
Bounded Diameter Minimum
Spanning Tree

by

Giorgi Nadiradze

Submitted to

Central European University

Department of Mathematics And Its Applications

In partial fulfilment of the requirements for the degree of
Master of Science

Supervisor: Professor Ervin Győri

Budapest, Hungary

2013

Contents

1 Introduction 2

2 General Bounded Diameter Minimum Spanning Tree 5

3 Bounded Diameter Minimum Spanning Tree for points on
the real line, points on a circle and vertices in a tree 11

4 Conclusion 27

1

Chapter 1

Introduction

In this thesis we deal with the classical problem of minimum cost spanning
tree. Given a connected, undirected graph G with non-negative edge costs,
we want to find the minimum cost connected and acyclic subgraph of G
which contains all vertices of G. There are many known polynomial time
algorithms to find the minimum cost spanning tree in a graph, for exam-
ple Prims Algorithm[9] and Kruskals Algorithm [8]. The general minimum
spanning tree problem becomes harder if we add more constraints to the min-
imum spanning tree, for example we can add an upper bound to the degree
of vertices in the minimum spanning tree or to the diameter of the minimum
spanning tree. In both cases problem is NP − hard. We are interested in
the Bounded Diameter Minimum Spanning Tree Problem.

Problem 1. The Bounded Diameter Minimum Spanning Tree Problem :
We are given a connected Graph G = (V,E), where V is a node set, | V |= n
, a cost function cost : E → Z+ and an integer 2 ≤ D ≤ n− 2. We want to
find a spanning tree (connected, acyclic subgraph which contains all vertices
of G) with the minimal total cost of edges and with the diameter D (for every
pair of vertices of the spanning tree u and v, the number of edges in the path
in the spanning tree from u to v is not more than D)

The Bounded Diameter Minimum spanning Tree Problem has applica-
tions in communication network design. It is used in Distributed Mutual
Exclusion algorithms [10]. We have a Computer Network of n nodes, which
communicate by sending messages to each other along a tree. Only one node
has a priviledge to enter a critical section. If some node wants to have a
priviledge it must request it by sending a message to the node which has
a priviledge. Time this request takes depends on the number of edges in
the path to the vertex with a priviledge. We want to build a communica-
tion tree with the minimal cost and bounded time of communication, that

2

is, Bounded Diameter Minimum Spanning Tree. The Bounded Diameter
Minimum Spanning Tree problem is also used in Information Retrieval [4].

If D = 2 or D = 3 or the costs of edges of the graph are equal, then the
Bounded Diameter Minimum Spanning Tree problem is solvable in polyno-
mial time [5]. We are interested in the case when 4 ≤ D < n − 1 and the
costs of edges of the graph are not equal because in this case the Bounded
Diameter Minimum Spanning Tree Problem is NP − hard [5]. There are
exact solutions for Bounded Diameter Minimum Spanning Tree Problem, for
example the Mixed Integer Linear Programming aproach [2], but they require
exponential time. Common way to deal with NP − hard problems is to find
approximate solutions for them. There are Greedy Heuristical algorithms
developed, some of them use Prims algorithm [9], for example [1]. Another
way is to put some constraints on the graph G so that maybe the prob-
lem will be solvable in polynomial time for the constrained G. For example
let us consider the Euclidean instance of the Bounded Diameter Minimum
Spanning Tree Problem, where vertices of G are points in the plane and the
cost function is the Euclidean Distance between two points. The Euclidean
instance of the Bounded Diameter Minimum Spanning Tree Problem is prob-
ably also NP − hard. There is no proof of NP − hardness available, but
approximation algorithms are better because the triangle inequality holds for
it [6]. Let us consider a more constrained version of the Euclidean instance of
the Bounded Diameter Minimum Spanning Tree Problem, where vertices of
G are points on the real line and the cost function is the Euclidean Distance
between them.

Problem 2. The Bounded Diameter Minimum Spanning Tree Problem for
points on the real line: We are given a connected Graph G = (V,E), where
V is a node set, | V |= n and an integer 4 ≤ D ≤ n − 2. Vertices of G are
points on the real line with coordinates x1, x2, ...xn, a cost of the edge between
vertices u and v is | xu − xv |. We want to find a spanning tree(connected,
acyclic subgraph which contains all vertices of G) with the minimal total cost
of edges and with the diameter D (for every pair of vertices of the spanning
tree u and v, the number of edges in the path in the spanning tree from u to
v is not more than D)

We proved that the Bounded Diameter Minimum Spanning Tree Problem
for points on the real line is solvable in polynomial time (Theorem 3.5). We
found O(n4 · D) time algorithm which uses dynamic programming [3]. We
can also consider case of the Bounded Diameter Minimum Spanning Tree
when vertices of G are points on a circle, cost function is a length of an arc
between two points.

3

Problem 3. The Bounded Diameter Minimum Spanning Tree Problem for
points on a circle : We are given a connected Graph G = (V,E), where V is
a node set, | V |= n and integer 4 ≤ D ≤ n − 2. Vertices of G are points
on a circle, the cost of the edge between vertices u and v is the length of the
arc between u and v. We want to find a spanning tree (connected, acyclic
subgraph which contains all vertices of G) with the minimal total cost of edges
and with the diameter D(for every pair of vertices in the spanning tree u and
v the number of edges in the path in the spanning tree from u to v is not
more than D)

We proved that the Bounded Diameter Minimum Spanning Tree Problem
for points on a circle can be also solved in polynomial time using algorithm
for points on the real line case (Theorem 3.7). We found algorithm which
runs in O(n5 ·D) time if D is even and in O(n6 ·D) time when D is odd.

More general instance of the Bounded Diameter Minimum Spanning Tree
Problem for points on the real line is, when we are given a tree T with n
vertices and edge lengths. Vertices of the graph G are vertices of T and the
cost of edge between vertices u and v in G is the length of the path between
u and v in T . If tree T is a path(there are vertices u and v such that every
vertex of T belongs to the path from u to v) we have points on the real line
case.

Problem 4. The Bounded Diameter Minimum Spanning Tree Problem for
vertices in a tree : given a tree T with n vertices and edge lengths and a
connected Graph G = (V,E), where V is a node set, | V |= n and an integer
4 ≤ D ≤ n − 2. The vertices of G correspond to the vertices of T , a cost
of the edge between vertices u and v in G is the length of the path between
u and v in T . We want to find a spanning tree(connected, acyclic subgraph
which contains all vertices of G) with the minimal total cost of edges and
with the diameter D (for every pair of vertices in the spanning tree u and v,
the number of edges in the path in the spanning tree from u to v is not more
than D)

If T is a Caterpillar Tree (there are vertices u and v such that every vertex
of T either lies on the path from u to v or is connected with the edge to the
vertex which belongs to the path from u to v), we can modify algorithm
for points on the real line case and use it. We get algorithm with running
time O(n4 ·D), so we solved the Bounded Diameter Minimum Spanning Tree
Problem for vertices in a tree in polynomial time, if T is a Caterpillar Tree
(Theorem 3.9).

Open Question is what happens for the general T ? Is the Bounded
Diameter Minimum Spanning Tree Problem for vertices in a tree NP −hard
or is there polynomial time algorithm?

4

Chapter 2

General Bounded Diameter
Minimum Spanning Tree

First We prove NP − hardness of the general Bounded Diameter Minimum
Spanning Tree problem.

Theorem 2.1. The Bounded Diameter Minimum Spanning Tree Problem
(Problem 1) is NP −hard if D ≥ 4 and not all edges of the graph have equal
cost [5]

Proof. To prove NP − hardness of the Bounded Diameter Minimum Span-
ning Tree problem we need to reduce it to the known NP-Complete problem.
We will use Exact Cover by 3-sets problem for this purpose [5]
Exact Cover by 3-sets : Given a set S = {1, 2, 3, ..., 3n} and F - set consisting
of 3-element subsets of S, is there F ′⊆F such that the union of the elements
of F ′ is S and the intersection of any two elements of F ′ is an empty set [5]
To reduce Exact Cover by 3-sets problem to the Bounded Diameter Mini-
mum Spanning Tree problem we construct a graph G. G has two vertices
x and y such that the path between them contains D − 2 edges. It has m
vertices called a subset vertices , | F |= m and it has 3n vertices called an
element vertices. The elements of F correspond to the subset vertices and
the elements of S correspond to the element vertices. Each edge in the path
from x to y has cost 0. Edges between x and the subset vertices have cost 1.
Each edge between two subset vertices has cost 0. There is an edge of cost
0 between subset vertex and element vertex if element of F corresponding
to the subset vertex contains the element of S corresponding to the element
vertex. All the other edges have constant cost C > n.

The graph G has the minimum spanning tree with the cost not more
than n and with the diameter D if and only if Exact Cover by 3-sets has a
solution:

5

If F ′ is a solution, | F ′ |= n, let us consider a graph which does not
contain any edge of cost C. It contains edges in the path from x to y. There
is an edge between x and subset vertex if element of F corresponding to the
subset vertex is also in F ′ - n edges of cost 1. All other m−n subset vertices
are connected to some other subset vertex which is connected to x and there
are edges between the subset vertices connected to x and the element vertices.
Because each element of S is contained in the exactly one element of F ′ and
there is an edge of cost 0 between every two subset vertices, the graph is
connected and acyclic so it is a tree. It has the cost n and the diameter is
not more than D, because every path from x to any subset vertex or element
vertex does not have more than two edges and there are D − 2 edges in the
path from x to y.

If there is the minimum spannning of cost not more than n and with the
bounded diameter D, there are no edges of cost C in it because C > n. It
contains the path from x to y consisting of D− 2 edges. Each path from the
element vertex to x must contain exacty two edges, it can not contain more
than two edges because then the path from y to the element vertex will have
more than D edges. It can not contain one edge because there is no edge of
cost less than C between x and the element vertices. So each path from the
element vertex to x has cost 1, because it contains edge between x and the
subset vertex. Each subset vertex is connected with edge of cost less than
C to the exactly three element vertices so there are at least 3n/3 = n such
paths. But because the spanning tree does not have cost more than n, this
means that there are exactly n such paths. If we consider the elements of F
corresponding to the subset vertices on these paths they will give us solution
to the Exact Cover by 3-sets problem.

In Figure 2.1, if S = {1, 2, 3, 4, 5, 6} and F = {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}
n = 2, m = 3 , Exact Cover by 3-sets has a solution F ′ = {{1, 2, 3}, {4, 5, 6}}
The Minimum Spanning Tree with the Bounded Diameter D has cost 2 :
it consists of all edges in the path between x and y, edges from x to the
subset vertices {1, 2, 3} and {4, 5, 6}, edges from the subset vertex {1, 2, 3}
and the element vertices 1, 2 and 3, edges from the subset vertex {4, 5, 6} to
the element vertices 4, 5 and 6 and also the edge between the subset vertex
{1, 2, 3} and the subset vertex {2, 3, 4}

Note that the graph we constructed for the proof does not have edges of
the equal cost. The edges connecting x with the subset vertices have cost
1 and the edges in the path between x and y and the edges connecting two
subset vertices or the subset vertex and the element vertex have cost 0. All
other edges have some big constant cost. We can consider that if there is the
edge of big constant cost between the vertices u and v then there is no edge
at all between u and v.

6

Figure 2.1

Figure 2.2

Theorem 2.2. The Bounded Diameter Minimum Spanning Tree problem
(Problem 1) is solvable in polynomial time if D = 2 or D = 3 or all edges of
the graph have the equal cost (the graph is not necessarily complete) [5]

Proof. If D = 2 let us take the path with the maximal number of edges in the
minimum spanning tree, there will be no more than 2 edges. Let its middle
vertex be c. We will call c center of the spanning tree. All other vertices
should be connected to c with the edge because otherwise the spanning tree
will have the diameter more than 2, see Figure 2.2, so the cost of the minimum

spanning tree with the center vertex c is
n∑

v=1

the cost of edge between v and

c (we consider that cost of the edge between c and itself has value 0). So
we find c for which this value is minimal and the spanning tree will be just

7

Figure 2.3

all the vertices(except c) connected with the edge to c. Running time of this
algorithm is O(n2), because we have n choices for the center and we need
O(n) time to calculate the cost of connecting all other vertices to c. So the
Problem 1 is in P when D = 2.

If D = 3, let us take the path with the maximal number of edges in
the minimum spanning tree. There will be no more than 3 edges. Let us
consider the middle edge of this path, and let c1 and c2 be the vertices this
edge connects to each other. Every vertex in the spanning tree should be
connected with the edge to c1 or c2 because otherwise the spanning tree will
have the diameter more than 3, see Figure 2.3. Out of two possibilities we
take one with the minimal cost, so cost of the minimum spanning tree with

the diameter 3 and the center vertices c1 and c2 is
n∑

v=1

min (cost of the edge

between c1 and v, cost of the edge between c2 and v). We choose c1 and c2
such that this value is minimal and to construct the minimum spanning tree
we add the edge between c1 and c2 and for every vertex v except c1 and c2
we add the edge between c1 and v if the cost of the edge between c1 and v
< the cost of the edge between c2 and v and we add the edge between v and
c2 otherwise. Running time of this algorithm is O(n3) because we have n2

choices for the center vertices and we need O(n) time to calculate the cost
of connecting all other vertices with the edge to c1 or c2. So the Problem 1
is in P when D = 3.

If all edges of the graph have the same cost (the graph is not necessarily
complete), this means that we just have to find the spanning tree with the
diameter D (if it exists) and for every spanning tree cost is (n− 1) · the cost
of one edge. Let us take the path with the maximal number of edges in it.
There will be no more than D edges. If D is even let the middle vertex of this
path be c. c will be the center vertex of the spanning tree. If D is odd let us

8

Figure 2.4

consider the middle edge and let c and c′ be the vertices this edge connects
to each other. Let H = bD/2c. For every vertex v the path between v and
c does not contain more than H edges if D is even and one of the paths
between v and c or between v and c′ does not contain more than H edges if
D is odd, because otherwise the diameter will be more than D.

To find the spanning tree with the diameter D, we fix c and in the odd
diameter case we fix c′ also. Then we start from c and add all neighbouring
vertices to the spanning tree(along with the edges between them and c).
Then for each of the new added vertices we do the same as we did for c (we
do not add the vertices we have already added and if D is odd we do not
add c′) . We repeat the same procedure for the new vertices until we add
the vertices such that the path between them and c in the spanning tree has
H edges, this means we can not add any more vertices, see Figure 2.4. In
the case of odd D we do the same for c′ (we do not add vertices we already
added for c). If there are all vertices of the graph in the tree we get, then
we have found the minimum spanning tree with the diameter D. If there are
some vertices missing then there is no spanning tree of diameter D and the
center vertices we have chosen.

We have n choices for c, in the odd D case we have n choices for c′

also. The algorithm we described above for the fixed center vertices is called
Breadth-first search and it takes O(| E | +n) time [11]. So running time of

9

our algorithm is O((| E | +n) · n) if D is even and O((| E | +n) · n2) if D
is odd. So the Problem 1 is in P if all edges of the graph have the same
cost.

10

Chapter 3

Bounded Diameter Minimum
Spanning Tree for points on the
real line, points on a circle and
vertices in a tree

In this Chapter we will prove that the Bounded Diameter Minimum Spanning
Tree for points on the real line is solvable in polynomial time forD = 4, D = 5
and then for D > 5. We will show that Points on a circle is also solvable in
polynomial time and vertices in a tree case is solvable in polynomial time if
we have a Caterpillar Tree.

Theorem 3.1. The Bounded Diameter Minimum Spanning Tree Problem
(Problem 1) where each vertex of the graph is a point on the real line and
the cost function is the Euclidean distance between two points (Problem 2) is
solvable in polynomial time if D = 4.

Proof. If for some i and j xi = xj, we can add a very small number ε to xi
so that it does not change anything in the proof. So we can assume that the
coordinates of the vertices are x1 < x2 <xn. Let us take the path in the
spanning tree containing the maximal number edges. Number of the edges
in this path is not more than 4, so if we take the middle vertex of this path
and call it center vertex of the spanning tree c, for every vertex the path to
c contains no more than 2 edges.

Claim 3.2. If vertex u is the child of c in the minimum spanning tree or u is
c, let l be the vertex with the least coordinate - xl in the subtree of the spanning
tree with the root u and let r be the vertex with the biggest coordinate - xr
in the subtree of the spanning tree with the root u. Then there is no vertex v

11

Figure 3.1

Figure 3.2

(a) (b)

Figure 3.3

(a) (b)

Figure 3.4

12

such that v does not belong to the subtree of the spanning tree with the root
u and xl < xv < xr

Proof. If u is c all vertices from the interval [1, n] are in the subtree of the
spannig tree with the root u, so there is no such vertex v. If u is the child of
c then let us assume there is such vertex v. We have two cases:

Case 1. v is the child of c or v is c, see Figure 3.1
If xv ∈ [xl, xu], see Figure 3.3a. Then if we make v parent of l, we will get
the spanning tree with the less cost than the minimum spanning tree and
with the diameter 4, so we have a contradiction. If xv ∈ [xu, xr], see Figure
3.3b. Then if we make v parent of r we will get the spanning tree with the
cost less than the minimum spanning tree and with the diameter 4, so we
have a contradiction again.

Case 2. v is the child of the child of c, see Figure 3.2
Let s be the parent of v. If xl < xs < xr then we have Case 1 for vertex
s and we have a contradiction again. If xv ∈ [xl, xu] then xs < xl, because
otherwise we can make u parent of v and we will get the spanning tree with
the less cost than the minimum spanning tree and with the diameter 4, so
we have a contradiction again, see Figure 3.4a. | xs − xl |≥| xu − xl |,
because otherwise we can make s parent of l and we will get the spanning
with the less cost than the minimum spanning tree and with the diameter 4,
a contradiction ⇒ | xs− xv |>| xu− xv |, so if we make u parent of v we will
have the spanning tree with the less cost than the minimum spanning tree
and with the diameter 4, so we have a contradiction again. If xv ∈ [xu, xr]
then xs > xr, because otherwise we can make u parent of v and we will
get the spanning tree with the less cost than the minimum spanning tree
and with the diameter 4, so we have a contradiction again, see Figure 3.4b.
| xs − xr |≥| xu − xr |, because otherwise we can make s parent of r and
we will get the spanning with the less cost than the minimum spanning tree
and with the diameter 4, a contradiction ⇒ | xs − xv |>| xu − xv |. So if we
make u parent of v we will have the spanning tree with the less cost than the
minimum spanning tree and with the diameter 4, so we have a contradiction
again.

Now using this property of the minimum spanning tree we can describe
polynomial time algorithm: First we calculate B[l, r, k] the cost of connecting
k with the edge to the vertices from the interval [l, r],

B[l, r, k] =
r∑

i=l

| xk−xi |. For all possible center vertices c, calculate S[l, r, c]

- the cost of connecting all vertices from the interval [l, r] to c by choosing

13

one vertex k ∈ [l, r] making k child of c, and making all other vertices from
the interval [l, r] children of k. S[l, r, c] = min

l≤k≤r
(B[l, r, k]+ | xk − xc |). Let

also A[l, r, c] be the cost of connecting the vertices from the interval [l, r]
to c so that each vertex is the child or the child of the child of c. Let us
take vertex k which is the child of c and xk is maximal. The subtree of the
minimum spanning tree with the root k contains vertices from the interval
[m, r] for some m and k is such that S[m, r, c] is minimal. We need to connect
the remaining vertices from the interval [l,m − 1] to c so this gives us the
reccurence relation A[l, r, c] = min

l≤m≤r
(A[l,m−1, c]+S[m, r, c]). It can be that

m = l
then we consider that A[l,m− 1, c] has value 0. First we calculate A[1, 1, c],
A[2, 2, c], ..., A[c−1, c−1, c], A[c+1, c+1, c], ..., A[n, n, c] - intervals containing
one vertex (but not c). Then we calculate A[1, 2, c], A[2, 3, c], ..., A[c− 2, c−
1, c], A[c+ 1, c+ 2, c], ..., A[n− 1, n, c] - intervals containing two vertices (but
not containing c). Then we calculate intervals containing 3 vertices (but not
containing c) and so on we calculate intervals in the ascending number of ver-
tices in it (intervals not containing c). For every c we need to connect vertices
from the intervals [1, c−1] and [c+1, n] to c, so cost of the minimum spanning
tree with root c and with the diameter 4 will be A[1, c− 1, c] +A[c+ 1, n, c].
We choose c such that the minimum spanning tree with the root c and with
the diameter 4 has the minimal cost.

This algorithm gives us the minimal cost of the spanning tree with the
diameter 4, but not the spanning tree itself. To construct the spanning tree
we find c for which A[1, c − 1, c] + A[c + 1, n, c] was minimal and make it
the center of the spanning tree. Then for the interval [1, c − 1] we find m
such that A[1,m − 1, c] + S[m, c − 1, c] was minimal , also we find k such
that S[m, c− 1, c] was minimal and we add the edge connecting c and k. We
also add the edges connecting vertices from the interval [m, c − 1] (except
vertex k) and k. After that we repeat the same procedure with the vertices
from the interval [1,m − 1] until all vertices from the interval [1, c − 1] are
in the spanning tree. Then we use this procedure with the vertices from the
interval [c+ 1, n] .

Running time of the algorithm is : To calculate B we have n choices for l,
r, and k and r− l+ 1 choices for i, so it takes O(n4) time. We have n choices
for c. For the fixed c to calculate S[l, r, c] we have maximum n choices for l,
also maximum n choices for r and we have r− l+ 1 choices for k. So it takes
O(n3) time to calculate the values of S. For the fixed c to calculate A[l, r, c]
we have n choices for l also maximum n choices for r and we have r − l + 1
choices for m. So it takes O(n3) time to calculate A also. So algorithm to
find the cost of the minimum spanning tree with the diameter 4 takes O(n4)

14

Figure 3.5

time. To find the minimum spanning tree itself, we need O(n) time to find
c for which A[1, c − 1, c] + A[c + 1, n, c] was minimal. After we found c we
do the same operations as when we where finding the cost of the minimum
spanning tree but the number of vertices in the intervals is decreasing instead
of increasing. Time taken is O(n3) again. Time of our algorithm is O(n4),
so the Problem 2 is in P if D = 4

Example of the minimum spanning tree with the diameter 4, center vertex
c and where c has five children can be seen in Figure 3.5

Now we consider the case when D = 5.

Theorem 3.3. The Bounded Diameter Minimum Spanning Tree Problem
(Problem 1), where each vertex of the graph is point on the real line and
the cost function is the Euclidean distance between two points (Problem 2) is
solvable in polynomial time if D = 5.

Proof. let us consider the path with the maximal number of edges in it, not
more than 5 edges. Let c1 and c2 be the vertices of the middle edge of the
path. Then in the tree every vertex except c1 and c2 is the child of c1 or c2
or the child of the child of c1 or c2, because otherwise the minimum spanning
tree will have the diameter more than 5. We will call c1 and c2 centers of
the tree. We can use Claim 3.2 for every vertex which is the child of one of
the center vertices(we have two center vertices but proof is the same), but

15

Figure 3.6

(a)

(b)

Figure 3.7

we can not use Claim 3.2 for the center vertices in this case because there
the minimum spanning tree had just one center vertex and here we have two
center vertices.

Claim 3.4. If u is the center vertex of the minimum spanning tree, let l be
the vertex with the least coordinate - xl in the subtree of the spanning tree
with the root u and let r be the vertex with the biggest coordinate - xr in the
subtree of the spanning tree with the root u. Then there is no vertex v such
that v does not belong to the subtree of the spanning tree with the root u and
xl < xv < xr

Proof. We will prove claim when u is c1, it will be the same if u is c2. Let
us assume that there is such vertex v, let ul be the child of u with the least
coordinate - xul

, and let ur be the child of u with the biggest coordinate
xur . We know that Claim 3.2 holds for ul and ur and all children of u. So
if l 6= u then xu 6∈ [xl, xul

] because in this case l belongs to the subtree of

16

the minimum spanning tree with the root ul. If r 6= u then xu 6∈ [xur , xr],
because in this case r belongs to the subtree of the minimum spanning with
root ur.

Case 1. v is c2 itself. This case is the same as Case 1 in Claim 3.2, but if
l 6= u we use ul instead of l and if r 6= u we use ur instead of r

Case 2. v is the child of c2.This case is the same as Case 2 in Claim 3.2 with
the difference we mentioned above.

Case 3. v is the child of the child of c2, see Figure 3.6.
If l 6= u we use ul instead of l and if r 6= u we use ur instead of r. Let
s be the parent of v. If xl < xs < xr then we have Case 2 for s and we
have a contradiction. Let l′ be the vertex with the smallest coordinate in the
subtree of the minimum spanning tree with the root s - xl′ and let r′ be the
vertex with the biggest coordinate in the subtree of the minimum spanning
tree with the root s - xr′ , xl′ ≤ xs, xv ≤ xr′ . We know that we can use
Claim 3.2 for s so there is no v′ such that xl′ < xv′ < xr′ and v′ is not in
the subtree of the minimum spanning tree with the root s. If xv ∈ [xl, xu]
then xs < xl, because otherwise we can make u parent of v and we will have
the spanning tree with the cost less than cost of the minimum spanning tree
and with the diameter 5, a contradiction, see Figure 3.7a. Then we have
xl′ < xl < xr′ , so we have a contradiction again. If xv ∈ [xu, xr] then xs > xr
because otherwise we can make u parent of v and we will have the spanning
tree with the cost less than cost of the minimum spanning tree and with the
diameter 5, a contradiction, see Figure 3.7b. Then we have xl′ < xr < xr′ ,
so we have a contradiction again.

Now using this property of the minimum spanning tree we can describe
polynomial time algorithm. We calculate A[l, r, c] and S[l, r, c] as in the
proof of Theorem 3.1. For the center vertices c1 and c2, c1 < c2 and for some
c1 ≤ m ≤ c2 − 1 , the subtree of the spanning tree with the root vertex c1
contains the vertices from the interval [1,m] and the subtree of the spanning
tree with the root c2 contains the vertices from the interval [m + 1, n]. The
cost of the minimum spanning tree with the center vertices c1 and c2 is

min
c1≤m≤c2−1

(A[1, c1 − 1, c1] + A[c1 + 1,m, c1] + A[m+ 1, c2 − 1, c2] +

A[c2 + 1, n, c2])+ | xc1 − xc2 | and we choose the vertices c1 and c2 for which
this value is minimal. We construct the minimum spanning tree itself by
constructing the subtree of the spanning tree with the root c1 using values
of A[1, c1 − 1, c1] and A[c1 + 1,m, c1] and using the method described in the
proof of Theorem 3.1, we do the same for c2 and we also add the edge from c1

17

to c2 to the spanning tree. To calculate A and S we need O(n4) time. Then
we have n choices for c1, n choices for c2 and c2− c1 choices for m, so it takes
O(n3) time to get the cost of the minimum spanning tree. To construct it
takes O(n3) time also, so running time of our algorithm is O(n4). This shows
that the Problem 2 is in P if D = 5

Theorem 3.5. The Bounded Diameter Minimum Spanning Tree Problem
(Problem 1), where each vertex of the graph is a point on the real line and
the cost function is the euclidean distance between two points (Problem 2) is
solvable in polynomial time.

Proof. We have proved that the problem is in P if D = 4 and D = 5, so we
have to prove that it is in P when D > 5. Let c be the center vertex of the
minimum spanning tree with the diameter D if D is even and let c1 and c2
be the center vertices of the spanning tree with the diameter D if D is odd.
Let H = bD/2c and let for vertex v, h(v) be the number of edges in the
path from v to c if D is even and if D is odd then let h(v) be the number
of edges in the path from v to c1 if v belongs to the subtree of the minimum
spanning tree with the root c1 and the number of edges in the path from v
to c2 otherwise. h(v) ≤ H because otherwise the diameter of the minimum
spanning tree will be more than D.

As in the case when D = 4 or D = 5, we will use the following claim to
show that the minimum spanning tree has the property we can use.

Claim 3.6. For every vertex u let l be the vertex with the least coordinate -
xl in the subtree of the spanning tree with the root u and let r be the vertex
with the biggest coordinate - xr in the subtree of the spanning tree with the
root u. Then there is no vertex v such that v does not belong to the subtree
of the spanning tree with the root u and xl < xv < xr .

Proof. We prove it by induction on h(u). If u is a leaf Claim holds, if h(u) =
H then u is a leaf and Claim holds also. Now let the Claim hold for every
vertex u′ such that h(u′) > h(u) then it holds for u also. Let us assume that
there is vertex v not in the subtree of the minimum spanning tree with root
u such that xl < xu < xr.

Case 1. h(v) ≤ h(u), this is the same as Case 1 in Claim 3.4

Case 2. h(v) = h(u) + 1, this is the same as Case 2 in Claim 3.4

Case 3. h(v) > h(u) + 1
Let s be the parent of v. We can assume that xs 6∈ [xl, xr] because otherwise
we can consider s instead of v to get a contradiction. This Case is the same
as the Case 3 in Claim 3.4, so we have a contradiction again.

18

Now we can describe polynomial time algorithm. We calculate B as we
did in the proof of Theorem 3.1. Let A[l, r, p, h] be the cost of connecting
the vertices from the interval [l, r] to p, by choosing some vertex k ∈ [l, r]
making k the child of p, and making all the vertices from the interval [l, r]
members of the subtree of the minimum spanning tree with the root k, so
that the subree with the root k we get does not have the height more than
h (for every vertex v ∈ [l, r] the path from v to k contains no more than h
edges). If l = r we have just one vertex and A[l, r, p, h] =| xp−xl |. If h = 1
this means that every vertex should be connected to k with the edge so
A[l, r, p, h] = min

l≤k≤r
(B[l, r, k]+ | xk − xp |). Let S[l, r, p, h] be the cost of

connecting vertices from the interval [l, r] to p (making vertices from the
interval [l, r] members of the subtree of the spanning tree with the root
p), So that for every vertex from the interval [l, r] the path to p contains
no more then h edges. If h = 1 this means that every vertex should be
connected to p with the edge so S[l, r, p, h] = B[l, r, p]. If l = r we have
just one vertex and S[l, r, p, h] =| xl − xp |. If h > 1 when calculating
A[l, r, p, h] after we choose the vertex k we need to connect all other vertices
from the interval [l, r] to k the cost of it is S[l, k − 1, k, h] + S[k + 1, r, k, h],
so A[l, r, p, h] = min

l≤k≤r
(S[l, k − 1, k, h] + S[k + 1, r, k, h]+ | xk − xp |).

To calculate S[l, r, p, h] when h > 1 let k be the child of p with the biggest
coordinate. For some m the subtree of the spanning tree with the root
k consists of the vertices from the interval [m, r]. These vertices are con-
nected to p with the cost A[m, r, p, h − 1] and we need to connect the ver-
tices from the interval [l,m − 1] to p, this has the cost S[l,m − 1, p, h]
the total cost is S[l,m − 1, p, h] + A[m, r, p, h − 1], so S[l, r, p, h] = min

l≤m≤r
(S[l,m− 1, p, h] + A[m, r, p, h− 1]) (if m = l we consider
that S[l,m − 1, p, h] has value 0). We calculate A and S in the ascending
order of the number of vertices in the interval [l, r] as we did in the proof of
theorem 3.1 and also in the ascending h order.

If D is even, we choose the center vertex c and the cost of the spanning
tree with the center vertex c is S[1, c− 1, c,H] + S[c+ 1, n, c,H]. We choose
c such that this value is minimal. In the case of odd D we consider all
possible center vertices c1 and c2. For some m ∈ [c1, c2 − 1], the subtree
of the spanning tree with the root vertex c1 contains the vertices from the
interval [1,m] and the subtree of the spanning tree with the root vertex c2
contains the vertices from the interval [m+ 1, n], so the cost of the minimum
spanning tree with the center vertices c1 and c2 is

min
c1≤m≤c2−1

(S[1, c1 − 1, c1, H] + S[c1 + 1,m, c1, H] + S[m+ 1, c2 − 1, c2, H] +

19

Figure 3.8

20

S[c2 + 1, n, c2, H])+ | xc1 − xc2 |. We choose c1 and c2 such that this value
is minimal. To construct the minimum spanning tree we choose the center
vertex c for which the spanning tree had the minimal cost. Then for the
interval [1, c−1] we choose m such that S[1,m−1, c,H]+A[m, c−1, c,H−1]
was minimal, also we choose k such that S[m, k − 1, k,H − 1] + S[k + 1, c−
1, k,H − 1]+ | xk − xc | was minimal and add the edge connecting c to k to
the spanning tree. We do the same for the intervals [1,m− 1] and [c+ 1, n].
Then we do the same for the intervals [1, k − 1] and [k + 1, c − 1] with the
exception that we use k instead of c as the root vertex and H is decreased
by 1. If D is even we choose c1, c2, and m such that the spanning tree had
the minimal cost and repeat the same procedure for c1 and vertices from the
interval [1,m], c2 and the vertices from the interval [m + 1, n] as we did for
c and vertices from the interval [1, n].

Calculation of B takes O(n4) time. To calculate A we have n choices for
l, r and p, H choices for h and r − l + 1 choices for m (for k if h = 1), so
running time is O(n4 ·D). For S we have n choices for l, r and p, H choices
for h and r− l+ 1 choices for m, so running time is O(n4 ·D) again. To find
the centers takes even less time, also to construct the minimum spanning
tree takes the same time as when we calculate A and S but the number of
vertices in the intervals is decreasing in this case. So total running time of
our algorithm is O(n4 ·D) and Problem 2 is in P . Example of the minimum
spanning tree with the even diameter can be seen in Figure 3.8

Theorem 3.7. The Bounded Diameter Minimum Spannng Tree Problem
(Problem 1), where vertices are points located on a circle and the cost func-
tion is the length of the arc between two points (Problem 3) is solvable in
polynomial time.

Proof. If two points on the circle are the same. We can move one of them
along the circle with a small distance ε so that it does not change anything
in the proof. So we can assume that there are no two points which are the
same.

We can not use the same algorithm as in the proof of Theorem 3.5, because
there are no vertices with the least or the biggest coordinate. Let us assume
that c is the center vertex of the minimum spanning tree if D is even and let
c and c′ be the centers of the spanning tree if D is odd.

Claim 3.8. For every pair of vertices u, v, in the minimum spanning tree
with the diameter D there is no edge between u and v, such that the arc we
use to connect them with the edge contains the center vertex different from
u and v (one of u and v can be the center vertex or both of them can be the
center vertices if D is odd).

21

Figure 3.9

Proof. We will prove Claim for the center vertex c, it will be the same for c′

in the odd diameter case. Let us assume that there are such vertices u and
v , then after we remove the edge connecting u to v from the spanning tree,
there will be no path connecting u to c or there will be no path connecting v
to c, because otherwise there is a cycle in the spanning tree. Let us assume
there is no path between u and c then we can add the edge connecting c to
u. It has the cost less than the cost of the edge we removed, so we will get
the spanning tree with the cost less than cost of the minimum spanning tree
and with the diameter D, a contradiction.

If D is even, we assign coordinates to the points to construct points on
the real line case we will use. Let c have a coordinate 0. For each vertex
v let the coordinate of v be the length of the arc between v and c. There
are two arcs so we consider the one for which we have to travel clockwise
from c to v, and we add additional vertex c′. The coordinate of c′ is equal
to the length of the circle, see Figure 3.9. For every pair of vertices u and v
, which are not c or c′, | xu − xv | is the length of the arc between u and v
which does not contain c, so by Claim 3.8 it is the arc used in the spanning
tree if there is the edge between vertices u and v in the spanning tree. For
every vertex u except c and c′ | xc − xu | is the length of the arc between
c and u where we travel clockwise from c to u and | x′c − xu | is the length
of the arc between c and u where we travel counterclockwise from c to u.
Let us consider the spanning tree T for points on a circle case with the even
diameter D. We add the vertex c′ to T , connect c′ to c with the edge and for
every child vertex u of c we make u child of c′ if they are connected to c with
the arc where we travel from c to u counterclockwise. The tree we get is the
spanning tree with the center vertices c and c′ and with the diameter D + 1
for points on the real line case we constructed and its cost will be the cost

22

Figure 3.10

of T+ length of the circle(length of the circle is cost of the edge between c
and c′). If we take the spanning tree T with the center vertices c and c′ for
points on the real line case we constructed, remove c′ from T and for every
child vertex u of c′ make u child of c using the arc between c and u where
we travel counterclockwise from c to u , we get the spanning tree with the
diameter D for points on a circle case and its cost will be the cost of T−
length of the circle. So to find the minimum spanning tree with the diameter
D and the center vertex c for points on a circle case, we find the minimum
spanning tree with the diameter D + 1 and the center vertices c and c′ for
points on the real line case we have constructed using the algorithm we used
in the proof of Theorem 3.5 and then transform it as mentioned above. We
choose c such that the minimum spanning tree has the minimal cost. We
have n choices for c. Running time of points on the real line algorithm is
O(n4 ·D), then running time of our algorithm is O(n5 ·D). So the problem
3 is in P if D is even

If D is odd , there are two arcs between c and c′. Let us call arc 1 the arc
where we trevel clockwise from c to c′ the other arc will be called arc 2. Let
us assume that the length of arc1 ≤ the length of arc 2 (otherwise we can
consider c instead of c′ and c′ instead of c), see Figure 3.10. For the vertices
that lie on the arc 1, we construct points on the real line case as we did in the
even D case, with the exception that we do not add additional c′ as the point
with the biggest coordinate because we already have it. If vertices u and v
belong to the arc 1 and at least one of them is not the center vertex then
| xu−xv | is the length of the arc between u and v which does not contain any
center vertex and by Claim 3.8 it is the arc used in the minimum spanning
tree if there is the edge between u and v in it. | xc − xc′ |= the length of

23

Figure 3.11

arc 1. For the arc 2 we do the same except that we use the counterclockwise
direction instead of the clockwise. If vertices u and v belong to the arc 2 and
at least one of them is not the center vertex then | xu−xv | is the length of the
arc between u and v which does not contain any center vertex, by Claim 3.8
it is the arc used in the minimum spanning tree if there is the edge between
u and v in it. | xc − xc′ |= the length of arc 2. Let us take the minimum
spanning tree for points on a circle case with the odd diameter D and the
center vertices c and c′. Let T1 be the subgraph of T induced by the vertices
which belong to the arc 1 and let T2 be the subgraph of T induced by the
vertices which belong to the arc 2. Because there is no edge between vertex
which belongs to the arc 1 and vertex which belongs to the arc 2(except for
the center vertices), T1 and T2 are trees, T1 ∪ T2 = T and T1 ∩ T2 is the edge
connecting c and c′. Both T1 and T2 have the diameter D. The cost of T =
cost of T1+ cost of T2 −the length of arc 2 (cost of the edge connecting c
and c′ is the length of arc 1 in T1 ,the length of arc 2 in T2 and the length of
arc 1 in T because arc 1 has the smaller length). The cost of T is minimal
if the costs of T1 and T2 are minimal and vice versa. To find T1 we use the
algorithm we used in the proof of Theorem 3.5 for points on the real line
case we constructed for arc 1, to find T2 we use the algorithm we used in the
proof of Theorem 3.5 for points on the real line case we constructed for arc
2. We have n choices for c, also n choices for c′ and running time of points
on the real line algorithm is O(n4 · D), then running time of our algorithm
is O(n6 ·D). So the Problem 3 is in P if D is odd.

Tree is called a Caterpillar Tree if after we remove all leaf vertices from it
we get a path, see Figure 3.11. Caterpillar trees were first studied by Harary
and Schwenk [7].

Theorem 3.9. Given a tree T with edge lengths, The Bounded Diamater
Minimum Spanning Problem (Problem 1), where the vertices of the Graph
are the vertices of T and the cost function is the length of the path between

24

two vertices (Problem 4) is solvable in polynomial time if T is a Caterpillar
Tree.

Proof. If one of the edges of T has the cost 0. We can add a very small
number ε to the cost so that it does not change anything in the proof. So we
can assume that there are no edges of cost 0 in T .

Let p1, p2, ...pk be vertices on the path. All the other vertices are leaf
vertices, see Figure 3.11. Let h and H be the same as in the proof of Theorem
3.5, also let Length(u, v) be the length of path between the vertices u and v
in T .

Claim 3.10. Leaf vertices do not have children in the minimum spanning
tree. If leaf vertex l is connected with the edge to the vertex on the path pi
then in the minimum spanning tree l is the child of pi if pi is not a leaf in
the minimum spanning tree, otherwise they have the same parent.

Proof. Let l be a leaf vertex and let p be its parent. If l has at least one
child in the minimum spanning tree. Let l be connected with the edge to the
vertex on the path pi. For every vertex q except l and pi, Length(l, pi) <
Length(l, q), because the path from q to l contains pi. If h(pi) ≤ h(l), we can
make pi the parent of the child of l , we will get the spanning tree with the
cost less than cost of the minimum spanning tree and with the diameter D,
so we have a contradiction. If h(pi) > h(l), we can make pi child of p, l child
of pi and children of l children of pi (if l is the center vertex we make pi the
center vertex, so if D is odd we add the edge connecting pi to the the second
center vertex), we will get the spanning tree with the cost less than cost of the
minimum spanning tree and with the diameter D, we have a contradiction
again. So leaf vertices do not have children in the minimum spanning tree.
If pi 6= p then if h(pi) 6= H we can make pi parent of l, we will get the
spanning tree with the cost less than cost of the minimum spanning tree and
with the diameter D, a contradiction. If h(pi) = H, let p′ be the parent
of pi, if p′ 6= p, Length(p′, pi) ≤ Length(p, pi), because otherwise we can
make p parent of pi and we will get the spanning tree with the cost less than
cost of the minimum spanning tree and with the diameter D, a contradiction
again. In case of equality after we make p parent of pi we will get the
spanning tree with the same cost as the minimum spanning tree and with the
diameter D. We can consider it as the minimum spanning tree and claim will
hold for l. If we do not have equality then Length(p′, pi) + Length(pi, l) <
Length(p, pi) + Length(pi, l), so Length(p′, l) < Length(p, l) and after we
make p′ parent of l we will get the spanning tree with the cost less than cost
of the minimum spanning tree and with the diameter D, a contradiction.

25

We can assign coordinates to the path vertices to get points on the real
line case we will use. Coordinate of pi is Length(pi, p1). So we can use
the algorithm from the proof of Theorem 3.5 with a little modification : let
A[l, r, p, h] be the same as in the proof of Theorem 3.5. If h > 1 we add sum
of the lengths of the edges connecting k to its neighbouring leaf vertices in
T to it (because k is not a leaf) and if h = 1 or l = r, we add the sum of the
lengths of the paths connecting k to the leaf vertices that are neighbours of
the vertices from the interval [l, r] in T to it (because all the vertices from
the interval [l, r] except k are leafs). Let S[l, r, p, h] also be the same as in
the proof of Theorem 3.5. If h = 1 or l = r we connect vertices from the
interval [l, r] to p with the edges, so we add the sum of the lengths of the
edges connecting p to its neighbouring leaf vertices in T to it (because p is
not a leaf) and we also add the sum of the lengths of the paths connecting p
to the leaf vertices that are neighbours of the vertices from the interval [l, r]
in T to it (because all the vertices from the interval [l, r] are leafs). When we
consider the center vertices we add the lengths of the edges connecting the
center vertices to the neighbouring leaf vertices in T . Running Time of this
algorithm is O(n4 ·D), because we use algorithm from the proof of 3.5 for the
path vertices and during the algorithm for every leaf vertex we add it as the
child of the neighbouring path vertex if it is not a leaf vertex in the spanning
tree and we add it as the child of the parent of the neighbouring path vertex
otherwise. So the Problem 4 is in P if T is a Caterpillar Tree.

26

Chapter 4

Conclusion

In this thesis we showed that the Bounded Diameter Minimum Spanning
Tree problem is NP − hard when D > 3 and costs of all edges of the graph
are not equal and otherwise it is solvable in polynomial time. We proved
that the Bounded Diameter Minimum Spanning Tree problem is solvable in
polynomial time when vertices of the graph are points on the real line, points
on a circle or vertices in a Caterpillar Tree. The questions left to answer
are : how to prove that the Euclidean instance of the Bounded Diameter
Minimum Spanning Tree problem is also NP − hard and what happens
when the vertices of the graph are the vertices of a general tree not just a
Caterpillar Tree, is there polynomial time algorithm to solve this problem or
can we prove that it is NP − hard ?

27

Bibliography

[1] Deo N. Abdalla A. and Gupta P. Random-tree diameter and the diam-
eter constrained mst. Congressus Numerantiun, 144:161–182.

[2] Caccetta P. Achuthan N.R., Caccetta L. and J.F. Geelen. Computa-
tional methods for the diameter restricted minimum weight spanning
tree problem. 1994.

[3] R. E. Bellman. Dynamic Programming. 1957.

[4] A. Bookstein and S. T. Klein. Compression of correlated bit-vectors.
Information Systems, 16(4):387–400.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. 1979.

[6] Martin Gruber. Exact and Heuristic Approaches for Solving the Bounded
Diameter Minimum Spanning Tree Problem. PhD thesis, Vienna Uni-
versity of Technology.

[7] F. Harary and A.J. Schwenk. The number of caterpillars. Discrete
Mathematics 6, 4:359–365, 1973.

[8] J. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proc. of the American Mathematics Society,
7:48–50, 1956.

[9] R. C. Prim. Shortest connection networks and some generalizations.
Bell System Technical Journal, 36:1389–1401, 1957.

[10] K. Raymond. A tree-based algorithm for distributed mutual exclusion.
ACM Transactions on Computer Systems, 7 (1):61–77.

[11] Ronald L. Rivest Clifford Stein Thomas H. Corman, Charles E. Leiser-
son. Introduction to Algorithms. Third edition.

28

	Introduction
	General Bounded Diameter Minimum Spanning Tree
	Bounded Diameter Minimum Spanning Tree for points on the real line, points on a circle and vertices in a tree
	Conclusion

