.1) is an isomorphism of étale (p,1")-modules for
any M € M(wH) and t € T .

Proof The composite (1@ Fy/)V[1/X]o(1® F,)V[1/X] = (1@ F*)V[1/X] is an
isomorphism by Lemma 2.6 in [3]. So (1® F})¥[1/X] is also an isomorphism
as both (1 ® F})Y[1/X] and (1 ® Fy)Y[1/X] are injective. O

Now taking projective limits we obtain an isomorphism of pseudocompact
étale (¢, I')-modules

(1@ F)'[1/X]: D{(r) —  lim  (0/@"((X)) oy ((x))00 M [1/X])
MeM(rHo)

(m)(Ft*M)V[l/X] —> ((1®Ft)v[1/X](m))Mv[1/X].
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Moreover, since o((X)) is finite free over itself via ¢;, we have an identification

lim  (0/@" (X)) @ojeh((xy) 00 M"[1/X]) =
MeM(rHo)

= 0/@"((X)) @ojwh((x))00 DE () -

Using the maps (1 ® F})"[1/X] we define a p-action of Ty on D/(m) by
putting ¢,(d) := (1 ® F,)"[1/X])""(1 ®d) for d € D{(r).

Proposition 4.1.3 The above action of T, extends the action of
£(Z, \{0}) < Ty and makes DY (n) into an étale T -module over o/w"[[X]].

Proof By the definition of the T’ -action it is indeed an extension of the
action of the monoid Z, \ {0}. For ¢,¢ € Ty we compute

propi(d) = (1@ F)'[1/X]) o (e F)[1/X])) " (1ed) =
= (1@ F)'[1/X]oc(1@ F)'1/X]) ' (1®d) =
= (1@ Fp)"[1/X])) " (1 ®d) = ow(d) = pum(d) .

Further, we have

pe(M) = (1@ 1)'[1/X) (1@ Ad) = (1@ F)'[1/X]) " (e(N) @ d) =
= 2N ((1® F)'[1/X]) (1 ® d) = ¢:(A)ee(d)

showing that this is indeed a (p-action of T'.. The étale property follows from
the fact that (1 ® F;)Y[1/X] is an isomorphism for each t € T',. O

The inclusion uq: Z, — Nao < Np induces an injective ring homomor-
phism—still denoted by wu, by a certain abuse of notation—

—

Uy : 0@)17 — Ay(Ny) where o((X))p denotes the p-adic completion of the
Laurent-series ring o((X)). For each ¢ € T this gives rise to a commutative
diagram

o((X)) e A ()

)

o((X)) 1 Ag(N)
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with injective ring homomorphisms. On the other hand, by the equivalence
of categories in Thm. 8.20 in [I8] we have a ¢- and I'-equivariant identi-

fication MY[1/X] = Ay(No) B ) MV[1/X]. Therefore tensoring the

isomorphism (4.1) with Ay(Np) via u, we obtain an isomorphism

(1® F) [/ X]: (Fy M) [1/X] = A(No) @, (Fy M) [1/X] —
— No(No) @, 0/@" (X)) Rojah (X)) M [1/X] =

= Ae(No) @a,(No)pr Ne(No) @up MY[1/X] 22 Ag(No) @, (No)ipr Mao[1/X]
(4.2)

Taking projective limits again we deduce an isomorphism
(1® F)G[1/X]: Degoo(m) = Ae(No) @n,(o)or De .00 ()
(m)Eranyn/x) = (1@ F)G[1/X](m))amy pyx)
for all t € T, using the identification

I'&H (AZ<N0> QAg(No) st Mg/o[l/X]) = AZ(NO) QN¢(No),pt ng,e,oo(ﬁ) .
MeM(nHo)

Using the maps (1 ® F;)/[1/X] we define a p-action of T on D¢, () by
putting ¢ (d) := (1 ® F)L[1/X])" (1 ®@d) for d € DY, (7).

Corollary 4.1.4 The above action of T, extends the action of
§(Z,\{0}) < Ty and makes D, (7) into an étale T, -module over Ay(No).
The reduction map D¢, . (7) — D{(n) is Ty -equivariant for the p-action.

We can view this @-action of 7, in a different way: Let us define
Fy i = Try, st o (t-). Then we have a map

1@ Fg: A(No/Hy) /=" QN(No/Hy) ot oe Mk = Fy My, := NoFy p(My) , (4.3)

where we have Fy, M € M (7"'¥). Let k be large enough such that we have
tHot=t > H,. After taking Pontryagin duals, inverting X, taking projective
limit and using the remark after Lemma 3.1.5 we obtain a homomorphism
of étale (¢, T')-modules

b Tr g, 0 (16 Fo)[1/X]: (57 M)L[1/X] — A(No) @, MY[L/X]
’ (4.4)
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This map is indeed I'- and @p-equivariant because we compute

Fk e} F’tJf = TI‘Hk/SHkS—l o} (S) o Ter/tHkt*1 ¢] (t) =

— kry —
- Ter/sktHkt_ls_k © (S t.) -

= Ter/tHkt*1 (@) (t) o TI‘Hk/SHkS—l o (8) = Ft,k (¢] Fk .

Now we have two maps (4.2) and (4.4) between (F;M)Y[1/X] and
Ay(No) ®4, ML[1/X] that agree after taking Hy-coinvariants by definition.
Hence they are equal by the equivalence of categories in Thm. 8.20 in [I§].

We obtain in particular that the map (4.3) has finite kernel and cokernel
as it becomes an isomorphism after taking Pontryagin duals and inverting X.
Hence there exists a finite A(Ny/Hy)/w"-submodule M, . of M such that
the kernel of 1 ® F; is contained in the image of A(Ny/Hy)/w@" ®, My j.. in
A(No/Hy,)/w" @, M. We denote by M, < Fy, My the image of 1® F.
We conclude that as in Proposition 3.1.6, we can describe the ¢;-action in
the following way:

o MY[L/X] = (FyMi) [1/X]
f oo (T e 10 BOV/X) 1@ ) (45)

Being an étale T',-module over A,(Ny) we equip D¢, (m) with the -
action of T.: 1) is the canonical left inverse of ¢, for all t € T',.

Proposition 4.1.5 The map pr: Dsy(7) — DY, (7) is ¥-equivariant for
the Y-actions of Ty on both sides.

Proof We proceed as in the proofs of Proposition 3.1.8 and Lemma 3.2.2.
We fix t € Ty, W € By(r) and M € M(x"°) and show that pry,,, is
Yp-equivariant. Fix k such that F}, M < W and tHot™' > Hj.

At first we compute the formula analogous to (3.7). Let f be in M} such
that its restriction to My, . is zero and m € Mtfk < ﬂ*kMk be in the form

m = Z uwFy k(my,)

uEJ(N()/tN()tfl)

with elements m, € M, for u € J(Ny/tNot™1). My, is a finite index submod-
ule of Fy; M. Note that the elements m,, are unique upto My, . + Ker(Fy ).
Therefore ;(f) € (M) is well-defined by our assumption that fy,,, =0
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noting that the kernel of F} ; equals the kernel of Tr;-14,4/5, since the multi-
plication by ¢ is injective and we have Fy =t o Try-1p,,/p,. So we compute

pe(£)(m) = (1@ Fiur)") " (Trermym (1® £))(m)

= ((1® F0)") 7 (1@ Tremm, (F)( > ukbyk(my)) =
w€J((No/Hy)/t(No/Hy)t—1)
= Trp-1 g0 m, () (F (woFye(mug))) = F(Tre gy, (6 ugt)may,))
(4.6)

where ug is the single element in J(Ny/tNot™!) corresponding to the coset of
1.

Now let f be in WV such that the restriction JiNotM, . = 0. By defi-
nition we have ¢4(f)(w) = f(tw) for any w € W. Choose an element
m € My, C F, My written in the form

m = Z uFy i (my,) = Z utTry 1 g0 1, (M) -

ueJ(No/tNot—1) ueJ(No/tNot—1)

Then we compute

firranm) = > futTrepym, (m) =

ueJ(No/tNot—1)

- Z wt@bilf)(Trt—lHkt/Hk (M) =

u€J(No/tNot~1)

(L6 Z @t(l/)t(u_lf)w;kMk)(Ft,k(mu)) =

ueJ(No/tNot—1)

= > ue(W(u ) (WF(my)) =

u€J(No/tNot—1)
= > up(da D) (m)

u€J(No/tNot—1)

as for distinct u,v € J(Ny/tNot™') we have up(fo)(vF;x(m,)) = 0 for any
fo € (M,)". So by inverting X and taking projective limits with respect to
k we obtain

Py, e (f) = Z wpr (Pryyar (Ve (u™ f)))

UEJ(No/tNQt_l)
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as we have (M;,)"[1/X] = (Fy,M)Y[1/X]. Since the map (4.2) is an iso-
morphism we may decompose pryy, - (f) uniquely as

pl"W,F;M(f) = Z U@twt(u_lpfw,F;M(f)))

ueJ(No/tNot—1)

so we must have ¥, (pry, peas (f)) = Py (¥e(f)). For general f € WY note
that NosM, . is killed by ¢(X") for r > 0 big enough, so we have

ert<er,Ft*M<f)) = ¢t(er,Ft*M(30t(Xr)f)) =
= Prwwf(lbt(@t(XT)f)) = XTPTW,M(Q/’t(f)) .

Since X" is invertible in Ay(Np), we obtain

¢t(er,F;M(f)) = PTW,M(%(JC))

for any f € WVY. The statement follows taking the projective limit with
respect to M € M(7f°) and the inductive limit with respect to W € B ().
0

4.2 Compatibility with parabolic induction

Let P = LpNp be a parabolic subgroup of G containing B with Levi
component Lp and unipotent radical Np and let mp be a smooth o/wh—
representation of Lp that we view as a representation of P~ via the quotient
map P~ — Lp where P~ = LpNp- is the parabolic subgroup opposite
to P. Since T is contained in Lp, we may consider the same cocharacter
§: Q — T for the group Lp instead of G. Further, we put N, = NN Lp
and NLP,O = N() N Lp.

As in [3] denote by W = Ng(T)/T (resp. by Wp = (Ng(T) N Lp)/T)
the Weyl group of G (resp. of Lp) and by wy € W the element of maximal
length. We have a canonical system

Kp={weW|uw(®)C o}

of representatives (the Kostant representatives) of the right cosets Wp\W
where ®5 denotes the set of positivie roots of Lp with respect to the Borel
subgroup Lp N B. We have a generalized Bruhat decomposition

G= ][] PwB= [ PuN.

weKp weKp
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Now let mp be a smooth representation of Lp over o/wh. We regard
mp as a representation of P~ via the quotient map P~ — Lp. Then the
parabolically induced representation Ind%_7p admits [21] (see also [7] §4.3)
a filtration by B-subrepresentations whose graded pieces are contained in

Cuw(mp) = ¢ — Indb_"N7p

for w € Kp where ¢c—Indp- stands for the space of locally constant functions
on x O P~ with compact support modulo P~. B acts on C,(mp) by right
translations. Moreover, the first graded piece equals Ci(7p).

Lemma 4.2.1 Let # < Cu(mwp) be any B-subrepresentation for some
w € Kp\ {1}. Then we have D{(r') = 0.

Proof By the right exactness of Dy (Prop. 2.7() in [3]) it suffices to treat
the case 7’ = C,(7p). For this the same argument works as in Prop. 6.2 [3]
with the following modification:

The particular shape of £ is only used in Lemma 6.5 in [3] (note that the
subgroup Hy = Ker(¢: Ny — Z,) is denoted by N; therein). For an element
w # 1 in the Weyl group we have (w™' Np-w N Ny)\No/Hy = {1} if and only
if Hy does not contain w™'Np-w N Ny. Whenever w'Np-w N Ny € Hy, the
statement of Lemma 6.5 in [3] is true and there is nothing to prove.

In case we have {1} # w™'Np-w N Ny C Hy, the statement of Lemma
6.5 is not true for ¢ = ¢,. However, the argument using it in the proof of
Prop. 6.2 can be replaced by the following: the operator F' acts on the space
C((w™'Np-wn Ny)\No, )"0 nilpotently. Indeed, the trace map Tt s, /spros-1

C((w™ Np-w N No)\No, 78)° 705" — C((w ™ Np-w N No)\Np, wi2) 0

is zero as each double coset (w™'Np-w N Hy)\Hy/sHys™! has size divisible
by p and any function in C((w™ ' Np-w N Ny)\No, 7%)*705"" is constant on
these double cosets. The statement follows from Prop. 2.7(iii) in [3]. O

In order to extend Thm. 6.1 in [3] (the compatibility with parabolic induc-
tion) to our situation (¢ = /£,) we need to distinguish two cases: whether the
root subgroup N, is contained in Lp or in Np. Similarly to [7] we define the
s%Np -ordinary part OrdszNLP (mp) of a smooth representation mp of Lp as

follows. We equip WgLP’O with the Hecke action Fp = Trn,, o/sNpp0s1 © (s)

of s making WSLP " a module over the polynomial ring o/w”[Fp| and put

_ N
OI‘dsZNLP (7Tp) = Homo/wh[Fp](o/wh[Fp, FP 1], WPLP’O)FP_fm
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where Fp — fin stands for those elements in the Hom-space whose orbit
under the action of Fp is finite. By Lemmata 3.1.5 and 3.1.6 in [7] we may

identify Ordy, (mp) with an 0/w"[Fp]-submodule in ﬂgLP’O by sending a

map f € OfdsZNLP (mp) to its value f(1) € wﬁ“”“ at 1 € o/w"[Fp, Fp'l.

Proposition 4.2.2 Let wp be a smooth locally admissible representation of
Lp over o/w" which we view by inflation as a representation of P~. We have
an isomorphism

DY (m if Ny C L
DY (ndSmp) = { Pe(mP) L7 )
O/W ((X))®o/whordsZNLP (WP) Zf N, € Np

as étale (p,T')-modules. In particular, for P = B we have
DY (Ind$-75) = 0/@"((X))Ro/wnm, ie. the value of DY at the principal
series is the same (p,I')-module of rank 1 regardless of the choice of ¢
(generic or not).

Proof By Lemma 4.2.1 and the right exactness of Dy (Prop. 2.7(ii) in
[3]) it suffices to show that D¢ (Ci(mp)) is isomorphic either to DY (mp) or
0/ (X)) B4 Ordgy, , (mp)¥. Moreover, the proof of Prop. 6.7 in [3] goes
through  without modification so we have an isomorphism
D{(Cy(mp)) = DV((IHdg(lmNoﬂ'p)Ho). Hence we are reduced to computing
DY((Ind}° ﬂNQﬂ-P)HO) in terms of mp. We further have an identification

Ind3? v mp = C(Npg, mp) = C(Npg, 0/@") Qoo Tp

by equation (40) in [3]. We need to distinguish two cases.

Case 1: N, C Lp. In this case we have Npy C H,. Hence we deduce

(C(Npg, 0/w") ®gjen mp) o = Wg()/NP’O = 7™ So we have

DY (Ind$-wp) = DY((Ind}? . 7p)™) = DY (7p™) = DY (rp)
in this case as claimed.
Case 2: N, C Np. In this case we have Np,, C H; and

Npo/(NpoN Hy) = Z,. So we have an identification

N N
C(Npo,mp)" 2= C(Npo/(Npo N Ho),mp ") =2 C(Zy, wp""") .
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Here the Hecke action ' = Fg = Try,/sp,s-—1 © (5-) of s on the right hand
side is given by the formula

FG(f)(a):{OFP(f(a/p)) o

. Nrpo
where Fp = TrNLP 0/sNp, 05— © (s-) denotes the Hecke action of s on wp 7.

Now let M be a finitely generated o/w"[[X]][F] submodule of C(Z,, wﬁ“”“)
that is stable under the action of I' and is admissible as a representation of
Z,. By possibly passing to a finite index submodule of M we may assume
without loss of generality that the natural map MY — MVY[1/X] is injective
whence the map id ® F': o/w"[[X]] Ro/whix),r M — M is surjective.

Let f € M be arbitrary. By continuity of f there exists an integer n > 0
such that f is constant on the cosets of p"Z,. Writing f = S0 '[i] - F™(f;)
(where [i]- denotes the multiplication by the group element i € Z,) by the
surjectivity of id ® F' we find that each f; is necessarily constant as a function
on Z, satistfying F3(fo(0)) = f(0).

Put M, = {f(0) | f € M} C WgLP’O. By the previous discussion Fp
acts surjectively on M, and is generated by the values of elements in M?%»
(ie. constant functions) as a module over o/w"[Fp]. By the admissibility
of M we deduce that M% hence M, is finite (or, equivalently, finitely gen-
erated over o/w"). We deduce that in fact we have M = C(Z,, M,), ie.
MY = O/Wh[[XH Ro/wh M.

Conversely, whenever we have a o/w"|[Fp]-submodule M’ < WgLP’O that
is finitely generated over o/w" and on which Fp acts surjectively (hence
bijectively as the cardinality of o/w” is finite) then for M = C(Z,, M') we
have M’ = M,, M € M(C(Zy, 7p""")), and MY = o/w"([X]] @,mn (M")" is
X-torsion free. In particular, we compute
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I

D{(Ci(mp)) = lim MY[1/X]
MEM(C(Zpmn P0))

= gﬂ O/wh((X)) ®o/wh M;/ =

N
MeM(C(Zp,mp P,
MY MV[1/X]

o/ (X)Buen(  lm M) =

N
MeM(C(Zp,mp"P0)),
MY MV[1/X]

= O/Wh((X))®o/whordsZNLP (WP)\/
as claimed. O

Remark For N, C Np we have the equivalent description
D¢ (Indf-mp) = @MeM(@) o/w"[[X])[1/X] ®pjen MY, where

Tp = (WgO)FgO:O = wﬁ“/(x € WgOEIn e N: Fpx =0),

and the action of ¢ (resp. TI') on o/w"[[X]][1/X] ® MV is the unique
o/w"[[X]][1/X]-semilinear action such that o(f)(m) = f(&(p~')m) for
f € MY and m € M (resp. z(f)(m) = f(&(z~")m) for z € Z; ~ T,
f e MY and me M).

4.3 Compatibility with a reverse functor

In this section the results of [10], section 4 are presented without proofs.

In [I8] the functor D — 92) is generalized to arbitrary Q,-split reductive
groups G with connected centre. Let D be an étale (p,I')-module finitely
generated over Og and choose a character ¢: Ker(a) — o*. Then we may let
the monoid £(Z,\{0})Ker(a) < T (containing T, ) act on D via the character
§ of Ker(a) and via the natural action of Z, \ {0} = ¢ x " on D. This way
we also obtain a T -action on Ay(Np) ®,, D making Ay(Ny) ®,, D an étale
T';-module over Ay(Ny). In [I8] a G-equivariant sheaf Q) on G/ B is attached
to D such that its sections on Cy = NowoB/B C G/B is B, -equivariantly
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isomorphic to the étale T -module (A;(Ny) ®,, D) over A(Ny) consisting
of bounded elements in Ay(Ny) ®,, D (see [1§] section 9).

The construction of a G-equivariant sheaf on G/B with sections on

Co = NywoB/B C G/B isomorphic to a dense B,-stable A(Np)-submodule
D¢y oo(m)*® of DY,  (m) is not immediate from the work [I8] as only the
case of finitely generated modules over A,(NVy) is treated in there. However,
the most natural definition of bounded elements in D¢, (w) works: The
A(Ny)-submodule DY, ()" is defined as the union of ¢-invariant compact
A(No)-submodules of DY, (m). The image of pr: Dgy () — DYy oo(m) is
contained in DY, (m)" and the constructions of [I8] can be carried over
to this situation. The resulting G-equivariant sheaf on G/B is denoted by
Y =Dar

Now consider the functors (-)¥: 7 — 7 and the composite
Vo (G/B): 7 = D¢y oo(7) = Vo (G/B)

both sending smooth, admissible o/w"-representations of G of finite length
to topological representations of G over o/w”. There exists is a natural trans-
formation Bg/p from ()Y to Qa,,.. This generalizes Thm. IV.4.7 in [4]. The
proof of this relies on the observation that the maps
Hy: DYy oo(1)* = D¢y (m)" in fact come from the G-action on 7*. More
precisely, for any g € G and W € B, (7) we have maps

(g): (g7 W W) — (WngWw)”

where both (¢7'W N W)Y and (W N gW)" are naturally quotients of V.
These maps fit into a commutative diagram

/(mww\ (W gW)

wVY g g
‘ Pryw ‘ ‘
C g
ng,e,oo(ﬁ)bd ’ resgglcomco<Dg/,f,m(7T)bd) resggmgco (Dg/,e,oo(ﬁ)bd)
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allowing us to construct the map Bg/p. The proof of this is similar to that
of Thm. IV.4.7 in [4]. However, unlike that proof we do not need the full
machinery of “standard presentations” in Ch. ITI.1 of [4] which is not available
at the moment for groups other than GL2(Q),).

4.4 Counterexamples

In [3] the Whittaker functional ¢ is assumed to be generic. However, even
if £ is not generic, the functor D} (hence also D/, ) is right exact. Here
we show that in this case ng is not faithful and the restriction of ng to the
category SP, n is not exact in general.

From now on let h = 1, thus we are over k = o/w, and G = GL3(Q,).
Then |A| = 2, say A = {a, 3}, fix the parabolic subgroup P such that
Lp = GL3(Q,) x T" where T" is a torus and ¢ = ¢,. Let the superscript ()
denote the analogous construction of the subgroups B, T, N, T and element s
of G in case G = GL3(Q,). Let mp = 7@ @, x with 7(® a smooth admissible
representation of GL2(Q,).

Proposition 4.4.1 Let mp = 7 @y be the twist of a supercuspidal modulo
p representation w2 of GL2(Q,) by a character x of the torus. Then we
have

0 4 NgCLp

dimy(x)) D¢ (Indp-mp) = {2 if N C Lp

Proof We use the compatibility with parabolic induction (Proposition 4.2.2).
Note that the torus 7 is generated by s and Té2). So in the case when
N3 C Lp we have an isomorphism

Ordgy, ,(mp) = (Ordpe (m2) ® X)jkirp) = 0

by the adjunction formula of Emerton’s ordinary parts (Thm. 4.4.6 in [7]).
In the other case we apply Thm. 0.10 in [4]. O

Now let Y = id and 7p = 7@ ® id be a representation of
Lp = GL2(Q,) x T" such that N3 C Lp.
By definition ([3], section 3) the k[[X]]-module structure of 7H° is iso-
morphic to those of 7(2), the Z,-actions are the same, and
i : @
Fpm = Z(l + X)) F®m  form el = Wﬁ“ :
=0
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Let M® ¢  M(x®) and consider the k-vectorspace
(M@YW/X(M®) = (MHo)V. MHo is Fp-invariant thus we have an ac-
tion of Fp on the dual. We describe it with the ¢ coming from the étale
(¢, T)-module structure of (M®)V[1/X] (cf. Lemma 2.6 and the part after
Lemma 3.1 in [3]):

Fp(d+ X (M (pz (1+ X) ) + XM@Y (de (M),

Proposition 4.4.2 Let 7® be an extension of principal series:

0— 7r§ =In dg(;(Qp)(Xl ® x2) — @ 2, o 2 _ IIldg'(I;)z(Qp)(X'1 ® x5) — 0,

and D(7®) be the (p,T)-module attached to ™ by the classical Montréal
functor D. Then Ordgy, (mp)Y is a quotient of

(A/XA)ps—o = (A/XA)/(d € A/XA[Fn € N: F"d = 0)

for a certain lattice A containing the smallest -invariant lattice
Di(r@) c D(z@).

Proof As before, we have Ord,zy, (mp) = Ordge (7)) ®id = Ordge) (1?).
Let us denote it with Ord®

We have dimy,(Ord®) < 2, because the ordinary parts of the principal
series are 1 dimensional over k (Theorem 4.2.12 in [§]), and the functor
7+ Ord(m) is left exact (Proposition 3.2.4 in [7]).

For a principal series representation 7T(()2), if M € M(W((JQ)) such that
MVY[1/X] is nontrivial, then we have Ordpge (73) < M™”. The minimal
generating B, -subrepresentation M, € M(W(()Q)) of the Steinberg represen-
tation is of that kind. Assume indirectly that MN5” does not contain the
ordinary part for some M € M(?T(()Q)). We have dimyx))(M"V[1/X]) <1
for all M’ € M(W(()Z)). But then by Lemma 2.1 in [3] we would have

M' = M+ My € M(x$?) and dimgx)) (M"[1/X]) >

We show, that there exists M’ € M(7®) such that Ord® < M".
If dimy,(Ord®) = 1, then Ord® = Ord e (7r§2)) which is contained in the
Steinberg representation M; < 7r§2). Thus Ord® < M’ = i(M;) € M(x®).
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If dimy,(Ord®) = 2, we use the fact that Ordpe) is the right adjoint of
In dG(I;f (@) ([7] Theorem 4.4.6). We have

0—>X1®X2—>U%Ord(2)—>X’1®X’2—>0.

Thus the isomorphism U —  Ord® gives an isomorphism

G
Ind 52 % (U) — 7.

Let M’ be the k[[X]][F]-representation generated by Ord®. M’ e M(x®),
because any f € M viewed as a function G — U has support in NéQ)B(Q)_

thus M’V is admissible.

Moreover we can choose M such that MV[1/X] = D(n®): let
M" € M(x®) be such that M"V[1/X] = D(z®). Then we also have
M =M+ M" e M(7x?) (cf Lemma 2.1 in [3]).

Set A = MY < MV[1/X]. This is 1-invariant and generates D(7(?)), thus
it contains Df(7®). We got that Ordgy,  (mp)" is a quotient of A/XA.
Moreover since F'p acts surjectively on OrdszNLP (mp), the dual is a quotient
of (A/XA)FIgOZQ Ol

Corollary 4.4.3 Let x1 # X2, Xy = X28 ' and Y, = 1% with x1 # X, and
£: Q) = pr x Lo, — Lo, — F denoting the modulo p cyclotomic character.
Then we have an exact sequence

0 — Ind$ (7{? ®id) —» 7 = Ind$_ (7 ®id) — Ind$_ (r{? ® id) — 0,

but the natural map DV(IndG (7 @ id)) — DV(IndG (7 ®id)) is not
injective.

Proof The above sequence is exact, because both — ® id and Ind%_(—) are
exact.

By Proposition 4.2.2 we have DV(IndG (7r22 ®'d)) = k((X))®0rdge (7r§2))
and DV(IndG (7? ®1id)) = k(X)) ® Ordge (7)) (here we also used that
Ordgy, () = Ordpe (1) as before).

For any extension D of the (¢,T)-modules D(7r12) and D(7r2 ) there
exists an extension 7(?) of the two principal series with D(7(?) = D, since
the functor D is essentially surjective (see Thm 0.17(iii) in [4]) and we have

dime(Ext(ﬁf),wg ") =1 (see [8] Prop. 4.3.15(2)).

73



CEU eTD Collection

Thus it suffices to prove, that there exists a nontrivial extension D and
that for any lattice A O D! the action Fp on A/XA has nontrivial kernel.
This is done in the following section. U

4.5 Extensions of 1 dimensional (p,I')-modules

The most part of the following is folklore, however T could not find it
anywhere, so I wrote it down. Let p be an odd prime and
v € I' = Gal(Q,(pp=)/Q,) be a topological generator. Let
X 1 Gal(Qy(p1p=)/Qy) — Z;, be the cyclotomic character.

For f(X) =", A\X" € F,((X))*, write deg(f(X)) = min{n|\, # 0}.

Proposition 4.5.1 Let D be a one dimensional (¢, I')-module over F,((X)).
Then there exists a basis {e} of D and \, u € Ty such that the ¢(e) = Xe and

v(e) = pe.

Proof Let ey be any generator of D. Then ¢(eq) = f(X)e for some
[ € Fp((X)). We can write f(X) = M\X"f'(X) with Ay € F;, n € Z
and f'(X) € 1 + XTF,[[X]].

If we change the basis to e = h(X)ey for any h(X) € F,((X))*, we
have p(h(X)e) = h(XP)p(e) = (R(XP)/M(X) - X" f(X))(h(X)e). After
choosing h(X) = X /7] [1;Zo f'(X?") (which is convergent in F,((X)), since
1/(0) = 1), we have that p(e) = Ao X™e, where 0 < m < p and p|n — m.

Let v(e) = g(X)e = poX'¢'(X)e with po € Fj, | € Z and
¢(X) € 1+ XF,[[X]]. Then we have ¢(y(e)) = 7v(¢(e)), where on the
left hand side we have:

p(v(e)) = (1o X'g' (X)e) = Aop X9 (X7)X™e.
On the right hand side
Y(p(e)) = (Ao X™e) = Aopio((1 + X)X(V) —1)"X'g'(X)e.
Thus we have XPHmg/(XP) = ((1 4+ X)X — 1)™X!¢/(X), comparing the
degrees and the leading coefficients gives [ = m =0, ¢/(X) = 1 and we have

the proposition. O

Recall the following definitions of Colmez (cf [5]): For a (¢, T')-module D
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e we define D" = N,ene™(D) < D,
e D < D to be the smallest y-invariant lattice and

e D# < D to be the biggest v-invariant lattice on which 1 acts surjec-
tively.

Corollary 4.5.2 If D s one dimensional with a basis e as above, we have

D" =TF,e, D* = k[[X]]e and D* = X 1k[[X]]e.

Proof The first two statements are clear, the last comes from the facts that
W(Xte) = (P (0 + X)p(X~le)) = X le and that
P(X™e) € X™HE[[X]]e if m < —1. O

Remark For any A, 1o € IF; there exists a one dimensional (o, I')-module,
such that the matrix of ¢ (respectively ) is Ag (respectively po). It is easy
to see that in this case the action of ¢ is étale and the action of v extends
continuously to I'.

Altogether there are (p—1)? one dimensional (¢, T')-modules over F,((X)).

Now let Dy and D, be one dimensional (¢, I')-modules over F,((X)). We
determine the extensions of Dy by D;. By the previous proposition we might
choose a basis {e/} in D; such that ¢(e}) = e and y(e) = p;e; for i = 1,2
and \;, pu; € F7.

Proposition 4.5.3

o If D is an extension of Do by Dy, then in an appropriate basis
{e1,ea} C D we have p(er) = Mey, plea) = f(X)er + )\262,
v(er) = wer, y(e2) = g(X)er + poer, with f(X) = >, ;X" and
g(X) € F,((X)), such that a; = 0 if a) ¢ > 0 or b) i < 0 and pli,
and

pa f (14 X)X — 1) = pa f(X) = Mg(XP) = Aag(X).
If A\ # Xy we can also have ap = 0.

o Let f(X),g(X) € F,((X)) as above. Then there exists a 2 dimensional
(p,T)-module D, for which the above statements hold. If
['(X) # af(X) for any a € Fy and ¢g'(X) are as above with a (¢,T)-
module D', then D % D'.
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Proof

e We may choose a basis {ej, e2} in D such that e; is the image of ¢} and
ey is a preimage of €),. Then there exist f(X),g(X) € F,((X)) such
that ¢(e2) = f(X)er + Aaea and y(ez) = g(X)er + pzea.

We have ¢(7y(e2)) = ¢(g(X)e1+pzez) = (Ag(XP)+pa f(X))e1+Aapizes

and y(p(e2)) = Y(f(X)er+Aaez) = (ua f((14+ X)X —1)+ Aog(x))er +
/\2,&2627 thus

i f((14 X)X — 1) — pa f(X) = Aig(XP) — Aag(X).

Now we look at the basis {e1,es + h(X)e;} for h(X) € F,((X))*. We
have p(ex +h(X)er) = (f(X) +AA(XP) = Ash(X))er + Aa(e2+h(X)er)
and y(ey + h(X)er) = (9(X) + ph((1 + X)) — 1) — poh(X))er +
pa(es + h(X)eq).

Let i9 = pjo < O minimal such that o;, # 0. Then setting
h(X) = =\ 'a;, X% and e; = ey + h(X)e; we can change )\;, = 0.
Thus we may assume, that a,;, = 0 for jo < 0.

If \; # A, then change es to es — ap(A; — A2) 7L, then \g = 0. For i >0
we can set a; = 0 inductively.

e It is clear, that the action of ¢ is étale. (the matrix of ¢ is upper
triangular)

We need that the action of v extends continuously to I'. We claim that

it is always true if v has matrix ( %1 gfjﬂ ) Let k, € N such that
2

vFn converges in I'. It suffices to verify, that for all j € Z there exists

N (5) such that for n,m > N(j) in v**(es) — v*(e3) the coefficient of

X7 for j/ < jis 0. We have

(Zuiu’%“ (14 X0 1)>61+u'§62,

Let d = deg(g) and | = max{j — d,j + 1}. The convergence of v*
vields that there exists N'(j) such that for all n,m > N’(j) we have
(p — Dp'lkn — kp. If n,m > N'(j) then for any i € N we have
"~ —M’S’" "and
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Suppose that k, > k,. Then for ¢ = (p — 1)p’ and for some
h(X), ' (X) € F,[[X]] we have
— 7t (eg) =

kn—km—1
( Z gk g (14 X)X — 1) 4 XTh(X

K — ki
< (Z;ﬂlﬂ’gn“ (14 X)XO" — 1 + X0(X )
_X]h,<X61,

since pq|k, — k. Thus N(j) = N'(j) is a convenient choice.

To see that for different choices of f(X) we get different modules let
{d1,ds} be an other basis in D, such that the matrix of ¢ (and =) is
upper triangular. We will show, that then d; = ae; with « € F}, unless
f(X) =0, which is sufficient for the proposition.

Let dy = a(X)ey +b(X)ea. My = p(dy) = (Ma(XP) + f(X)b(XP))es +
Aob(XP)eq, thus we have A\b(XP) = Ab(X), meaning either A = Ay and
b(X) = p € Fyorb(X)=p5=0. We also have \a(X?) + f(X)B =
Aa(X). Then by the properties of f(X) we have that the coefficients
of X% in a(X) with ¢ > 0 is 0, and deg(a) = 0, because otherwise the
coefficient of X?9%¢(®) is nonzero on the left hand side and 0 on the
right. Thus a(X) = a and f(X) = ¢ with a,d € F,. If Ay # Ao, then
f(X) = 0 (see the last statement in the first part of the proposition).
If Ay = Ao, then \ja + 08 = Ma(XP) + f(X)B = Aa(X) = A\, thus
either 0 = f(X) =0 or § =0 hence d = «e;.

O

Corollary 4.5.4 If A\ # )y, then there exists a nontrivial extension of Do
by Dl-

Proof Let (1+ X)X —1 = X(p+ Xh(X)), and n W1th 1 —p<n<0such
that pp" = pe.  We can choose f(X) = EZ — ;X" such that

pr f((14+ X)X —1) — pua f(X) € F,[[X]], because for i > n we have pu,p° # pa,
and we can choose the a;-s inductively in increasing order. Thus there exists
g(X) such that the condition for f(X) and g(X) is satisfied. O
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Remark By the modulo p Langlands-correspondence for GL2(Q,) these
2-dimensional (¢, I")-modules (which are the extension of two 1-dimensional
ones) correspond to extension of principal series representations of GL2(Q),).

Let 7 = Ind%(x1 ® x2) and «’ = Ind%(x} ® x4) (with Xio Xj 0 Qp — Ty
characters) be principal series of GL2(Q,). By [6], Proposition 4.3.15. there
exists nontrivial extension of 7’ by 7 if and only if either y; = x| and
Xb = X2, 0 X1 = X5X ! and x2 = x| X (where Y is the modulo p reduction of
the cyclotomic character).

The (¢,I')-module D(w) attached to 7 is not Dy or Dy. D, contains
information only of y;. However from D we can recover m and 7’ (and the
other way around): Xi|i1pz, = Xjl11pz, = 1 we have x}(p) = A1, X1 (7) = 1,
x1(p) = A2 and xi1(y) = po (cf. the part before Théroréme 0.9 in [4]). If
X1 # X1, then x2 = x|\ and x5 = x1X.-

Proposition 4.5.5 Let D be as in the previous proposition. Then

2, if f(X) e, CF,((X)),
1, otherwise.

s -

Proof We have
¢"(a(X)er +b(X)ez) =

n—1
(M) + AN e+ A e
=0

If d = ay(X)ey + bo(X)es € D™, and pr : D — Dy, then
pr(d) € Dy = Fpel, hence if d = ¢"(a(X)e; + b(X)ez) € D™, then
b(X)=p€eF,

In f the coefficients of X7/ with j < 0 are 0, hence in the above sum
the coefficient of X7 d6() is not 0. Thus if d € ¢*(D), then either
deg(ag) < p"tdeg(f) or deg(ap) > 0. Hence if d € D", we have
deg(ap) =0, and a(X) = a € F),.

If deg(f) < 0, then we must have g = 0. O

Proposition 4.5.6 Let D be as in Lemma 4.5.3 such that —p < deg(f) < 0.
Then Df = X~ 'F,[[X]]e1 + F,[[X]]ez.

Proof Let A = X 'F,[[X]]e1 +F,[[X]]e2. It is a k((X))-generating submod-
ule, we show that it is y-invariant as well. Let d € A. We can write it in
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the form d = 3770 (1 + X)ip(ai(X)e, + Bi(X)es), and a simple computa-
tion shows that aZ(X) € X'F,[[X]] and 3;(X) € F,[[X]] for all i. Then
Y(d) = ap(X)er + Bo(X)ey € A. Thus DF C A.

F,[[X]le; C DF because if D’ — D is injective, then so is D" — D"
(cf [5] Prop. I1.5.17(i7).), and F,((X))e1 — D as a (p,I')-module, with
DHE,((X))er) = B, [[X]Jex.

We also have that if D — D’ is surjective, then so is D% — D" (cf [5]
Prop. 11.5.17(4ii).), thus we have an element in the form d = AX ~e; + Agey
in D® with some \ € F,, because F,[[X]]e; < D". Then we have

4= plex) + X = F(X))er = plen) + 321+ XYl X)er)
with o;(X) € X7'F,[[X]]. We have a;(X) € F,[[X]] for i < p+ deg(f).
If AX7! # f(X), then we also have ideq(s ( ) ¢ F,[[X]], thus

Y((1+ X)~PHdeeld) = ), gog( )€1, meaning A C D
If AX"! = f(X), then ¢(d) = e; € D* and also \7}(d — \yeq) =
X~te; € D% and we again have A C D", O

Corollary 4.5.7 If D is as above, then the action Fp defined in the previous
section has a nontrivial kernel for any A O D",

Proof Recall that Fp:d+ XA =37 (1 + X)'d) + XA.

Let d = X™e; € AN Dy such that m = min{m|m € Z, X™e; € A}. By
the Proposition 4.5.6 we have m < —1. Then d + XA ¢ XA, hence it is
enough to prove that (37" (1 + X)id) € X" H'F,[[X]]e; € XA.

If m < —1, then it is clear, because then A N Dy 2 Dfé, hence 1 is
not surjective on it, meanlng P(d') € X™HF,[[X]]e; for any d' € AN Dy,
especially for d' = Z S(1+ X)id.

If m = —1, then

(0 (i(l + X)’%el) =9 (i(l + XY (iu + XY (%)) el> —

=0

~y (i(l + 2% (%) ) =M1+ (= 1)1+ X)) s =

1,7=0
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