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1 Introduction

Groups and smooth manifolds are fundamental objects in mathematics. Both are well
studied and have highly developed theories. The case in which a smooth manifold also
has an appropriately compatible group structure is especially distinguished. These
spaces are called Lie groups. They arise in many areas of mathematics and physics,
and have many applications. The algebra, geometry and their synthesis contribute to
the richness of the theory.

This thesis is about a special class of quotients of Lie groups known as spherical
spaces. They are worth studying both as generalizations of symmetric spaces and
in their own right because of their special representation-theoretic properties. The
spherical space X = SU(p + q)/SU(p) × SU(q) for p > q ≥ 1 will be the examined
from several perspectives. To whet the appetite of the reader, we present the following
facts about X:

1. In the case q = 1, X = SU(p+1)/SU(p) ∼= S2p+1, the 2p+1-dimensional sphere,

2. X is a principal S1 bundle over the Grassmannian, Gp+q(q) = SU(p+q)/S(U(p)×
U(q)),

3. X is a spherical space which is not a symmetric space when q > 1.

These properties are related. Consider the homogeneous fiber bundle S1 → X →
Grp+q(q) and set q = 1. We obtain the bundle S1 → S2p+1 → CP p. This is the famous
complex Hopf fibration [Hu]. The third fact suggests that X is a good candidate to
help us understand the difference between symmetric spaces and spherical spaces while
the second hints that we should compare X directly with a famous symmetric space,
the Grassmannian.

As seen above, X is involved in the generalization of several important mathemat-
ical concepts. On the other hand, it is not such a vast generalization that intuition
and techniques coming from the original concepts become useless. In fact, the rela-
tionship X has with the Grassmannian will be helpful in computing the curvature and
topological invariants of X.

We are also interested in Lie algebraic calculations related to X, in the context
of generalizing the simpler case of symmetric spaces. These calculations come up in
the study of geometric quantization. The process of geometric quantization associates
to a physical classical system a set of quantum states. Mathematically, a Hilbert
space encoding the quantum states is associated to a Riemannian manifold’s cotangent
bundle (which carries a symplectic structure) encoding the classical system. In this
complicated process one must make choices and there is not a canonical Hilbert space.
Instead we obtain a family of Hilbert spaces associated to M parametrized by the set
of choices. For a given Riemannian manifold M , it is a topic of current research to
study the corresponding family of Hilbert spaces, see for example the paper of Lempert
and Szőke [LSz10]. For example we would like to know when the Hilbert spaces in
the family associated to M are canonically isomorphic. In the case where M is a
compact symmetric space terms from the Lie algebra are used in calculations to check
if this property holds. Even if the Hilbert spaces are not isomorphic, the Lie algebra
calculations help us understand how far the space is from this situation. When we
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generalize to spherical spaces, additional Lie algebra calculations must be made, as
the Lie algebras arising in this situation do not have all of the nice relations as the
ones in the symmetric case.

The goal of the thesis is to introduce spherical spaces and to obtain information
about the space X. In the second section, background information about Lie groups,
homogeneous spaces, and symmetric spaces will be given. In the third section spherical
spaces will be defined and the classification of spherical spaces arising as quotients of
compact simple Lie groups by Krämer will be sketched by showing that X is spherical.
In the fourth section Lie algebra calculations relating to X will be motivated and
carried out. In the fifth section some topological invariants of X will be calculated.
The thesis ends with a conclusion and an appendix surveying the literature on spherical
spaces in various areas of mathematics.

2 Background

This section collects various facts and theorems about Lie groups and related
spaces. The theme throughout is the interplay between the algebraic and geometric
aspects of the theory. We introduce homogeneous spaces as interesting quotients of
Lie groups with special properties. We then present symmetric spaces, first describing
their origins in Riemannian geometry, and then discussing their characterization as
quotients of Lie groups following Cartan. Examples, especially the ones relevant to the
subsequent sections, are emphasized. The main reference is [He2]. For an introduction
to Lie groups see [St]. For more about Riemannian geometry, see [dC].

Definition 2.1. A Lie group is a set G with both smooth manifold and group struc-
tures, where group multiplication and inversion are smooth maps.

Example 2.2. The real line is a Lie group with addition as the operation. We denote
it by R+.

Example 2.3. The unit circle in the complex plane is a one dimensional smooth
manifold. The elements of the circle form a group under multiplication. We can
identify elements of this Lie group with the set of 1 × 1 unitary matrices, which we
call U(1).

Example 2.4. The group of n by n unitary matrices is a Lie group, denoted U(n).
Its intersection with SLn(C), the group of invertible n by n matrices with determinant
1, is also a Lie group called the special unitary group or SU(n) for short.

First we will demonstrate that it is worthwhile to restrict our attention to the Lie
groups that are either connected or finite. We will not consider finite Lie groups in
this thesis, as every finite group is a zero dimensional Lie group, and the theory of
finite groups is complicated enough.

Theorem 2.5. Let G be a Lie group. Denote by Go the identity component of G,
that is the connected component of G containing the group’s identity element. Then
Go is a Lie group and a normal subgroup of G. The quotient G/Go is discrete.
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Proof. First we show that Go is a subgroup of G. We know that the identity is its
own inverse. Since the continuous image of a connected set is connected, we see that
Go is closed under taking inverses. Let e be the identity element of G. Similarly,
e ∗ e = e shows that Go is closed under group multiplication. So Go ≤ G. To check
that Go is normal in G we must show that ghg−1 ∈ Go for any h ∈ Go and g ∈ G.
Conjugation by g is a continuous map so it will send Go to a connected component.
Since conjugation maps e to e, this componenet is Go. So Go / G.

Moreover, it follows from the theory of covering spaces that much of the study of
connected Lie groups can be carried out entirely in the realm of simply connected Lie
groups by way of the universal cover and lifting.

Now we introduce the concept of the Lie algebra associated to a Lie group. The
idea is to study a locally defined ’linearized’ object, the Lie algebra, and to obtain
as much data as possible about the global object, the Lie group. One interpretation
of the Lie algebra g associated to a Lie group G is as the tangent space of G at the
identity element e. The Lie algebra contains a great deal of information about the
Lie group. For example, if G and H are connected Lie groups, then any Lie group
morphism from G to H is uniquely determined by the induced linear map on the Lie
algebras. We now give the algebraic definition of an abstract Lie algebra.

Definition 2.6. A Lie algebra is a vector space g over a field F (though in this thesis
we only examine Lie algebras over C) with a bilinear map

[., .] : g× g→ g

called the Lie bracket which is bilinear,

[ax+ by, z] = a[x, z] + b[y, z], [z, ax+ by] = a[z, x] + b[z, y]

for scalars a and b from the field and x, y, and z from g;
alternating,

[x, x] = 0

for all x in g;
and satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z in g.

Example 2.7. The Lie algebra associated to SU(n) is the space of n × n traceless
skew-hermitian complex matrices, denoted su(n). These are the matrices equal to the
negative of their conjugate transpose and with 0 trace.

For a matrix Lie group G, the exponential map exp(A) = 1 + A +
A2

2!
+ . . . maps

elements of g to G. An appropriate generalization maps the Lie algebra of a general
Lie group to the Lie group. It is a diffeomorphism from a neighborhood of 0 in the
vector space g and a neighborhood of the identity in G. We cannot resist quoting
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Chevalley, who so succinctly explains why it is worthwhile to view elements of G as
exponentials of elements of g:

“The property of a matrix being orthogonal or unitary is defined by a system
of nonlinear relationships between its coefficients; the exponential mapping gives a
parametric representation of the set of unitary (or orthogonal) matrices by matrices
whose coefficients satisfy linear relations.”[St]

The spaces we will be studying arise as quotients of Lie groups. First the notion of
a Lie subgroup must be made clear. H is a Lie subgroup of G if it is both a subgroup
and an imbedded submanifold. Some care must be taken as the quotients of groups
and the quotients of topological spaces can be complicated individually. It is true
that Lie subgroups are always closed and that the quotient of a Lie group G by a Lie
subgroup H has the structure of a smooth manifold. In addition, when H is normal,
the quotient is again a Lie group. Considering Lie algebras, we note that the Lie
algebra of a Lie subgroup is a subalgebra of the Lie algebra of the original Lie group.
We summarize some of these and other results below.

Theorem 2.8. Let G be a Lie group.

1. Let H be a Lie subgroup of G. Then H is closed in G.

2. Any closed subgroup of a Lie group is a Lie subgroup.

3. If G is connected and U is a neighborhood of e, then U generates G.

4. If G has dimension n and H ⊂ G is a Lie subgroup of dimension K then the
space of cosets G/H is a manifold of dimension n − k and the canonical map
G→ G/H is a fiber bundle with fiber H.

Again we digress for a moment to talk about the importance of Lie algebras. At
first glance it is not clear how well Lie algebras help us distinguish Lie groups. In the
search for simple Lie groups, one naturally encounters simple Lie algebras. In fact,
simple Lie algebras are easier to find than the simple Lie groups. It seems like a good
idea to start then with a simple Lie algebra and to see if we can find a simple Lie
group. Unfortunately the Lie algebra g cannot see the finite subgroups of G because
they have 0-dimensional tangent spaces: they are invisible. It turns out that g can
see all normal subgroups of G except for those in the center of G. The centers are
relatively easy to calculate, and so this problem is not as bad as it first appears, and
again we see evidence for the great utility of the Lie algebra.

Now that we have defined Lie subgroups, we can discuss one of the primary sources
of examples in practice. One of the most fruitful ideas in group theory is the idea of
an action. We now define the analogue for Lie groups, and suggest how to obtain
subgroups and quotient spaces from an action.

Definition 2.9. Let G be a Lie group and M a manifold. Denote by Diff(M) the group
of diffeomorphisms of M . G acts on M if we assign to each g in G a diffeomorphism
ρ(g) in Diff(M) satisfying ρ(e) = 1, ρ(g1g2) = ρ(g1)ρ(g2), and the additional condition
that the map
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G×M →M (g,m) 7→ ρ(g)(m)

is smooth.

Example 2.10. The group SU(n) acts on the sphere S2n−1 ⊂ Cn. The action is tran-
sitive. To see this, it is enough to show that SU(n) maps the vector e1 = (1, 0, . . . , 0)
to any other vector of length one in Cn. Given x ∈ S2n−1, there is a g ∈ SU(n) with
ge1 = x, which we now construct. Begin with a matrix with x as its leftmost column.
Find additional vectors to form a basis for Cn with x. Then apply the Gram-Schmidt
process to find an orthonormal basis x, v2, v3, ..vn for Cn. In the unitary group we
require g∗g = I, which means that the columns of g form an orthonormal basis. So
the matrix g consisting of the column vectors x, v2, v3, ..vn maps e1 to x. To insure
that g has determinant 1, replace vn by (detg)−1vn. This preserves orthonormality and
insures that g is in SU(n).

As in the case with finite groups we can define the notion of an orbit. This will
lead us to the definition of a homogeneous space. These are quotients of Lie groups
coming from group actions.

Definition 2.11. Let G be a Lie group and M a manifold. Let G act on M . The
orbit of a point m ∈M is defined to be the set Om = Gm = {gm|g ∈ G}.

Definition 2.12. Fix a point m ∈ M . Define the set of group elements which fix m,
denoted IG(m) = {g ∈ G|gm = m}, as the isotropy subgroup of m.

The inclusion of the word subgroup suggests the following lemma:

Lemma 2.13. Let H = IG(m). Then H is a Lie subgroup in G. Furthermore, the
map g 7→ gm is an injective immersion G/H ↪→ M . The image is precisely the orbit
Om.

A corollary of the lemma is that if the orbit Om is closed, then the map in the
lemma is a diffeomorphism G/H ∼= Om. The case where there is only a single orbit in
a group action is especially interesting. We call such an action transitive.

Definition 2.14. A homogeneous space is a manifold with a transitive action of G.

Applying the corollary, homogeneous spaces are diffeomorphic to coset spaces G/H.
In this way, they are also fiber bundles.

Example 2.15. The action of SU(n) on the sphere S2n+1 is transitive, as seen in
the previous example. The isotropy group of the last basis vector en = (0, . . . , 0, 1) is{[

A 0
0 1

]
: A ∈ SU(n− 1)

}
. The isotropy group is isomorphic to SU(n− 1). So by

the results above, SU(n)/SU(n− 1) ∼= S2n−1.

The next step is to define symmetric spaces. Symmetric spaces have their origins
in Riemannian geometry. A Riemannian locally symmetric space is a Riemannian
manifold for which the curvature tensor is invariant under all parallel translations.
E. Cartan set out to classify such spaces and suceeded in 1926. He carried out the
classification in two different ways. One of them involves reducing the problem to the
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classification of simple Lie algebras over R. The first step of Cartan’s program was to
express the problem in terms of Lie groups. The idea is the following: the invariance
of the curvature tensor under parallel translations is equivalent to geodesic symmetry
with respect to each point being a local isometry. A Riemannian globally symmetric
space is a space for which the geodesic symmetry extends to a global isometry. We
refer to these spaces as Riemannian symmetric spaces. Riemannian symmetric spaces
have a transitive group of isometries. Invoking the theory of homogeneous spaces
outlined above, Riemannian symmetric spaces are precisely coset spaces G/H where
G is a connected Lie group, and H is the fixed point set of an involutive automorphism
of G.

Before giving a precise definition and examples, let us take a moment to motivate
the study of symmetric spaces. In some sense the notion of curvature of a Riemannian
manifold is a measure of its complexity. By this measure, spaces of constant curvature
are the least complicated. Considering simply connected ones there are only three
examples: Euclidean spaces, spheres and hyperbolic spaces. One way to relax the
condition of constant curvature is to instead assume that the covariant derivative of the
curvature is 0. There are many more examples and these are precisely the symmetric
spaces. As mentioned above they have many different interpretations, including one in
terms of Lie groups. This interpretation is especially fruitful for computations. They
are classified into a list that is long enough to contain many interesting examples, but
short enough not to be overwhelming.

Definition 2.16. Let M be a Riemannian manifold. Let G be the group of isometries
of M . M is a symmetric space if for any m ∈ M there is gx ∈ G such that gxx = x
and dgx = −I.

We can immediately note several consequences from the definition. For one, M is
homogeneous. To see this note that any two points a and b can be connected by a
geodesic. The isometry gm associated to the midpoint m of the geodesic connecting
a and b maps a to b. Hence G acts transitively. In the other direction, we have that
if M is a homogeneous space, it is a symmetric space if and only if there is a point x
and an isometry gx satisfying the conditions above. Finally we note that the isotropy
subgroups of G are compact. Here are some examples:

1. The Euclidean space Rn is a symmetric space. The isometry associated to each
point x is gx(x+ v) = x− v.

2. The sphere Sn is a symmetric space with the isometry associated to a point x
reflection at the line Rx. Specifically, gx(y) = −y + 2 〈y, x〉x.

3. Define Grk(n) as the set of all k-dimensional linear subspaces of Cn. This space
is called the Grassmannian. The group SU(n) acts transitively on it, with the
isotropy of Ck equal to S(U(k)× U(n− k)). The subgroup S(U(k)× U(n− k))
denotes block n×n matrices with k×k unitary matrices in the top left position,
(n− k)× (n− k) unitary matrices in bottom right, zeros elsewhere and the final
condition that the determinant of the entire matrix is one. The symmetry gx
at the point x on the Grassmannian is the reflection fixing x. It is the linear
transformation with eigenvalue 1 on x and -1 elsewhere. In the case when k = 1,
we obtain complex projective space.
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4. Any compact Lie group is a symmetric space.

Cartan classified symmetric spaces in two different ways [Ca1][Ca2]. His first
method was by studying groups arising from differential-geometric properties of the
symmetric spaces called holonomy groups. The second method was to characterize
symmetric groups as the quotients of Lie groups and to study their Lie algebras. We
now introduce the Lie-theoretic definition of symmetric spaces, and show that it is
equivalent to the Riemannian-geometric definition.

Theorem 2.17. Let G be a connected Lie group with automorphism of order 2,
σ : G → G and a left invariant metric which is also right invariant in the closed
subgroup

K =Fix(σ) = {g ∈ G|σg = g}.

Then any closed subgroup H satisfying

Ko ⊂ H ⊂ K

defines a symmetric space G/H = S. Every symmetric space is of this form.

Proof. We begin by showing the last statement, namely that any symmetric space
arises in this way. Let S be a symmetric space. From our first definition, we know
that symmetric spaces are homogeneous spaces with a symmetry at each point. We
know that the group of isometries of S, call it G′, acts transitively and contains a
geodesic symmetry at some point p ∈ S, which we call gp. Conjugation by this
symmetry defines an automorphism σ of G′,

σ(g) = gpgg
−1
p = gpggp.

Now observe that g2p is the identity element of G′ since it is an isometry with the same
value and derivative at p as the identity element. So σ defines an involution. We
can pass to the identity component of G′ which we will refer to as G, and since the
identity component is preserved by any automorphism, σ is also an involution on G.
We proceed by relating gp to the isotropy group at p. Specifically, gp acts as −I on the
tangent space of S at p, which we denote TpS. Therefore it commutes with the action
of the isotropy group at p, which we call H. Hence H is contained in the fixed point
set of σ in G. Conversely, if g is in the fixed point set of σ, it commutes with gp. So it
leaves the subset of elements of S fixed by gp invariant. However, p is isolated from the
other fixed points of σ in S as no nonzero vectors in TpS are fixed by the dxp, as they
are mapped to their negative. So g fixes p exactly when g can be connected to the
identity of the fixed point set of σ. In other words, if g is in the identity component
of elements fixed by σ. We have obtained the containments

Fix(σ)o ⊂ H ⊂Fix(σ).

Now we must find some left invariant metric on G which is also right invariant on
the fixed point set of σ. Begin by noting that the map

π : G→ S g 7→ gp
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is a submersion with fibers π−1(gp) = {gh;h ∈ H} = gH. Therefore S is diffeomorphic
to G/H, the coset space. Taking the derivative of π at e, we obtain a map of the
Lie algebra g of G to the tangent space of S at p. By the diffeomorphism above,
dπeAd(h)X = ad(h)dπeX for any h ∈ H and vector field X in the g, where Ad
denotes the adjoint representation and ad its derivative. Hence taking the derivative
of π at e is an H-equivariant linear map which is onto. The kernel is precisely the
tangent space at the identity of H, which we denote by h. h is precisely the eigenspace
corresponding to the +1 eigenvalue of dσ. The complement is the -1 eigenspace, which
we will call p. The isomorphism dπ|p : p→ TpS allows us to transfer the inner product
on the tangent space of S at p to p. We can extend it to all of g by taking an Ad(H)-
invariant metric on h and setting h orthogonal to p. The metric is left invariant on G,
right invariant with respect to H and so we are done.

Now we assume that we have G, H and σ as in the first part of the theorem
and show that we have a symmetric space. First we note that the quotient G/H is
homogeneous as the metric on G induces a metric on the coset space S = G/H. To
show it is a symmetric space in the sense of our original definition, we find some gp
satisfying the symmetric space conditions at p = eH ∈ S. Because H ⊂ Fix(σ), we
know that H is invariant under σ and so the map σ : G→ G induces a diffeomorphism
σ̂ : G/K → G/K. As in the proof of the converse, we obtain a decomposition of the
Lie algebra g of G in k+ p as the +1/-1 eigenspaces of the derivative of σ. As a result,
we have σ̂(p) = p and dσ̂ = −I because of the following:

Tp(G/H) = g/h = {X + h|X ∈ g} = {X + h|X ∈ p}, and

dgp(X + h) = dσ(X) + h = −X + h for all X ∈ p.

Finally we must show that gp is actually an isometry. In this context we need to show
that dgg′p : Tg′HS → Tσ(g′H)S preserves the inner product for g′ ∈ G. In the case when
g′ = e, this is clear as the derivative of gp is −I. We extend this to arbitrary g′ by the
following observations:

gx(g
′g′′H) = σg′σg′′H = σg′gp(g

′′H).

Hence

gx ◦ Lg′ = Lσg′ ◦ gx, for any g′ ∈ G,

where Lg′(g
′′H) = g′g′′H. Take the derivative at p = eH of this equality and obtain

dgg′p ◦ (dLg′)p = (dLσg′)p ◦ dgx.

Since all of the maps are bijective, and the latter three preserve inner products, so
must the first. Hence gx is an isometry and the quotient S = G/H is a symmetric
space in the sense of our first definition.

The Lie algebras one encounters when dealing with symmetric spaces are very
important. Cartan’s aforementioned classification using our new interpretation of
symmetric spaces reduces the problem of classifying symmetric spaces to that of clas-
sifying simple real Lie algebras. Cartan had already solved that problem in 1914. The
classification is carried out in [He2] and is beyond the scope of this thesis. One fact
about Lie algebras which is used in the classification will be of great use to us in the
next chapters.
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Definition 2.18. Let σ be an involution on a Lie algebra g. The Cartan decomposition
of g is the splitting of g into two eigenspaces corresponding to the eigenvalues ±1:
g = k + p. The Cartan decomposition has the following three properties:

[k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k.

Additionally, given a Lie algebra decomposition with these properties, one can recover
an involution on the Lie algebra with eigenvalues ±1 on the components.

We have already used this idea in the proof of the theorem relating our two defi-
nitions of symmetric spaces. Indeed, from the definition of symmetric space involving
an involution, we see that if S = G/K is a symmetric space, then the Lie algebra
of G, g, decomposes as the sum of k + p. This is a Cartan decomposition and the
bracket relations hold. The first is automatic for homogeneous spaces. The second
condition is the distinguishing feature of reductive homogeneous spaces, of which sym-
metric spaces are just one class of examples. The final condition, that p brackets into
k is a key feature of symmetric spaces. Finally, we note that the fact that we can
recover an involutive automorphism from a Cartan decomposition is a small taste of
the classification program of Cartan.

One further consequence of the properties of the Cartan decomposition for symmet-
ric spaces is the simplification of the formula for the curvature tensor usually defined
in the case of homogeneous spaces. Here we will restrict ourselves to the compact case,
but similar, though more complicated formulae exist for the general case. Besse’s [Bes]
text contains this material, while [Ber] has some examples.

Definition 2.19. Let G be a compact connected Lie group. Let G/K be a homoge-
neous space. Consider the Cartan decomposition of g into k+ p. Then for X and Y in

p, the sectional curvature K(X, Y ) is equal to
1

4
‖[X, Y ]k‖2 + ‖[X, Y ]p‖2. Here [X, Y ]

refers to the Lie algebra bracket.

Since we are taking elements of p, we know, from the bracket relations, that in
the symmetric case the formula simplifies. Since p brackets entirely into k, the second
term vanishes.

In the next section we will study a generalization of symmetric spaces called spher-
ical spaces. At first glance the connection will not be apparent, as the spaces will
be defined in the language of representation theory. One of our first tasks will be to
show that symmetric spaces are contained in this class. We summarize the hierarchy
of spaces from the thesis here:

Symmetric Spaces ⊂ Spherical Spaces ⊂ Homogeneous Spaces ⊂
⊂ Riemannian Manifolds

All of the containments are proper. We are interested in the left-most on. Namely,
we will look for examples which are spherical, yet not symmetric, and then analyze
them.
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3 Spherical Groups

In this section we introduce spherical groups. We first note where they come from
and why they are worth studying. We mentioned some examples and then proceed to
describe the process by which Krämer [Kr79] classified those arising as subgroups of
compact simple Lie groups, with the details of a specific example worked out.

Let G be a compact Lie group and H ⊂ G be a closed subgroup. A finite di-
mensional complex unitary representation is a homomorphism ρ : G → Un(C). We
will focus entirely on finite dimensional representions so from here on, all represen-
tations are finite dimensional. Finite dimensional unitary representations of compact
Lie groups are special because of the following properties:

• They are completely reducible, and so they are the sum of irreducible represen-
tations.

• Every finite dimensional representation of G is equivalent to a unitary one.

The first connection we make between representation theory and the material from
the previous chapter is that representations can be viewed as group actions in the
following sense. Let x ∈ Cn. Then for g ∈ G, the image under a unitary representation
ρ : G → Un(C) of g is a unitary matrix which acts on n in the natural way. With
this point of view, we can import one of the useful ideas from the last chapter, namely
isotropy subgroups.

Definition 3.1. Let x ∈ Cn. The Isotropy subgroup of G, denoted Gx, is the set of
g ∈ G such that for a given representation ρ, ρ(g)(x) = x.

In [Kr76], Krämer poses the question, that given a subgroup H of G, is there an
irreducible representation ρ : G → Un(C) such that ρ(H) is an isotropy subgroup of
the operation of ρ(G) on Cn? Krämer notes that for H maximal, and for G connected
and H finite the answer is yes. He then proves that for simple G and any H, the answer
is yes ”modulo connectedness”. More precisely, when G is connected and simple, and
H is a closed connected subgroup, then there exist complex irreducible representations
ρ : G→ Un(C) with isotropy group K such that Ko, the identity component of K, is
H.

In the course of proving this result, Krämer notes a remarkable property of closed
subgroups of connected compact Lie groups. Given a closed subgroup H ⊂ G, either

• For any irreducible unitary representation ρ of G, the fixed point set of H under
ρ is at most one dimensional, or

• For any natural number N , there exists an irreducible unitary representation ρ
of G such that the dimension of the fixed point set of H under ρ is greater than
N .

In other words, closed subgroups of G have either very small fixed point sets under
any representation of G, or they have arbitrarily large ones. Krämer calls those sub-
groups H with the former property spherical, and the pair (G,H) with H spherical in
G a spherical pair. The quotient space G/H is called a spherical space. The name is
inspired by the groups O(n) ⊂ O(n+ 1) with O(n+ 1)/O(n) ∼= Sn.
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In [Kr79], Krämer suggests three reasons for studying these spaces. First, in light
of the alternative and the importance of unitary representations, spherical subgroups
are very distinguished. Second, they help us understand the orbit structure of the
representations of G. Finally, they are a generalization of the well studied Riemannian
symmetric spaces, which afford us with many examples of spherical spaces. We are
also curious about examples which are not symmetric spaces, which provide intuition
about the difference between these classes of spaces.

• As noted above the sphere Sn is the quotient of O(n+ 1)/O(n) and so is, as one
might expect, a spherical space. It is also a symmetric space.

• The complex Grassmannian Gk(n) is the set of all k-dimensional linear subspaces
of Cn. This is also a symmetric space. The group SU(n) acts transitively on the
set, and the isotropy group of Ck ⊂ Cn is S(U(k)× U(n− k)).

• The group SU(p+ q) also contains the subgroup SU(p)× SU(q). If p 6= q, then
the quotient, which we denote by X, is spherical space, but it is not symmetric.

Let us digress into a brief discussion of the fact that symmetric spaces are spherical.
In his paper, Kr̈amer refers to Helgason’s text [He2] for the result. Helgason’s approach
to spherical spaces is analytic.

Definition 3.2. Let G be a compact connected Lie group and H a subgroup. The
set of complex-valued continuous functions on G which are constant on the double
conjugacy classes HgH for g ∈ G form a vector space, which we denote C†(G).

Using the theory of the Haar integral one can make C† into an algebra with con-
volution as the operation. It can be shown that H is spherical in G exactly when
this algebra is commutative. Helgason, in [He1], proceeds to show that any symmetric
space has this property. We will discuss this and other characterizations of spherical
spaces only in the appendix. For the rest of the main body of the thesis, we can stick
to the first definition.

Krämer’s paper [Kr79] classifies the spherical subgroups of compact connected
simple Lie groups. He uses the classification of compact simple Lie groups and two
technical lemmas to create a list of candidates, and then analyzes them case by case.
Here we recall the lemmas and show that X is a candidate, and then outline the proof
that it is indeed spherical (and not spherical in the case where p = q). The goal is to
give an idea of Kramer’s classification method.

Lemma 3.3. Let G be simple and H ⊂ G be a connected spherical subgroup. The
H-module Ad(G)|H is the direct sum of n real components. Then n ≤ 4 if G is a
classical group with the exception of SO(8), for which n is at most 5. In the case of
the exceptional groups, n is at most 3.

Lemma 3.4. Suppose G is semisimple and H ⊂ G is a connected subgroup. If H is
spherical in G, then

2 · dim H +Rank G ≥ dim G,
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where the rank of a Lie group is the dimension of its Cartan subgroup.

One can interpret this lemma as saying that H has to be a relatively large subgroup.
One can perhaps say that Krämer’s paper is showing by inspection that simple groups
G don’t have too many large subgroups. This should also provide some heuristic
evidence for why the classification of spherical spaces which are quotients of non-
simple G might be difficult, at least without different ideas.

First we show that X satisfies these two lemmas. Without loss of generality, let
p ≥ q. From the tables in [Kr75] we see that the module Ad(G)|H is the direct
summand of 3 real components. So X satisfies lemma 3.1.

We check lemma 3.2 with dim H = p2 − 1 + q2 − 1, Rank G = p + q − 1 and
dim G = (p+ q)2 − 1

2 · dim H +Rank G− dim G = 2 · (p2 + q2 − 2) + p+ q − 1− ((p+ q)2 − 1)

= p2 + q2 − 4 + p+ q − 2pq = (p+ q)(p− q)− 4 + p+ q ≥ 0

Krämer makes heavy use of several lemmas relating spherical spaces to specific
symmetric spaces. We begin with the definition of separability of subgroups of a
group, and then proceed with a lemma.

Definition 3.5. Let F and H be subgroups of a compact connected Lie group with
F ⊂ H 6= G. F and H are separable if there exists a simple G-module V with the
following property: there exist nontrivial fixed points of V under the action of H, and
nontrivial fixed points of V under F which are not fixed under H.

Lemma 3.6. Let G be a compact connected Lie group with F and H subgroups.
Furthermore, suppose that F ⊂ H and H is connected. Then the following are
equivalent.

1. F and H are separable.

2. The dimension of a principle orbit of the natural operation of H on G/H is
greater than the dimension of a principle orbit of the restriction of this operation
to F .

A further lemma allows the application of the previous lemma to our situation.

Lemma 3.7. Let G be a compact connected Lie group and let H ⊂ G be a Rie-
mannian symmetric pair. Denote by t the rank of G/H as a symmetric space. Then
the dimension of a principle orbit of the natural operation of H on G/H equal to
dim G/H − t.

One final lemma provides a criterion allowing us to use separability and symmetric
spaces to show that a subgroup of G is spherical if it is separable from a symmetric
subgroup of G.

Lemma 3.8. Let F,H,G be compact connected Lie groups with F ⊂ H ⊂ G and F
the semisimple part of H. Suppose H ⊂ G is spherical. Then F ⊂ G is spherical if
and only F and H are not separable in G.
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These lemmas are useful in our situation, and indeed in the situation of nearly
all of the other candidates, as our subgroup F = SU(p) × SU(q) is contained in
another subgroup of SU(p+q), namely H = S(U(p)×U(q)), and the quotient SU(p+
q)/S(U(p) × U(q)) is a symmetric space. By Lemma 3.5, it suffices to check that F
and H are separable.

Theorem 3.9. The space X = SU(p+ q)/SU(p)× SU(q), for p 6= q is spherical.

Proof. We denote SU(p+q) by G. First note that RankG/H = q and dimG/H = 2pq.
It follows from Lemma 3.4 that dim O(H) = 2pq−q, where O(H) denotes the principle
orbit of the natural operation of H on G/H.

To study the operation of F = SU(p) × SU(q) on the quotient G/F , we must
introduce a new concept.

Definition 3.10. The realification of a complex vector space of dimension n, Cn, is
the real vector space that is the same as Cn as a group, with multiplication by real
scalars defined as usual, but multiplication by complex scalars not defined.

Now consider the usual representation of SU(p) on Cp. For SU(q) we consider the
contragradient (or dual) of its usual representation on Cq. Now we can describe the
operation of F as the realification of the complex tensor product of the above two
representations.

Now denote by U(1)q the q-fold product of the group U(1) in the multiplicative
group (C∗)q. By S(U(1)q) we mean the subgroup of U(1)q in which the product of the
entries is 1. Specifically those elements t = (t1, t2, . . . , tq) ∈ U(1)q with

∏q
i=1 t1 = 1.

It is a fact from [HH] that the isotropy group of F is isomorphic to SU(p − q) ×
S(U(1)q). So the isotropy group of F has dimension (p− q)2 + (q − 2) for p > q and
dimension q − 1 when p = q. Hence the dimension of O(F ) is 2pq − q which is also
the dimension of O(H) for p > q. For the case p = q, dimO(F ) = 2pq − q − 1 = dim
O(H)− 1.

From here we apply the lemmas. By Lemmas 3.3 and 3.4, we see that the dimension
of the principle orbit of F relative to H determines separability, and hence if F is
spherical. In the case that p = q, we see that dimO(F ) is less than dimO(H). By
Lemma 3.3, F and H are separable, hence by Lemma 3.5 F is not a spherical subgroup.
In the case p 6= q, the principle orbits have the same dimension, hence, by Lemma 3.3,
F and H are separable and so, by Lemma 3.5, F is a spherical subgroup in G.

From now on, we will assume that p is greater than q. Most of the other spherical
subgroups of the compact simple Lie groups in Krämer’s paper are verified in a similar
way.

In [Ng], the spherical pairs in Krämer’s list are split into six families. The space
X is one of three S1-bundles over hermitian symmetric spaces. In the case of X, the
hermitian symmetric space is the complex Grassmannian. The other spherical pairs
are SU(n) ⊂ SO(2n) for n > 3 and odd, and D5 ⊂ E6 where D5 is Spin(10). As we
have seen from this section, X’s relationship to the Grassmannian helps us understand
it. In the following two sections we will continue the process. First we will carry out
some calculations in the decomposition of the Lie algebra corresponding to X. Later
we will relate the homotopy groups and cohomology groups of the Grassmannian to
those of X.
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4 Lie Algebra Calculations

In this section we continue our study of the spherical space X = SU(p+ q)/SU(p)×
SU(q). We are going to perform several calculations in the Lie algebra decomposition
of su(p + q) arising from this quotient. To fix the notation, the decomposition of
su(p+ q) corresponding to this quotient will be denoted (su(p)⊕ su(q))⊕m. We have
two distinct motivations. The first comes from the curvature formula for homogeneous
spaces defined in chapter 2. We recall the formula here:

Definition 4.1. Let G be a compact connected Lie group. Let G/K be a homogeneous
space. Consider the Cartan decomposition of g into k+ p. Then for X and Y in p, the

sectional curvature K(X, Y ) is equal to
1

4
‖[X, Y ]k‖2 + ‖[X, Y ]p‖2. Here [X, Y ] refers

to the Lie algebra bracket.

In chapter two we noticed that because of Cartan decomposition of symmetric
spaces, this formula simplifies, with the second term vanishing. For X, and indeed
all non-symmetric spherical spaces, this term does not vanish. For this reason we
would like to calculate [Y, Z]m, the commutator of two elements of m composed with
projection onto m. The hope is that the operator is not too complicated and that the
sectional curvature calculation can be carried out.

We are also interested in writing down the operator which arises when Y ∈ m
above is fixed. The motivation for this calculation is to facilitate functional calculus
in relation to the space X. By functional calculus we mean being able to apply
functions like the exponential function or trigonometric functions to elements of m.
If, for example, the operator winds up being diagonalizable, it is very simple to take
powers of it, as one might like to do when calculating a Taylor series expansion. This
sort of information is valuable in calculations arising in the theory of Hilbert families
mentioned in the introduction of the paper. Specifically, the recent paper of Szőke and
Lempert [LSz10] comes to several conclusions about the Hilbert families associated to
symmetric spaces by analogous calculations. In this section we will calculate these two
operators.

We have seen that the complex Grassmanian can be realized as the quotient SU(p+
q)/S(U(p)× U(q)). As the Grassmanian is a symmetric space, we obtain the Cartan
decomposition of the Lie algebra:

su(p+ q) = k⊕ p

where k is the Lie algebra of S(U(p)×U(q)) and p is the orthogonal complement of k in
su(p+q), and [k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k. We note here that p can be interpreted
as the tangent space of the Grassmannian. We should also define the inner product
to which we have implicitly referred when we used the word orthogonal complement:

Definition 4.2. Let I and J be arbitrary elements of su(p + q). The map h(I, J) =

−1

2
Tr(IJ) defines an inner product on su(p+ q).

From the paper of Krämer we have another interesting quotient of SU(p + q),
namely the space X, which we have related to the Grassmannian:
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X = SU(p+ q)/SU(p)× SU(q).

We again decompose the Lie algebra and obtain

su(p+ q) = (su(p)⊕ su(q))⊕m.

We have noted that this space is a spherical space which is not symmetric. On the Lie
algebra level we see the contrast by noting that [p, p] ⊂ k, while [m,m] 6⊂ (su(p)⊕su(q)).
This is a significant departure from the realm of symmetric spaces, as this specific
bracket property makes calculations in the Lie algebra of the symmetric space easier.
For example, for Y and Z in m, [Y, Z]m would be 0 in a symmetric space. In some
sense, the complexity of this operator gives us an idea of how far this spherical space
is from being symmetric in a concrete way. We now proceed to calculate this operator,
first fixing notation.

Definition 4.3. Let Y and Z be in m. Denote by ηm the following map

ηm : m×m→ m

Y × Z → [Y, Z]

We denote projection of elements from su(p+ q) onto m by Pm.
To write down an element of su(p+q) in terms of the spherical space decomposition

we note that elements in (su(p)× su(q)) are of the form[
A 0
0 B

]
where A is in su(p) and B is in su(q).

Elements in m are more complicated. A generic element looks like this:

Y =

[
c·(Ip)
p

M

−M∗ −c·(Iq)
q

]
.

Here c denotes a purely imaginary complex number, Ip and Iq denote the identity p by
p and q by q matrices, respectively, and M∗ is the conjugate transpose of the matrix
M . To justify this, keep in mind that we are working in su(p + q). Anything not
in su(p) ⊕ su(q) must be in m. Hence the top right block can be anything. Since
elements of this Lie algebra must equal their own conjugate transpose, picking the
top right determines uniquely the bottom left. As for the elements in the diagonal
blocks, we must include those matrices which have non-zero traces in their top left and
bottom right blocks, taken separately, but trace zero when combined. These matrices
are not in su(p) ⊕ su(q), as both blocks are assumed to have trace 0. Therefore we
include them in m.

We now fix Z as another generic element of m and proceed to the first calculation.

Z =

[
d·(Ip)
p

N

−N∗ −d·(Iq)
q

]

Theorem 4.4. Define u :=
1

p
+

1

q
. Then
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Pm ◦ ηm(Y, Z) =

[
tr(NM∗−MN∗)

p
Ip u(cN − dM)

u(cN∗ − dM∗) −tr(NM∗−MN∗)
q

Iq

]
.

Proof. First we will take the bracket, which in our case is just the commutator, and
then later project to m.

[Y, Z] = Y Z − ZY =

[
NM∗ −MN∗ u(cN − dM)
u(cN∗ − dM∗) N∗M −M∗N

]
Refering to the decomposition of su(p + q) into k ⊕ p, we decompose this matrix

into [
NM∗ −MN∗ 0

0 N∗M −M∗N

]
+

[
0 u(cN − dM)

u(cN∗ − dM∗) 0

]
,

where the first matrix is in k and the second is contained in p, hence also in m. To
complete the calculation we need to project the first matrix to m. We need to discard
any nondiagonal entries, and we must make sure that the trace of the upper left block
is the negative of the trace of the bottom left block. This is the same reasoning we
applied when we first described elements of m, namely that we must include diagonal
matrices with trace 0, whose top left and bottom right blocks have non-zero trace. We
arrive at the following

Pm(

[
NM∗ −MN∗ 0

0 N∗M −M∗N

]
) =

[
tr(NM∗−MN∗)

p
Ip 0

0 −tr(NM∗−MN∗)
q

Iq

]
.

Combining this projection with the p-part of the commutator, we arrive at the
formula

Pm ◦ ηm(Y, Z) =

[
tr(NM∗−MN∗)

p
Ip u(cN − dM)

u(cN∗ − dM∗) −tr(NM∗−MN∗)
q

Iq

]
.

Now we shift our attention to the operator when Y is fixed, i.e. the adjoint rep-
resentation of Y . In our notation we would like to calculate Pm ◦ adY (m) which we
abbreviate to TY . When we fix Y we obtain a decomposition of m

m = e1 ⊕ e2 ⊕ e3 ⊕ (e2 ⊕ e3)⊥p

where

e1 =

[
i·(Ip)
p

0

0 −i·(Iq)
q

]
,

e2 =

[
0 M
−M∗ 0

]
,

and

e3 = Je2 =

[
0 iM

−(iM)∗ 0

]
,
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where J = p→ p is the complex structure on p = T∗(Grn(k)):

J :

[
0 N
−N∗ 0

]
7→
[

0 iN
−(iN)∗ 0

]
.

Theorem 4.5. With respect to this decomposition of m,

TY (m) =


0 0 2 · tr(MM∗)
0 0 ua
−u ua 0

0

0 uaJ

 .

Proof. We calculate the images of e1, e2, e3, and v, where v is an arbitrary member of
(e2 ⊕ e3)⊥p . We define a as the real constant c = ai for as c is purely imaginary.

TY (e1) = Pm([Y, e1]) = −ui
[

0 M
M∗ 0

]
= −u

[
0 iM

−(iM)∗ 0

]
= −uJe2 = −ue3.

——————————————————————

TY (e2) = Pm[Y, e2] = cu

[
0 M
M∗ 0

]
= ua

[
0 iM

−(iM)∗ 0

]
= uaJe2 = uae3.

——————————————————————

TY (e3) = Pm[Y, e3] = Pm(

[
iMM∗ − iMM∗ cuiM

cu(iM)∗ (iM)∗M − iMM∗

]
) =

= Pm(

[
iMM∗ − iMM∗ 0

0 (iM)∗M − iM∗M

]
+

[
0 cuiM

cu(iM)∗ 0

]
) = 2·tr(MM∗)e1+

uae2.

——————————————————————

TY (v) = Pm[Y, v] = Pm(

[[
c·(Ip)
p

M

−M∗ −c·(Iq)
q

]
,

[
0 N
−N∗ 0

]]
) =

= Pm(

[
NM∗ −MN∗ cuN

cuN∗ NM∗ −M∗N

]
) =

[
NM∗ −MN∗ 0

0 NM∗ −M∗N

]
+

[
0 cuN

cuN∗ 0

]

When projecting this onto m, the first component disappears, as v is orthogonal to e1
and ensuring that the trace of the projection is 0 leads to taking the inner product.
The second component becomes

ua

[
0 iN

−(iN)∗ 0

]
= uaJv.

——————————————————————

To summarize, we review the results and write down the matrix of TY .
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• TY (e1) = −uJe2 = −ue3

• TY (e2) = uaJe2 = uae3

• TY (e3) = 2 · tr(MM∗)e1 + uae2

• TY (v) = uaJv

TY (m) =


0 0 2 · tr(MM∗)
0 0 ua
−u ua 0

0

0 uaJ

 .

The eigenvalues of the top left 3 by 3 matrix are 0 and ±
√

(ua)2 − 2u||M ||, where
||M || = tr(MM∗).

In this section we made two primary calculations in the Lie algebra decomposi-
tion of X. The first was motivated by the formula for curvature of a homogeneous
space. The second calculation gave us an explicit reprepresentation of the operator
for the adjoint representation of an element of m projected back to m. This kind of
matrix is useful in performing calculations arising in the field of geometric quantiza-
tion. Throughout we made use of and reference to the Cartan decomposition of the
Grassmannian. Both of the calculations carried out here would have yielded 0 if we
had considered the Grassmannian instead of X. In the next section, we will consider
topological invariants, again comparing X with the Grassmannian.

5 Topological Calculations

It is a theorem that if M is a hermitian symmetric space of compact type, then
M is simply connected [He2]. There are many results linking the curvature of a
manifold to its topological invariants. Classically, one of the first such results was
Gauss’ calculation of the linking number of two curves by a double integral. Another
example is the Gauss-Bonnet formula, which relates the Gaussian curvature and the
Euler characteristic of a space. Besides their relationships to curvature, topological
invariants have many other uses and are worth calculating in their own right. In this
section we will calculate some cohomology and homotopy groups of the space X. We
make extensive use of the fact that X is a principal S1 bundle over Grk(n). This allows
us to relate the cohomology groups of these two spaces using the Gysin sequence. For
background on the topological material, see [BT] or [Br]. Specific homotopy groups of
Lie groups come from [Hu].

A chain of closed subgroups H ⊂ K ⊂ G yields a homogeneous fiber bundle

K/H // G/H // G/K
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Furthermore, if H is normal in K, it is a principal K/H bundle [Bredon/DeVito]. In
our case, H = SU(p) × SU(q), K = S(U(p) × U(q)) and G = SU(p + q). K/H is
ismorphic as a Lie group to U(1), the circle group, by sending an element of H to the
determinant of the U(p) part. So X is a principal S1 bundle over Grk(n).

First we calculate some homotopy groups. We consider the two fibrations

(1) S(U(P )× U(q)) // SU(p+ q) // Grk(n)

(2) SU(P )× SU(q) // SU(p+ q) // X

These fibrations give rise to a long exact sequence of homotopy groups

(1) . . . // πn(S(U(p)× U(q))) // πn(SU(p+ q)) // πn(Grk(n))

// πn−1(S(U(p)× U(q))) // · · · // π2(Grk(n))

// π1(S(U(p)× U(q))) // π1(SU(p+ q)) // π1(Grk(n))

// · · ·

(2) . . . // πn(SU(p)× SU(q)) // πn(SU(p+ q)) // πn(X)

// πn−1(SU(p)× SU(q)) // · · · // π2(X)

// π1(SU(p)× SU(q)) // π1(SU(p+ q)) // π1(X)

// · · ·
Some of these groups are well known. We summarize those that we use in the

following table.

Table 1: Homotopy Groups of Spaces in the Fibrations

Space π1 π2 π3
SU(p+ q) 0 Z 0

SU(p)× SU(q) 0 Z× Z 0
S(U(p)× U(q)) Z ? ?

Plugging what we know into the first long exact sequence, we see that the Grass-
mannian is simply connected and that π2(Grk(n)) = Z. By the Hurwicz theorem,
H2(Grk(n)) = Z. In the second long exact sequence we have
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. . . // π3(SU(p)× SU(q)) // π3(SU(p+ q)) // π3(X)

// π2(SU(p)× SU(q)) // π2(SU(p+ q)) // π2(X)

// π1(SU(p)× SU(q)) // π1(SU(p+ q)) // π1(X) // .

plugging in we get

. . . // Z× Z // Z // π3(X)

// 0 // 0 // π2(X)

// 0 // 0 // π1(X) //

and we see π3(X) = Z, π2(X) = 0, and π1(X) = 0. By the Hurwicz theorem,
H2(X) is 0.

Now we must introduce a notion from algebraic topology which will allow us to
relate the Grassmannian and X. The idea begins with the fact that X is a principal
S1 bundle over the Grassmannian. There is a great deal of interaction between the
topology of the bundles of a space and the underlying space itself. For instance, one
can define the orientability of a smooth manifold as the orientability of its tangent
bundle, as a bundle. One particular topological invariant of a vector bundle is known
as the Euler class.

Definition 5.1. Let E → B be a real oriented vector bundle of rank r, with B the
base space. Let s : B → E be a section such that s(B) and the zero section intersect
transversely. The intersection, which we call I, is a dimension dim(B)−r submanifold
of E, which, by inclusion into the zero section, can be thought of a submanifold of E.
The Euler class is the Poincaré dual in B of I in Hr(B).

It is not apparent from the definition what the use of the Euler class is. It is often
mentioned that it measures how twisted the vector bundle is. As it is traditional to
view cohomology classes as obstructions, we can think of the Euler class’s existence
as an obstruction to being able to implement the analogues of polar coordinates on
trivializations of the bundle.

In the case where E = R2 × B is a trivial vector bundle with projection onto B,

then we define the form φ as the pullback of
1

2π
dθ under the projection map defined

everywhere but the origin. The Euler class χ is defined by

dφ = −π∗χ.

Here χ is zero since φ is closed. This is because we can choose polar coordinates
everywhere. In more complicated situations, the Euler class detects the failure to
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patch together angular coordinates on triple intersections. For more detail on this
approach to the Euler class see [BT].

Given the name Euler class and being represented by the symbol χ, the reader
might wonder if the Euler class is connected to the Euler characteristic. It is a fact
that in the case of the tangent bundle of a smooth manifold the Euler class of the
bundle is precisely the Euler characteristic of the manifold. Hence we view the Euler
class as the generalization of the Euler characteristic.

The Euler class of X as a principal S1-bundle over the Grassmannian is a generator
of H2(Grk(n)). Knowing the Euler class allows us to use the Gysin sequence.

Definition 5.2. Let π : E →M be a fiber bundle with fiber Sk. Then there exists a
long exact sequence of cohomology groups called the Gysin sequence:

. . . // Hn(E) a // Hn−k(M) ∧e // Hn+1(M)
π∗ // Hn+1(E) . . .

Where a denotes integration along the fiber, ∧e denotes multiplication by the Euler
class, and π∗ is the pullback.

In our case, k = 1, and we know the generator of the Euler class. We obtain the
following long exact sequence, which will enable us to calculate H∗(X) in terms of the
Grassmannian’s cohomology ring, a complicated, but well studied object.

0 // H1(X) // H0(Grk(n)) // H2(Grk(n))

// H2(X) // H1(Grk(n)) // H3(Grk(n))

// H3(X) // H2(Grk(n)) // H4(Grk(n)) // . . .

We plug in the previously calculated cohomology groups, and note that the odd
cohomology groups of the Grassmannian are 0.

0 // 0 // Z // Z

00 0 // 0 // 0

// H3(X) // Z // H4(Grk(n))

// H4(X) // 0 // 0 // H5(X) // . . .

The cohomology ring of the Grassmannian is a difficult object to understand and
is beyond the scope of this work. We refer the read to [BT] for further details, taking
only the above assumption that the odd cohomology groups of the Grassmannian
vanish, and, for illustrative purposes the fact that H4(Grk(n)) = Z2. Plugging in we
see that H3(X) = Z and H4(X) = Z2. In general, given the ability to calculate the
cohomology groups of Grk(n), we can calculate those of X. The cohomology groups of
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the Grassmannian are combinatorially complicated, but calculatable, especially with
the assistance of computer packages like SAGE.

In this section we calculated some topological invariants of X. As X is a homo-
geneous space, we can use the long exact sequence of homotopy groups arising from
the fibration to calculate several homotopy groups of X. Notably, we see that X is
simply connected. Then, using the Hurwicz theorem, we obtained the first couple co-
homology groups of X. We carried out the same calculations with the Grassmannian,
and then, as in the previous sections, related X to the Grassmannian. Specifically,
we noted that X is a principal S1 bundle over the Grassmannian. We noted that the
Euler class of X as a principal S1 bundle over the Grassmannian is the generator for
the second cohomology group of Grn(k). Hence, using the Gysin sequence, we were
able to calculate the cohomology of X completely in terms of the cohomology of the
Grassmannian.

6 Conclusion

This thesis was an attempt to introduce an interesting class of spaces with many
connections to other objects in mathematics. Given this motivation, it should be clear
that any effort to understand these spherical spaces must involve relating them to
other objects. In the thesis, this involved both general theory, for instance examining
the containments

symmetric spaces ⊂ spherical spaces ⊂ homogeneous spaces,

and working with the specific examples X and the Grassmannian.
With the benefit of hindsight, let us now review the reasons why it is nice to study

these spaces. First recall that spherical spaces are a special case of homogeneous
spaces. Homogeneous spaces occur as manifolds on which a given group has a special
action. Specifically the group action must be transitive. Given the fruitfulness of the
theory of group actions throughout mathematics, it should not be surprising that there
are many spaces which arise this way, and that a great deal can be said about them.
On the other hand, more can be said about specific subclasses. One such naturally
occuring class of spaces are the symmetric spaces. They are very well studied, and
the irreducible and semisimple symmetric spaces are classified. We saw previously
that spherical spaces fit exactly between symmetric spaces and homogeneous spaces.
Hence spherical spaces stimulate mathematical curiousity both as generalizations and
as special cases.

We saw several specific examples of this idea in the thesis. For example, the
formula for the curvature of a homogeneous space is somewhat complicated. In the
symmetric space it simplifies, and we carried out the ’extra’ calculations needed for a
the curvature formula of the specific spherical space X. In the section on topological
invariants, we made use of both the long exact sequence of homotopy groups associated
to any fibration coming from a homogeneous space and the close relationship that X
had to a specific symmetric space to calculate many invariants of X. Indeed, this
sandwich effect has proven useful several times. It would like be much more difficult
to say as much about X using only its representation theoretic characterization as a
spherical space.
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Let us now mention again a specific motivation for studying spherical spaces as
generalizations of symmetric spaces, namely geometric quantization, with a few more
details taken from [LSz10]. We described the process of geometric quantization as
associating to a Riemannian manifold a family of Hilbert spaces ’above’ the manifold.
Let us make this more precise now: we associate to the cotangent bundle X of a
Riemannian manifold M a Hermitian line bundle L → X, and a Hilbert space H of
its sections. The cotangent bundle has a canonical symplectic structure. There is not
always a canonical way to find L; choices are made involving the complex structure
and so one must deal with a family of line bundles and Hilbert spaces, parametrized by
the choices. In the case when the set of choices form a complex manifold S, Hitchen
in [Hi] and Axelrod, Della Pietra, and Witten [ADW] decided to view the Hilbert
spaces as fibers of a holomorphic Hilbert bundle H → S. Then, using connection
and parallel transport they attempted to identify the individual Hilbert spaces as
fibers. The curvature of the connection is important in this instance, as it measures
how transport between fibers varies between paths. When this curvature is a scalar
operator the Hilbert spaces are isomorphic. This is not always the case. In this sense,
view the curvature as an obstruction to uniformity among the Hilbert spaces. In the
case of compact symmetric spaces, special techniques can be used to better understand
this situation. For example, in [LSz12] Lempert and Szőke come to some results about
compact, simply connected symmetric spaces of rank-1. It is hoped that these methods
can be extended, with perhaps slight modifications to a new level of generality. We are
referring here to compact spherical spaces. Understanding operators like TY calculated
in Section 4 helps us understand a more general case and form hypotheses about similar
cases.
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7 Appendix Spherical Spaces Throughout Mathe-

matics

There are several important characterizations of spherical spaces which arise in differ-
ent fields of mathematics. In this thesis we considered spherical spaces G/H in the
following sense: the set of invariant vectors of H under any irreducible representation
of G is a vector space of dimension 1 or 0. We are now going to mention alterna-
tive characterizations, where they come from, and why they are useful. We will also
examine a related situation in the following sense. Throughout the thesis G was a
compacted connected Lie group and H was a closed subgroup; the analogous algebraic
situation is when G is a reductive connected algebraic group and H is an algebraic
subgroup. We will survey new results and new questions related to spherical spaces.
Finally we will survey recent results and papers taking any of these approaches, and
mention some open questions.

7.1 A Survey of the Characterizations

Theorem 7.1. Let G be a compact Lie group, let H be a closed subgroup. The
following are equivalent:

1. G/H is spherical

2. For any irreducible unitary representation ρ of G, the fixed point set of H under
is at most one dimensional

3. The multiplicity of any continuous irreducible representation of G in L2(G/H)
is at most one dimensional

4. The algebra of complex-valued continuous functions on G which are constant
on the double coset space HgH for g ∈ G with convolution, denoted C†(G), is
commutative.

5. The Poisson algebra of G-invariant functions on the cotangent bundle of G/H
is commutative

In [Ti] all of these equivalences and more are listed and their origins are cited.
What is clear is that spherical spaces come up in many different areas of math and
that many different tools can be used to study them.

7.2 As Algebraic Groups: The Theory of Spherical Varieties

In 1986 Brion, Luna, and Vust [BLV] wrote a paper considering the algebraic analogue
of spherical spaces.

Definition 7.2. An algebraic group is a group that is an algebraic variety with group
multiplication and inversion given by regular functions.
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We say that an algebraic group G over an algebraically closed field is reductive
if the unipotent radical (i.e. the group of unipotent elements of the radical of G) is
trivial. Any semisimple algebraic group is reductive. For more background information
on algebraic groups, see [Bo] and [Sp]. Now let G be a connected reductive algebraic
group over an algebraically closed field of characteristic 0, and H a closed algebraic
subgroup. Brion, Luna, and Vust mention the following characterizations of spherical
varieties.

Theorem 7.3. The following are equivalent:

1. G/H is a spherical variety.

2. The group H has an open orbit in G/B, where B is a Borel subgroup of G.

3. H acts on G/B with finitely many orbits.

4. There exists an element θ of the automorphism group of G that fixes H with the
property that for any g ∈ G, θ(g) ∈ Hg−1H.

When appropriately translated into the language of algebraic groups, the different
notions of spherical spaces discussed in the previous section apply to spherical varieties
as well. Examples of spherical varieties include the following

• When G is a torus and H is trivial.

• WhenH is the set of fixed points of an involution ofG, called symmetric varieties.

• When H contains a maximal unipotent subgroup of G, called horospherical va-
rieties, of which flag varieties are an example.

The theory of spherical varieties unifies these specific ideas. Luna and Vust [LV]
classified all embeddings of spherical varieties as a special case of several results on the
embeddings of arbitrary homogeneous varieties. Since then the program of so-called
Luna-Vust theory has been to classify and study spherical properties using algebraic
geometry and combinatorics arising from generalizations of the theories of flag varieties
and toric varieties. There are several informal lecture notes available on the web aimed
at different backgrounds and with different goals in mind.

We now discuss briefly the relationship between algebraic groups and Lie groups.
Specifically, we will compare compact real Lie groups with reductive algebraic groups
over C.

Theorem 7.4. The following hold

1. To any compact group G there exists a canonically associated reductive linear
algebraic group G′ having the representative functions TG as the coordinate ring
O(G′).

2. G′ has the ”same” representations as G, meaning you can obtain any finite
dimensional representation of G by restricting from G′.

3. G is a maximimal compact subgroup of G′, and G is Zariski-dense in G′.
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4. If V is faithful as a G-module, it is faithful as a G′-module.

5. For any G-invariant Hermitian scalar product on V , G′ is self-adjoint.

A good example is the relationship between SU(2) the Lie group and SL2(C) the
linear algebraic group. Now some more general statements:

Theorem 7.5.

1. If G ⊂ GLn(C) is a self-adjoint Lie group, with finitely many connected compo-
nents and a complex Lie algebra, then G is a reductive algebraic group.

2. Conversely, given a reductive algebraic group G and a representation of G on V ,
there exists a Hermitian scalar product on V such that G is self-adjoint.

3. If V is faithful as a G-module, then the unitary elements in G form a maximal
compact subgroup K and G = K · eiK (this is sometimes called polar decompo-
sition).

4. All maximal compact subgroups of G are conjugate in G, and every compact Lie
group arises that way.

We summarize these theorems and the different passages between Lie groups and
algebraic groups in the following diagram:

Compact Real
Lie Groups

// Compact Real
Lie Algebra

1 // Finite Dimensional
Complex Lie Algebra

2

��

::

3

zzReductive Complex
Linear Algebraic

Group*

// Simply Connected
Cover

//

4

dd

Complex Linear
Algebraic Group

The * on reductive complex linear algebraic group denotes that we only consider those
with simple Lie algebras. The numbered arrows describe the following:

1. Complexification of the real Lie algebra,

2. Taking the adjoint group,

3. The one to one correspondence of representations,

4. Passing to maximal compact subgroups.

Hopefully it is now apparent that it is no coincidence that the theory of compact Lie
groups and reductive linear algebraic groups are so similar. Indeed, recent work on
spherical spaces and spherical varieties often jumps back and forth or takes results
from one area and translates it, without much difficulty, to the other.
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7.3 New Results, New Questions

As mentioned in the thesis, Krämer classified spherical spaces G/H for simple G. More
recently Mikityuk [Mi] and Brion [Bri] classified the spherical spaces of non-simple
semisimple algebraic groups. Mikityuk approaches the problem from a symplectic
geometry perspective, while Brion uses the algebraic geometry of algebraic groups.

Another landmark paper focusing on the symplectic geometry view of spherical
spaces is [GS], in which the authors prove the equivalence of the representation theo-
retic definition of spherical spaces and the Poisson bracket commutativity condition.
They also give an alternative proof of Krämer’s lemma 3.4, which is the most produc-
tive lemma in the Krämer’s classification. They claim that it is less complicated, but
that probably depends on the reader’s background.

There has been a trend in the recent literature to compare the class of spherical
spaces with extensions of the class of the symmetric spaces. One such example is
in [Dz], where Dzyadyk calls a spherical nonsymmetric space G/H almost symmetric

if the quotient
G/(Z(G) ∩H)

H/(Z(G) ∩H)
is symmetric. Dzyadyk classifies irreducible almost

symmetric spaces and proves several nice properties about them which distinguishes
them from both both symmetric spaces and spherical spaces. This puts another layer
right in the middle of our sandwich.

Another generalization of symmetric spaces turns out to be more directly compat-
ible with spherical spaces.

Definition 7.6. A weakly symmetric space is a complete Riemannian manifold with
the property that any two points can be exchanged by an isometry.

This is indeed a generalization of symmetric spaces as points on a symmetric space
can be exchanged by an isometry of order 2. In [Ng], it is shown, using Krämer’s
classification, that the spherical spaces G/H with compact connected simple G are
exactly the weakly symmetric spaces arising as quotients of G. More is true: Let G be
a connected complex reductive algebraic group and H a reductive algebraic subgroup.
Let G′ be a connected real form of G such that H ′ := H ∪G′ is a compact real form of
H. Then G′/H ′ is a weakly symmetric space if and only if G/H is a spherical space.
In that case there is a Weyl involution ν of G that preserves and restricts to Weyl
involutions on G′, H and H ′ such that ν|G′ is a weak symmetry for G′/H ′. This is the
primary theorem of [AV]. Both of these results are discussed and proven in [Wo]. The
book also collects the classification results of [Mi] and [Bri].

Now we introduce two more subclasses of homogeneous spaces.

Definition 7.7. Let G/H be a homogeneous space. G/H is commutative if the algebra
of all invariant differential operators on G/H is commutative.

Definition 7.8. Let G/H be a homogeneous space. For a manifold X denote by
P (T ∗X) the algebra of functions on the contangent space of X which are polynomials
on the fibers with respect to multiplication and some Poisson bracket. G/H is weakly
commutative if P (T ∗(G/H)) is commutative when restricted to G invariant functions.

In Vinberg’s survey article [Vi] these classes are related. For general homogeneous
space G/H we have the following inclusions:
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Symmetric
Spaces

� � //
Weakly

Symmetric
Spaces

� � // Commutative
Spaces

� � //
Weakly

Commutative
Spaces

� �//

For homogeneous spaces of reductive groups, the last three classes coincide. Fur-
thermore, in this case these three classes are the same as the class of spherical spaces.
To conclude:

Weakly
Commutative

Spaces

oo // Commutative
Spaces

oo //
Weakly

Symmetric
Spaces

Spherical Spaces
""

bb

��

OO

||

<<
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(1986), 617–632.

[Bo] A. Borel, Linear Algebraic Groups, GTM, vol. 126, Springer-Verlag, Berlin (1991)

[Br] G. Bredon, Topology and Geometry, Springer, New York (1993).

[Bri] M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63
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