
On the symmetry of �nite
pseudorandom binary sequences

by

Balázs Sziklai

Submitted to

Central European University

Department of Mathematics and its Applications

In partial ful�llment of the requirements for the degree of Master of Science

Supervisor: Katalin Gyarmati

Budapest, Hungary

2010

I, the undersigned [Balázs Sziklai], candidate for the degree of Master of Science at the
Central European University Mathematics and its Applications, declare herewith that the
present thesis is exclusively my own work, based on my research and only such external
information as is properly credited in notes and bibliography. I declare that no unidenti�ed
and illegitimate use was made of work of others, and no part of the thesis infringes on
any person's or institution's copyright. I also declare that no part of the thesis has been
submitted to this or to any other institution of higher education for an academic degree.

Budapest, 21 May 2010

�����������������
Signature

c© by Balázs Sziklai, 2010

All Rights Reserved.

ii

Table of Contents

Copyright ii

1 Introduction 2

2 Randomness and random sequences 8

2.1 Intuitive notion of randomness . 8

2.2 Normality and equidistribution . 9

2.3 Further approaches . 13

2.4 Finite pseudorandom sequences . 16

3 Pseudorandom number generators 17

3.1 Middle-square method . 17

3.2 Linear congruential method . 18

3.3 Linear feedback shift registers . 19

3.4 Further theoretical discussion . 21

3.5 Modern PRNGs . 24

4 Statistical testing 27

4.1 An insight to statistical testing . 28

4.2 Five basic tests . 29

4.3 A priori testing . 31

5 Results 34

5.1 Generalizations . 35

5.2 Proofs . 36

5.3 Constructions . 41

6 Conclusions 45

Bibliography 47

1

Chapter 1

Introduction

"Any one who considers arithmetical methods of producing random digits is, of course, in

a state of sin." János Neumann

Nowadays it is a popular statement that we live in an information society. Several

de�nitions can be found on the internet about this concept. Perhaps the most straightfor-

ward is: "a post-industrial society in which information technology (IT) is transforming

every aspect of cultural, political, and social life and which is based on the production

and distribution of information" [2]. In this sense it is safe to say that the whole world

heading toward this state. Since information is so important it is evident that the secu-

rity of communication (i.e. exchange of information) is a crucial task. Cryptography (or

cryptology; from Greek, kryptos, "hidden, secret"; gráphō, "I write"; and logos, "word,

reason") emerged from this need during the second World War. Although in real life cryp-

tographical problems appear mostly as a (computer) engineering task, the importance of

security demands mathematical evidence of soundness. As a result today cryptography is

becoming more and more an application of mathematics.

Vast majority of protocols applied in cryptography revolves around randomness. Ran-

dom numbers are indispensable in encrypting messages securely. A well known example

is the one-time pad introduced and patented by Vernon in 1917. In this basic encryption

scheme the message is �rst converted to a binary string then added to a truly random

string of the same size bitwise modulo 2 (XOR function). Shannon proved that the one-

time pad has the property he called perfect secrecy [4]. The encrypted message (i.e. the

ciphertext) provides no information about the original message to the cryptanalyst apart

from its length. Even with in�nite computational power it is impossible to retrieve the

original message. Loosely speaking since the ciphertext appears random every decryption

is equally probable. Naturally with the help of the random string (called 'the pad') the

2

message can be recovered.

For example, suppose we sit in the military headquarters and we would like send the

message "charge" to our troops. Assume two pads of paper containing identical random

sequences of letters were somehow previously produced and securely issued to the valid

parties. We choose the �rst appropriate unused page from the pad. The material on the

selected sheet is the key for this message. Each letter from the pad will be combined in a

predetermined way with one letter of the message. For example we can assign each letter

a numerical value: "A" is 0, "B" is 1 and so on. The technique is to combine the key and

the message using modular addition. The numerical values of the corresponding message

and key letters are added together, modulo 26. Suppose the key material begins with the

letters ULGHIX, then the coding would be done as follows:

C H A R G E

2 7 0 17 6 4

U L G H I X

⊕ 20 11 6 7 8 23

W S G Y O B

22 18 6 24 14 1

Anyone can successfully decrypt the message by subtracting the key from the cipher-

text modulo 26. Since the key was generated randomly no one can guess what the original

message was . Brute force attacks will �nd that the word ULGHIX produce the plaintext

'charge' but they will also �nd that PEVVAO produces 'hold on' and SAEYZX produces

'escape'. No adversary can possibly choose from these equally plausible messages.

W S G Y O B W S G Y O B W S G Y O B

22 18 6 24 14 1 22 18 6 24 14 1 22 18 6 24 14 1

U L G H I X S A E Y Z X P E V V A O

	 20 11 6 7 8 23 18 0 4 24 25 23 15 4 21 21 0 4

C H A R G E E S C A P E H O L D O N

2 7 0 17 6 4 4 18 2 0 15 4 7 14 11 3 14 13

Despite its security, the one time pad has serious drawbacks in practice. To achieve

perfect secrecy, a real random string should be generated and distributed among the

valid parties. Furthermore the pad should be at least as long as the message, which is

really impractical when the message itself is long. Instead of using real random numbers

cryptographers turned toward algorithms which produce numbers close enough to random

- so called pseudorandom. The idea is to stretch a short truly random seed into a long

pseudorandom one.

3

De�nition 1. A pseudorandom number generator (PRNG) is a deterministic algorithm,

which given a truly random string of length k, outputs a string of length l � k which

'appears' to be random. The input of the PRNG is called the seed, while the output of the

PRNG is called the pseudorandom number.

We stress that the output of a PRNG is not random. To see this, consider a pseu-

dorandom number generator G which converts an n long binary string into a 2n long

one. The uniform distribution over {0, 1}2n is characterized by the fact that each of the

22n possible strings is chosen with probability exactly 2−2n. In contrast, consider the

distribution generated by our PRNG. Since G receives an input of length n, the number

of di�erent possible strings in its range is at most 2n. Thus the probability of a random

string of length 2n is in the range of G is at most 2n/22n = 2−n. That is, most strings of

length 2n do not occur as an output of G.

This in particular means that it is trivial to distinguish between the uniform random

distribution and a pseudorandom generator, given an unlimited amount of time. Thus a

brute force attack can be e�ective against PRNGs. Note that we are implicitly applying

Kercho�s' principle. This is a widely used concept in cryptography which states that the

encryption scheme itself should not be kept secure, so only the key should constitute the

secret information shared by the communicating parties.

Consider that in the above example the pad was not generated randomly but by a

pseudorandom generator G. It is possible that the only valid English six letter word in

Gs range is 'charge'. The adversary is well aware of G's imperfection due to Kerckho�s'

principle, hence the encryption scheme is far from secure. To avoid this situation the seed

must be chosen uniformly at random. Furthermore it should be su�ciently large so that

a search over the total possible inputs is infeasible for an adversary.

De�nition 2. A pseudorandom number generator is said to pass all polynomial-time

statistical tests if no polynomial-time algorithm can correctly distinguish between an output

sequence of the generator and a truly random sequence of the same length with probability

signi�cantly greater that 1
2
.

The above de�nition says nothing about the parameters of the polynomial in the

"polynomial-time algorithm". There is no restrictions on the degree nor on the coe�-

cient of the polynomial. Consequently it makes only sense in an asymptotic way. Every

pseudorandom number generator incorporates a security parameter, which is an integer

n. The running time for the adversary as well as the adversary's success probability are

all viewed as functions of n. Increasing the security parameter will increase the running

time for the adversary and decrease the probability of its success. Therefore for every

polynomial time adversary there exist a security parameter for which the probability of

4

success is only negligible. The asymptotic approach is rooted in complexity theory and

widely used in cryptography.

The use of pseudorandom numbers are not limited to cryptography. They play an

important role in many other �elds of applied mathematics, in particular in the problems

of statistics or numerical analysis. Without the intent of completeness, here are a few

examples, where pseudorandom numbers are used:

• Simulation. When a computer is being used to simulate natural phenomena, random

numbers are required to make things realistic.

• Sampling. It is often impractical to examine all possible cases, but a random sample

will provide insight into what constitutes 'typical' behavior.

• Numerical analysis. Ingenious techniques for solving complicated numerical prob-

lems have been devised using random numbers.

• Computer programming. Random values make a good source of data for testing the

e�ectiveness of computer algorithms.

Nevertheless the cryptographical application is by far the most important one. We

send emails, transfer money, use wireless internet connection every day. The security of

all these applications is granted by the results of modern cryptography.

As the above list demonstrates, pseudorandom numbers are used extensively in a large

variety of applications. For di�erent tasks di�erent kind of PRNGs are implemented.

For instance the linear congruential method is commonly used for simulation purposes

and probabilistic algorithms. However it is predictable and hence entirely insecure for

cryptographic purposes. In order to gain con�dence that a generator is adequate for its

task, it should be subjected to a spectrum of statistical tests designed to detect the speci�c

characteristics expected of random sequences.

Many misinterpret the quote of Neumann which we cited at the beginning of this

chapter. He was de�nitely not against the use of pseudorandom numbers. In truly he was

cautioning on mistaking the pseudorandom number generators for being truly 'random'.

He also suggested one of the �rst algorithms to produce pseudorandom numbers. We will

discuss the squaring method in details later. Neumann also stated, that in his experience

"... it was more trouble to test random sequences, than to manufacture them.". The fact

that the US based National Institute of Standards and Technology (NIST) registers more

than 200 statistical tests whose aim is to ensure the good quality of PRNGs supports this

statement [17].

Another reason why statistical tests are important is that there is no evidence that

there exist an algorithm which satis�es both de�nition 1 and 2. We will come back to

this question later.

5

There is a nice summary about the most commonly used statistical tests in the fa-

mous book of Menezes, van Oorschot, and Vanstone [1]. The �rst tests were designed to

be a posteriori tests, meaning they examined the output of a PRNG and not the ran-

dom number generator itself. Whenever a sequence passed these tests it was considered

pseudorandom. On the other hand the aim of a priori or "theoretical" testing is to say

something on the distribution of our PRNG. In 1996 Mauduit and Sárközy introduced

new measures of pseudorandomness for �nite binary strings [13].

We write

EN = {e1, e2, . . . , eN} ∈ {−1,+1}N .

We de�ne the well-distribution measure by

W (EN) = max
a,b,t
|U(EN , t, a, b)| = max

a,b,t

∣∣∣∣∣
t∑

j=0

ea+jb

∣∣∣∣∣.
where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and 1 ≤ a + b ≤
a+ tb ≤ N . While the correlation measure of order k is

Ck(EN) = max
M,D
|V (EN ,M,D)| = max

M,D

∣∣∣∣∣
M∑
n=1

en+d1 . . . en+dk

∣∣∣∣∣,
where D = (d1, . . . , dk) ∈ Nk, 0 ≤ d1 ≤ · · · ≤ dk and the maximum is taken over all D

and M such that M + dk ≤ N .

Beyond the above mentioned measures Mauduit and Sárközy also studied the Legendre

symbol as a natural candidate for producing pseudorandom sequences. They introduced

the following construction: for an arbitrary prime p write

en =

(
n

p

)
, Ep−1 = {e1, . . . , ep−1}. (1.1)

It can be shown that both the well-distribution and correlation measure of Ep−1 is

small. This construction can be further extended. Goubin, Mauduit and Sárközy con-

structed large families of pseudorandom sequences by replacing f(x) for 1 ≤ x ≤ p− 1 in

place of n in (1.1) (see [15]). Still Ep−1 has one bad feature which makes it unsuitable for

some applications. Namely, if p = 4k + 1 for some integer k then
(
a
p

)
=
(
p−a
p

)
and for

p = 4k + 3,
(
a
p

)
= −

(
p−a
p

)
making Ep−1 completely symmetric. To avoid this situation

Gyarmati [3] introduced the symmetry measure:

S(EN) = max
a<b
|H(EN , a, b)| = max

a<b

∣∣∣∣∣∣
[b−a

2
]−1∑

j=0

ea+jeb−j

∣∣∣∣∣∣.

6

She also proved that the �rst p−1
2

elements of Ep−1 have small symmetry measure.

The symmetry property of �nite binary sequences can be further studied. Every sequence

{e1, e2, . . . , eN} ∈ {−1,+1}N contains a large symmetrical subset since both {ei : ei =

eN−i} and {ei : ei = −eN−i} are symmetrical and one of them is large. This implies

that symmetrical patterns can occur quite frequently. Among the possible forms of these

patterns only intervals have been studied yet. In general we do not want to consider any

binary sequence which shows some kind of symmetrical pattern as pseudorandom.

My aim is to generalize the symmetry measure introduced by Gyarmati. I will examine

the two most basic concepts - multiple symmetry centers and arithmetically symmetric

tails. I will give upper and lower bounds for the generalized measures and also show some

examples which demonstrate that these generalizations are indeed necessary. I will also

try to give an insight to the basic mathematical tools and notations of this �eld. In order

to do this, I will discuss the concept of pseudorandom number generators and their testing

in details.

First, in Chapter 2 I will describe the notion of randomness from di�erent perspectives.

In the next chapter I will introduce some pseudorandom number generators which are

historically important. In Chapter 4 I will show how statistical tests work in practice.

Finally in the last two chapters I will present my results and the conclusions.

7

Chapter 2

Randomness and random sequences

"You should call it entropy, for two reasons. In the �rst place your uncertainty function

has been used in statistical mechanics under that name, so it already has a name. In the

second place, and more important, no one really knows what entropy really is, so in a

debate you will always have the advantage." János Neumann

The �rst comprehensive work on pseudorandom numbers was written by Knuth in

his remarkable book, The Art of Computer Programming [5]. American Scientist has

included this work among "100 or so Books that shaped a Century of Science", referring

to the 20th century, and within the computer science community it is regarded as the

�rst and still the best comprehensive treatment of its subject. The book consist of seven

volumes from which only four have been published to date. The �rst half of the second

volume is dedicated completely to random numbers. On the �rst 30 page Knuth describes

some basic pseudorandom number generators, on the next 100 pages he shows how to test

them. Only at the end of the chapter does he ask: "What is a random sequence?" and

spends another 30 pages to build up a meaningful de�nition. We shall proceed in a reverse

order and establish the notion of randomness before moving forward to the applications.

2.1 Intuitive notion of randomness

We can think about randomness as lack of information. The result of a coin-toss is random

because we are unable to measure all the relevant factors (spinning, air resistance, etc.)

which determine the orbit of the coin. The above phenomenon (i.e. unpredictability) is

referred as entropy or Shannon entropy in information theory. Entropy quanti�es, in the

sense of an expected value, the information contained in a message, usually in units such as

bits. A fair coin has an entropy of one bit. In comparison, tossing a coin which has heads

8

on both sides has entropy of 0, since we have full information on the outcome. Similarly a

random string of letters like "vdaphnchorwxbdte" has high entropy, but human language

has low one. For instance in English language the letter 'q' is almost always followed by

the letter 'u'. Hence it would be possible to guess the next letter (or even word) given

some part of the text.

From philosophical point of view we can ask the question, does randomness exist in

the real world? Or is it our inability to compute the complex factors which produces

the random phenomena? If the second assumption is true, we may experience less and

less randomness as our computational power grows. Then again maybe 'random events'

are those for which we need a computer proportional to the size of the universe to cal-

culate their result. They are not random in the idealistic sense of the word, but rather

uncomputable. The whole world could be predestined like a giant clockwork. However

there are signs that support that real randomness actually exist. In quantum mechanics,

the Heisenberg uncertainty principle states that certain pairs of physical properties, like

position and momentum, cannot be both known to arbitrary precision. According to some

interpretations this is not a statement about the limitations of a researcher's ability to

measure particular quantities of a system, but rather a statement about the nature of the

system itself. Consequently there are things which are uncomputable regardless of our

computational power - at least at subatomic level.

Although such a debate is thought provoking, it brings us very far from our original

goal. Therefore we end our philosophical detour here and continue with the notion of

random sequences.

2.2 Normality and equidistribution

We will now follow Knuth's footsteps[5] and try to develop a de�nition for random se-

quences. Consider the following real sequence:

〈Un〉 = U0, U1, U2, . . . (2.1)

Let u and v be real numbers, such that 0 ≤ u < v ≤ 1. If U is a random variable

that is uniformly distributed between 0 and 1, the probability that u ≤ U < v is equal

to v − u. For example the probability that U falls in [1/3, 1/2] is 1/6. We would like

to extend this property for a sequence of random numbers. Since we are talking about

an in�nite set we have to formulate it as an asymptotic condition. An obvious way is to

count how many times Un lies between u and v, and the average number of times should

equal v − u. Let k(n) be the number of values of j, 0 ≤ j < n, such that u ≤ Uj < v; we

want the ratio k(n)/n to approach the value v − u as n approaches in�nity:

9

lim
n→∞

k(n)

n
= v − u (2.2)

Furthermore we say that P̂ r(u ≤ Un < v) = λ if limn→∞ k(n)/n = λ. Now we can

formulate our de�nition:

De�nition 3. The sequence U0, U1, . . . is said to be equidistributed if Pr(u ≤ Un < v) =

v − u for all choices of 0 ≤ u < v ≤ 1.

Naturally we expect from any in�nite random sequence to be equidistributed. On the

other hand it is far from being a su�cient condition of randomness. For example, let

U0, U1, . . . and V0, V1, . . . be two equidistributed sequences. It is not hard to see that the

sequence

W0, W1, W2, W3, · · · =
1

2
U0,

1

2
+

1

2
V0,

1

2
U1,

1

2
+

1

2
V1, . . .

is also equidistributed, since the subsequence 1
2
U0,

1
2
U1 is equidistributed between 0 and

1/2 while the alternate terms 1
2

+ 1
2
V0,

1
2

+ 1
2
V1 are equidistributed between 1/2 and 1.

In the sequence of W's, a value less than 1/2 is always followed by a value greater than

or equal to 1/2, and conversely; hence the sequence is not random by any reasonable

de�nition. A stronger property than equidistribution is needed.

A natural generalization of the equidistribution property, which removes the objection

stated in the preceding paragraph, is to consider adjacent pairs of numbers of our sequence.

We can require the sequence to satisfy the condition

P̂ r(u1 ≤ Un < v1 and u2 ≤ Un + 1 < v2) = (v1 − u1)(v2 − u2)

for all choices of u1, u2, v1, v2, such that 0 ≤ u1 < v1 ≤ 1 and 0 ≤ u2 < v2 ≤ 1. In general,

for any positive integer k we can require our sequence to be k-distributed in the following

sense:

De�nition 4. The sequence in (2.1) is said to be k-distributed if

P̂ r(u1 ≤ Un < v1, . . . , uk ≤ Un+k−1 < vk) = (v1 − u1) . . . (vk − uk)

for all choices of numbers uj, vj such that 0 ≤ uj < vj ≤ 1, for 0 ≤ j ≤ k.

In other words an equidistributed sequence is a 1-distributed sequence. Note that if

k > 1, a k-distributed sequence is always (k - 1)-distributed, since we may set uk = 0 and

vk = 1 in (2.2). At this point where we can formulate a de�nition which will hopefully

bring us just a step away from a satisfactory condition of randomness:

10

De�nition 5. A sequence is said to be∞-distributed if it is k-distributed for every positive

integer k.

It is indeed a strong although not a su�cient condition for randomness. To see this

�rst let us consider integer valued sequences. A sequence 〈Xn〉 = X0, X1, X2, . . . is called

a 'b-ary' sequence if Xj ∈ {0, 1, . . . , b−1} for every j ∈ N. Thus, a 2-ary (binary) sequence

is a sequence of zeros and ones. We also say that a k-digit 'b-ary' number is a string of k

integers x1x2 . . . xk, where 0 ≤ xj ≤ 1 for 0 ≤ j ≤ k.

De�nition 6. A b-ary sequence is said to be k-distributed if

P̂ r(XnXn+1 . . . Xn+k−1 = x1x2 . . . xk) =
1

bk

for all b-ary numbers x1x2 . . . xk.

In this sense it is natural to speak about ∞-distributed b-ary sequences. The repre-

sentation of a positive real number in the radix-b number system may be regarded as a

b-ary sequence; for example, π corresponds to the 10-ary sequence 3, 1, 4, 1, 5, 9, 2, 6, 5,

3, 5, 8, 9, It has been conjectured that this sequence is ∞-distributed, but nobody

has yet been able to prove that it is even 1-distributed (for more on this topic see [10]).

Let us stop here for a moment and analyze the situation where k equals a million. A

binary sequence that is 1,000,000-distributed is going to have runs of a million zeros in a

row! Similarly, a [0, 1) sequence that is 1,000,000-distributed is going to have runs of a

million consecutive values each of which is less than 1/2. It is true that this will happen

only (1/2)1000000 of the time, on the average, but the fact is that it does happen. Indeed,

this phenomenon will occur in any truly random sequence, using our intuitive notion of

'truly random'. One can easily imagine that such a situation will have a drastic e�ect if

this set of a million 'truly random' numbers is being used in a computer-simulation ex-

periment; there would be good reason to complain about the random number generator.

However, if we have a sequence of numbers that never has runs of a million consecutive

U 's less than 1/2, the sequence is not random, and it will not be a suitable source of

numbers for other conceivable applications that use extremely long blocks of U 's as input.

In summary, a truly random sequence will exhibit local nonrandomness. Local nonran-

domness is necessary in some applications, but it is disastrous in others. We are forced

to conclude that no sequence of 'random' numbers can be adequate for every application.

Before we go further we would like to point out that the conception of ∞-distributed

b-ary sequences are not new at all, although in other �elds of mathematics it is referred as

normal numbers. Let x = .x1x2x3 . . . be an in�nite decimal to base b and let Xn denote

the block of digits x1x2 . . . xn. For any particular value j among this b possibilities,

let N(j,Xn) denote the number of occurrences of j in the block Xn. For example, if

11

X6 = 101011, then N(0, X6) = 2 and N(1, X6) = 4. To illustrate the further meaning of

this notation we mention that

b−1∑
j=0

N(j,Xn) = n

De�nition 7. The number x is simply normal to base b if

lim
n→∞

1

n
N(j,Xn) =

1

b

for each of the b di�erent values of j.

Thus x is simply normal to base b if each digit j occurs with frequency 1/b. A number

x is normal to base b if each block Bk of k digits occurs with frequency 1/bk. Note that

normal numbers are nothing else but ∞-distributed b-ary sequences. We do not know

whether such numbers as
√

2 or π are normal to any base. On the other hand it is not

hard to see that the decimal expansion obtained by writing the natural numbers in order

gives a normal number.

Theorem 1. The number

x = 0. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . (2.3)

formed by writing the natural numbers in succession is normal to base 10.

We omit the proof which is rather technical. The above theorem also shows that

normality alone is not a su�cient condition of randomness.

The advantage of considering normal numbers instead of ∞-distributed sequences is

that they are well understood and studied extensively in the past. For instance we know

that the Lebesgue measure of normal numbers in the interval [0, 1] is 1. In other words:

Theorem 2. Almost all real numbers are normal to every base.

Borel was the �rst to show this. A very nice and elementary proof is presented in

Niven's book [16]. The theorem tells us that numbers which are not normal have a

Lebesgue measure 0. We will come back to this theorem in the next section when we

introduce the Martin-Löf de�nition of randomness. Another nice property of normal

numbers that they pass a lot of statistical tests, like frequency test and serial test. We

will describe these tests in Chapter 4.

Finally we reached a point where we can present a meaningful de�nition for random

sequences. Theorem 1 shows that we cannot put equality sign between normal numbers (or

∞-distributed sequences) and random numbers. There are uncountably many sequences

12

U0, U1, . . . of real numbers between zero and one. If a truly random number generator

is sampled to give values U0, U1, . . . , any of the possible sequences may be considered

equally likely, and some of the sequences (indeed, uncountably many of them) are not

even equidistributed. On the other hand, using any reasonable de�nition of probability

on this space of all possible sequences leads us to conclude that a random sequence is ∞-

distributed with probability one. Therefore we are led to formalize the following de�nition

of randomness:

De�nition 8. A [0, 1) sequence is said to be 'random' if each of its in�nite subsequences

is ∞-distributed.

However, the de�nition turns out to be too strict; any equidistributed sequence 〈Un〉
has a monotonic subsequence with Us0 < Us1 < Us2 < · · · . The secret is to restrict the

subsequences so that they could be de�ned by somebody who does not look at Un, before

deciding whether or not it is to be in the subsequence. The following de�nition now

suggests itself:

De�nition 9. A [0, 1) sequence 〈Un〉 is said to be 'random' if, for every e�ective algo-

rithm that speci�es an in�nite sequence of distinct nonnegative integers sn for n ≥ 0 the

subsequence Us0 , Us1 , Us2 , . . . corresponding to this algorithm is ∞-distributed.

Although Knuth re�nes the above de�nition further since at this point it is not clear

what exactly an e�cient algorithm represents. We stop here since De�nition 9 is already

suitable for our goals. In the next section we will show three other approaches to describe

random sequences.

2.3 Further approaches

The reader is probably overwhelmed by the number of de�nitions presented in the last

section. Nevertheless it was inevitable, since randomness itself is a very complex phe-

nomenon. As there is no royal road to geometry, there is no shortcuts to randomness

either. However the reader might �nd some comfort in the fact that the completely dif-

ferent approaches which will be introduced in this section are mathematically equivalent.

The �rst e�orts to describe randomness in the language of mathematics was made by

Richard von Mises [21]. He had attempted to formalize the notion of a test for randomness

in order to de�ne a random sequence as one that passed all tests for randomness; however,

the precise notion of a randomness test was left vague. Di�erent schools of mathematics

approached the problem from di�erent angle. As a result many de�nitions were born

along with Knuth's. Probably the most referred ones are the Martin-Löf de�nition of

randomness and the Kolmogorov complexity.

13

Martin-Löf's key insight was to use the theory of computation to formally de�ne the

notion of a test for randomness [11]. This contrasts with the idea of randomness in

probability; in that theory, no particular element of a sample space can be said to be

random.

Martin-Löf randomness has since been shown to admit many equivalent character-

izations - in terms of compression, randomness tests, and gambling. These bear little

outward resemblance to the original de�nition, but they satisfy our intuitive notion of

properties that random sequences ought to have: random sequences should be incom-

pressible, they should pass statistical tests for randomness, and it should be di�cult to

make money betting on them. The existence of these multiple de�nitions of Martin-Löf

randomness, and the stability of these de�nitions under di�erent models of computation,

give evidence that Martin-Löf randomness is a fundamental property of mathematics and

not an accident of Martin-Löf's particular model.

For a �nite binary string w let Cw denote the cylinder generated by w. This is the

set of all in�nite sequences beginning with w, which is a basic open set in Cantor space.

The product measure µ(Cw) of the cylinder generated by w is de�ned to be 2−|w|. An

e�ectively open set is an open set U such that there is a recursively enumerable set1 S ⊆ N
with U =

⋃
i∈S Ui. A constructive null cover is a recursively enumerable sequence Ui of

e�ective open sets such that Ui+1 ⊆ Ui and µ(Ui) ≤ 2−i for each natural number i. Every

e�ective null cover determines a Gδ set of measure 0, namely the intersection of the sets

Ui (in other words Gδ =
⋂
i Ui).

De�nition 10. A sequence is de�ned to be Martin-Löf random if it is not contained in

any Gδ set determined by a constructive null cover.

The null cover characterization conveys the intuition that a random real number should

not have any property that is 'uncommon'. Each measure 0 set can be thought of as an

uncommon property. Of course there is always a 0 measure set for every sequence, since

the measure of a one-point set is 0. Martin-Löf's idea was to limit the de�nition to

measure 0 sets that are e�ectively describable. Again we bump into the same idea as in

the case of Knuth's de�nition. We have to construct a 0 measure set beforehand and only

then we check if the sequence lies in it or not. If we cannot construct such a 0 measure

set we regard the sequence random.

Another widely accepted de�nition of random sequences relies on the experience that

they are hard to compress. Leonid Levin and Claus-Peter Schnorr proved this equivalent

1We do not intend to dive into the terminology of computability theory. Therefore we wont give a

rigorous de�nition for terms like e�cient algorithm or recursively enumerable sets.

14

characterization in terms of Kolmogorov complexity: a sequence is random if there is a

uniform bound on the compressibility of its initial segments [7]. Kolmogorov complexity

can be thought of as a lower bound on the algorithmic compressibility of a �nite sequence

(of characters or binary digits). It assigns to each such sequence w a natural numberK(w)

that, intuitively, measures the minimum length of a computer program (written in some

�xed programming language) that takes no input and will output w when run. Given a

natural number c and a sequence w, we say that w is c-incompressible if K(w) ≥ |w| − c.

De�nition 11. An in�nite sequence S is Martin-Löf random if and only if there is a

constant c such that all of S's �nite pre�xes are c-incompressible.

The third equivalent characterization was due to Schnorr [19]. He exploited the idea

that that no e�ective procedure should be able to make money betting against a random

sequence. He de�ned a betting strategy d as a martingale. The martingale reads a �nite

pre�x of the in�nite sequence and bets money on the next bit. It bets some fraction of

its money that the next bit will be 0, and then remainder of its money that the next bit

will be 1. It doubles the money it placed on the bit that actually occurred, and it loses

the rest. Let d(w) denote the amount of money the martingale has after seeing the string

w. The martingale characterization says that no betting strategy implementable by any

computer (even in the weak sense of constructive strategies, which are not necessarily

computable) can make money betting on a random sequence.

A martingale is a function d : {0, 1}∗ → [0,∞) such that, for all �nite strings w,

d(w) =
d(w_0) + d(w_1)

2
(2.4)

where a_b is the concatenation of the strings a and b. Equation (2.4) is called the "fairness

condition"; a martingale is viewed as a betting strategy, and the above condition requires

that the better plays against fair odds. Let S be an in�nite sequence and lets denote Sn the

n long pre�x of S. A martingale d is said to succeed on a sequence S if limn→∞ d(Sn) =∞.

A matringale d is constructive if there exists a computable function d̂ : {0, 1}∗ × N→ Q
such that, for all �nite binary strings w

1. d̂(w, t) ≤ d̂(w, t+ 1) < d(w) for all positive integers t,

2. limt→∞ d̂(w, t) = d(w)

De�nition 12. A sequence is Martin-Löf random if and only if no constructive martingale

succeeds on it.

Li and Vitanyi's book An Introduction to Kolmogorov Complexity and Its Applications

is an excellent introduction to all of the above presented ideas [8].

15

2.4 Finite pseudorandom sequences

Up to this point we considered only in�nite sequences. Now we face some di�culties

transferring the above ideas to the �nite case. One may argue that there is no way to

judge whether a �nite sequence is random or not. Any binary sequence of length n has

the same probability to appear in a coin �ip. Still, nearly everyone would agree that the

sequence 011101001 is "more random" than 101010101, and even the latter sequence is

"more random" than 000000000. Although it is true that truly random sequences will

exhibit locally nonrandom behavior, we would expect such behavior only in a long �nite

sequence, not in a short one.

From a point of view of statistics our expectation is not unrealistic at all. Consider the

uniform distribution over {0, 1}n. Lets choose a sequence randomly from this distribution,

and count the number of ones it has. There are n + 1 possibilities as the sequence can

have 0, 1, 2, . . . , n ones. Most of the cases it will show around [n/2] ones. Indeed we would

be very lucky to observe a sequence with less than bn/3c or more than b2n/3c ones. In
this sense it is meaningful to say that it is improbable that a random binary sequence

exhibits too few or too many ones.

The above test is called the monobit test and we will discuss it in details in Chapter

4. Many similar test and measure exist which try to describe the characteristics random

sequence ought to have. Our aim is to design our pseudorandom number generator in

such way that it emits sequences which are 'probable' in the above statistical sense. In

the next chapter we will show some examples for PRNGs.

16

Chapter 3

Pseudorandom number generators

"The generation of random numbers is too important to be left to chance."

Robert R. Coveyou

Shortly after computers were introduced, people began to search for e�cient ways to

obtain random numbers within computer programs. Several methods were implemented

like using previously generated tables of random numbers or attaching a physical random

number generator to the computer. Neither of these were really satisfactory. The �rst

eventually ran out of random numbers while the second was subject to malfunctions that

are di�cult to detect.

3.1 Middle-square method

One of the �rst PRNG was introduced by Neumann in 1949. The so called "middle-square

method" has actually proved to be a comparatively poor source of random numbers. The

algorithm looks like the following

1. take a 2n long integer

2. cut the middle part (which is an n long integer)

3. square it

4. repeat from step 2.

The above procedure fail to satisfy the de�nitions we set up in the introduction, since

we can distinguish it from a real random generator in polynomial time in most of the

17

cases. Basically two kind of problems can occur. The sequence of numbers the algorithm

produces often degenerates to zero. For example,

12100043 . 10002 = 1000000 . 0

We can still �x this by adding a �fth step to the algorithm: every time zero is hit, go

to step 1. Nevertheless even if we disregard the above problem it still can happen that

the procedure ends up in a short cycle.

12475543 . 47552 = 22610025 . 61002 = 37210000 . 21002 = 441000 .

. 41002 = 16810000 . 81002 = 65610000 . 61002 = 37210000 . . .

Several people experimented with the middle-square method in the early 1950s. N.

Metropolis conducted extensive tests on it, mostly in the binary number system [5]. He

showed that when 20-bit numbers are being used, there are 13 di�erent cycles into which

the sequence might degenerate, the longest of which has a period of length 142. On

the other hand, working with 38-bit numbers, Metropolis obtained a sequence of about

750, 000 numbers before degeneracy occurred, and the resulting 750, 000 × 38 bits sat-

isfactorily passed statistical tests for randomness. This shows that the middle-square

method can give usable results, but it is rather dangerous to put much faith in it until

after elaborate computations have been performed.

3.2 Linear congruential method

The most popular random number generators in use today are special cases of the scheme

introduced by Lehmer in 1949. The algorithm itself is very simple. We choose four positive

integers which compose the engine of the PRNG,

• m, the modulus m > 0,

• a, the multiplier 2 ≤ a < m,

• c, the increment 0 ≤ c < m,

• X0 the starting value 0 ≤ X0 < m.

The sequence of pseudorandom numbers 〈Xn〉 is then obtained in the following way:

Xn+1 = aXn + c (mod m) (3.1)

18

This is called a linear congruential sequence. Looking at (3.1) its is obvious that a = 0

and a = 1 does not result in a pseudorandom sequence. Consequently we cannot expect

the sequence to be 'random' for any choice of m, a, c and X0. For instance if m = 1000

and a = c = 100 the algorithm gets into a short cycle for any starting value X0. Naturally

the sequence will get into a loop eventually. The longest period the sequence can have is

m. This is not a problem since we can choose m to be arbitrarily large, the question is

rather how to achieve a period like that. When m is the product of distinct primes, only

a = 1 will produce the full period, but when m is divisible by a high power of some prime

there is considerable latitude in the choice of a. The following theorem makes it easy to

tell if the maximum period is achieved.

Theorem 3. (Hull&Dobell,1962) The linear congruential sequence de�ned by m, a, c,

and X0 has period length m if and only if

• c is relative prime to m;

• a− 1 is a multiple of p for every prime p dividing m;

• a− 1 is a multiple of 4 if m is a multiple of 4.

For the proof see [5].

The linear congruential method gives more or less uniformly distributed integers from

0 to m. However they are predictable hence not random. We can easily compute the

hidden parameters from a few consecutive output. For the same reason it is trivial that

the linear congruential method does not satisfy the conditions of De�nition 2. Clearly it is

worthless from a cryptographyical point of view. Still there are plenty of other applications

which need pseudorandom numbers and the simplicity of the algorithm1 makes it a good

candidate as a PRNG.

3.3 Linear feedback shift registers

Linear feedback shift registers (LFSR) were developed for cryptographyical purposes dur-

ing the second world war. They have been used as pseudorandom number generators,

due to the ease of construction from simple electronic circuits, long periods, and very

uniformly distributed output streams. An LFSR constitutes basically from two parts. A

shift register and a linear feedback function. The shift registers task is to shift its contents

(which is a binary string) into adjacent positions within the register or, in the case of the

1It is not just easy to understand but also simple to put in a program language. An often used

parameter-set is m = 232, a = 1664525, c = 1013904223.

19

position on the end, out of the register. The feedback function is the XOR function of

some previously �xed bit positions. This is always so since the only linear function of

single bits is the exclusive-or. The bit positions that a�ect the next state are called the

taps. For example our LFSR has the following parameters:

• 4 bit long register

• the 3rd and 4th bits are the taps

• the initial value is 0001

The content of the register in the consecutive time slots:

0001 . 1000 . 0100 . 0010 . 1001 . 1100 . 0110 . 1011 .

. 0101 . 1010 . 1101 . 1110 . 1111 . 0111 . 0011 . 0001

The output sequence is s = 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, . . . with period 15. It is

clear from the example that the maximum period of an LFSR is 2n−1, since zero occurs if

only if it was the starting value. Maximum length period can be achieved by choosing the

taps carefully. There is no quick way to determine if a tap sequence is maximal length.

However, there are some ways to tell if one is not maximal length:

1. Maximal length tap sequences always have an even number of taps.

2. The tap values in a maximal length tap sequence are all relatively prime. A tap

sequence like 12, 9, 6, 3 will not be maximal length because the tap values are all

divisible by 3.

The arrangement of taps in an LFSR can be expressed in �nite �eld arithmetic as

a polynomial modulo 2. This is called the feedback or characteristic polynomial (or in

some literature connection polynomial). For instance the the feedback polynomial of the

above LFSR is x4 + x3 + 1. Interestingly very few - even 2 or 4 - taps can su�ce in

reaching maximal period length. For example all the 100-long binary strings (except the

zero string) can be generated with an LFSR having a feedback function x100 + x63 + 1.

The importance of this representation is due to the following fact:

Theorem 4. Let G be an n long LFSR. If h(x) ∈ Z2[x] is a primitive polynomial of

degree n, then the tap system represented by h(x) produces an output sequence of period

2n − 1.

For more details see [1].

Discovering a maximal length tap sequence leads automatically to another. If a maxi-

mal length tap sequence is described by [n, A, B, C], another maximal length tap sequence

20

will be described by [n, n-C, n-B, n-A]. For example the mirror of the feedback polynomial

which we mentioned above is x100 + x37 + 1. What is more, the mirror tap sequence will

cycle through the states in reverse order! This is one of the reasons why shift registers

are not used for cryptographic purposes anymore. Given a stretch of known plaintext

and corresponding ciphertext, an adversary can intercept and recover a stretch of LFSR

output stream. From that stretch of the output stream the adversary can construct an

LFSR of minimal size that simulates the intended receiver by using the Berlekamp-Massey

algorithm. This LFSR can then be fed the intercepted stretch of output stream to recover

the remaining plaintext (in both directions, backward and forward as well).

Shift registers are still in use in digital broadcasting and in some computer applications

since their simple structure allows to construct them in the forms of electronic circuits.

3.4 Further theoretical discussion

So far none of the pseudorandom generators we presented passed the conditions we set

up in the introduction. We also mentioned that it might be the case that there is no

algorithm which satis�es both De�nition 1 and 2. However this is quite unlikely. Our

belief is based on the fact the pseudorandom number generators can be constructed under

the rather weak assumption that one-way functions exist. In order to do this �rst let us

formulate another property of pseudorandom generators.

De�nition 13. A pseudorandom bit generator is said to pass the next-bit test if there is

no polynomial-time algorithm which, on input of the �rst l bits of an output sequence s,

can predict the (l + 1)st bit of s with probability signi�cantly greater than 1/2.

Although De�nition 2 appears to impose a more strict requirement on pseudorandom

generators than De�nition 13 does, the next result asserts that they are, in fact, equivalent.

Theorem 5. A pseudorandom bit generator passes the next-bit test if and only if it passes

all polynomial-time statistical tests.

Obviously if a PRNG cannot be distinguished from a real random generator in poly-

nomial time it passes the next-bit test as well. For the other direction we need a so called

hybrid argument. This proof technique is often used in cryptography to show that two

distributions are computationally indistinguishable. We omit the proof which is rather

technical, but the reader may �nd many hybrid type arguments in [4] from which the

above theorem is clearly follows.

A one-way function f has the property that it is easy to compute, but hard to invert.

The �rst condition means nothing more than f should be computable in polynomial time.

As for the second we shall keep that in mind that ultimately we want a de�nition which

21

is suitable for building secure cryptographic schemes. Therefore we formalize the hard-

ness of inverting f by requiring that it is infeasible for any polynomial time adversary to

invert f - that is to �nd a pre-image of a given value y = f(x) - except with negligible

probability. Consider the following experiment de�ned for any algorithm A and security

parameter n.

The inverting experiment, INVA,f (n)

1. Choose an input x ∈R {0, 1}n (randomly) and compute y = f(x).

2. A is given the security parameter and y as input and outputs x′.

3. The output of the experiment is de�ned to be 1 if f(x′) = y and 0 otherwise.

Note that A does not need to �nd x itself. It su�ces for A to �nd any value x′ for

which f(x′) = y = f(x). Also observe that we are using the asymptotic approach again:

we want to allow A to run in polynomial time in the security parameter n, irrespective

to the length of y. Now we are ready to give an exact de�nition.

De�nition 14. A function f : {0, 1}∗ → {0, 1}∗ is one-way if the following two conditions
hold:

1. There exists a polynomial time algorithm Mf computing f ; that is, Mf (x) = f(x)

for all x.

2. For every polynomial time algorithm A, there exists a negligible function ε(n) such

that

Pr(INVA,f (n) = 1) ≤ ε(n)

We note that a one-way function which is length preserving (i.e. |f(x)| = |x|) and
one-to-one is called one-way permutation. Naturally any one-way function can be inverted

given enough time. It is always possible to simply try all values x ∈ {0, 1}n until a value

x is found such that f(x) = y. Also the one-way property does not mean that everything

about the preimage is hidden. It is possible that f(x) 'leaks' a lot of information about

x, yet f is still hard to invert. For example let f be one-way and let its input be an n

long string, xn = x1x2 . . . xn and de�ne g(x) = (x1, f(x)). Although g reveals the �rst bit

of its input it is trivially one-way.

Before we can construct a PRNG we need another function which is called hardcore

predicate. Our aim is to �nd some information about x which is hidden by f(x). Therefore

we formulate the following de�nition

De�nition 15. A function hc : {0, 1}∗ → {0, 1} is a hardcore predicate of a function f if

22

1. hc can be computed in polynomial time

2. for every polynomial time algorithm A there exist a negligible function ε(n) such

that

Pr
x∈R{0,1}n

[A(f(x)) = hc(x)] ≤ 1

2
+ ε(n).

The second condition states that it is infeasible for any polynomial time algorithm

to correctly determine hc(x) with probability signi�cantly better than 1/2. Of course it

is always possible to compute hc(x) correctly with probability exactly 1/2 by random

guessing.

Hardcore predicates are not so easy to construct. It is still an open question whether

hardcore predicate exist for any one-way function. However a slightly weaker statement

is true:

Theorem 6. For any one-way function f there exists (constructively) a one-way function

g along with a hardcore predicate gl for g.

The hardcore predicate is denoted gl after Goldreich and Levin who proved Theorem

6 (see in [4]). Functions g and gl are constructed as follows:

g(x, r)
def
= (f(x), r); gl(x, r)

def
=

n⊕
i=1

xiri

where x ∈ {0, 1}n is the input and r ∈R {0, 1}n chosen randomly. In this way the function

gl(x, ·) outputs the exclusive-or of a random subset of the bits of x. This is due to the

fact that r can be viewed as selecting a random subset of {1, 2, . . . , n} (i.e., when ri = 1

the bit xi is included in the XOR otherwise not). Thus, Theorem 5 essentially states that

if f is an arbitrary one-way function, then f(x) hides the exclusive-or of a random subset

of the bits of x.

Now we obtained every tool to construct a pseudorandom number generator.

Theorem 7. Let f be a one-way permutation and let hc be a hardcore predicate of f .

Then G(s)
def
= (f(s), hc(s)) constitutes a pseudorandom generator with expansion factor

l(n) = n+ 1.

Indeed G satis�es the criterions of both de�nitions. Clearly it expands the seed by one

bit. However it is not so obvious why all polynomial time algorithm fail to distinguish

between the output of G(s) and a random string of length n + 1. We remark �rst, that

the initial n bit of G are truly random when the seed was chosen uniformly at random due

to the fact that f is a permutation. Also note that hc is a hardcore predicate means that

hc(s) 'looks random'. This idea is supported by the fact that by de�nition the hardcore

23

predicate passes the next-bit test. Putting these observation together we see that the

entire output of G is pseudorandom.

Finally we still owe an explanation why the existence of one-way functions are more

plausible than the existence of PRNGs. Let alone an unconditional proof of the existence

of one-way functions would imply a major breakthrough in complexity theory. However

our assumption is far from being unfounded. There are some computational problems

that received much attention and have yet to yield polynomial time algorithms. Some of

the most famous of these problems include integer factorization, the subset-sum problem

and the discrete logarithm problem. For instance a candidate for one-way function can be

de�ned the following way

f(x1, x2, . . . , xn, J) = (x1, x2, . . . , xn,
∑
j∈J

xj)

where each xj is an n-bit string interpreted as an integer, and J is an n-bit string inter-

preted as a subset of {1, 2, . . . , n}. Given an output (x1, x2, . . . , xn, y) of this function,

the task of inverting it is exactly that of �nding a subset J ′ ⊆ {1, 2, . . . , n} such that∑
j∈J ′ xj = y. This is called the subset-sum problem and it is NP-complete.

3.5 Modern PRNGs

Listing all the pseudorandom generators which are in use today would be a hopeless task.

Instead we brie�y introduce three of them to show an insight into the recent applications.

Mersenne Twister

This particular generator was developed by Matsumoto&Nishimura in 1997 and is

based on a matrix linear recurrence over a �nite binary �eld F2 [12]. It produces very

high-quality pseudorandom numbers, having been designed speci�cally to rectify many of

the �aws found in older algorithms. Its name derives from the fact that period length

is chosen to be a Mersenne prime. There are at least two common variants of the al-

gorithm, di�ering only in the size of the Mersenne primes used. The newer and more

commonly used one is the Mersenne Twister MT19937, with 32-bit word length. There is

also a variant with 64-bit word length, MT19937-64, which generates a di�erent sequence.

The algorithm in its native form is not suitable for cryptography. Observing a su�cient

number of iterates (624 in the case of MT19937) allows one to predict all future iterates.

Another issue is that it can take a long time to turn a non-random initial state into output

that passes randomness tests. Therefore usually a linear congruential generator is used

to seed the Mersenne Twister beforehand. There are many advantages of the Mersenne

24

Twister. First of all it has an incredibly long period of 219937−1. This alone would not be

exceptional but the Mersenne Twister passes numerous statistical tests, including every

tests in the Diehard test-suit (see next chapter). Also it is k-distributed to 32-bit accuracy

for every 1 ≤ k ≤ 623. Thanks to these facts the Mersenne Twister becomes more and

more popular and the algorithm is embedded in such programs as MATLAB, R or Maple.

Blum Blum Shub

Despite its funny name Blum Blum Shub is one of the most secure PRNGs. It has

an unusually strong security proof which relates the quality of the generator to the com-

putational di�culty of integer factorization [6]. The algorithm was developed in 1986 by

Lenore Blum, Manuel Blum and Michael Shub and works in the following way

xn+1 = x2n (mod M)

whereM = pq is the product of two large primes p, q. At each step of the algorithm, some

output is derived from xn+1. Usually it is either the bit-parity or the least signi�cant bit

of term in question. The reason behind this is to prevent leaking too much information

about the internal state of the PRNG. Any adversary who can recover two consecutive

states of the generator (xn, xn+1) would easily determine the modulus and therefore crack

the system. The two primes, p and q, should both be congruent to 3 (mod 4) (this guaran-

tees that each quadratic residue has one square root which is also a quadratic residue) and

gcd(ϕ(p− 1), ϕ(q − 1)) should be small in order to have a big cycle length. For example

let p = 19, q = 23 and x−1 = 4, where x−1 is the initializing value. We can expect to

get a relatively big cycle length for those numbers, because gcd(ϕ(p − 1), ϕ(q − 1)) = 2.

Using the least signi�cant bit formula we obtain the following output sequence:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

value 16 256 423 196 397 289 54 294 347 234 . . .

output 0 0 1 0 1 1 0 0 1 0 . . .

An interesting characteristic of the Blum Blum Shub generator is the possibility to

calculate any xi value directly (via Euler's Theorem):

xi = x
2i mod (p−1)(q−1)
0 (mod M) (3.2)

Unfortunately the algorithm is very slow therefore the generator is not appropriate for

use in simulations.

25

Legendre symbol

Many mathematcians noticed that looking at a string of consecutive integers it seems

erratic which of these integers is a quadratic residue for a given prime p and which is

not. Motivated by this fact, Mauduit and Sárközy initiated a comprehensive study on the

randomness of the Legendre symbol [13], [15]. A pseudorandom number generator can be

constructed the following way:

1. Choose a large prime p randomly, this will be our secret key.

2. Choose a polynomial f(x) ∈ Fp[x] which is not in the form of b(g(x))2 for any b ∈ Fp
and g(x) ∈ Fp[x].

3. The output sequence is Ep = {e1, e2, . . . , ep} is de�ned by

en =


(
f(n)
p

)
for (f(n), p) = 1,

+1 for p|f(n).

For example let p = 13 and f(x) = x3 + 3 then our pseudorandom bit sequence is

Ep e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

value
(

4
13

) (
11
13

) (
4
13

) (
2
13

) (
11
13

) (
8
13

) (
5
13

) (
5
13

) (
1
13

) (
12
13

) (
1
13

) (
12
13

)
output 1 −1 1 −1 −1 −1 −1 −1 1 1 −1 1

Rivat and Sárközy conducted an exhaustive statistical testing of the Legendre symbol

[18]. We will discuss some of the results in the next chapter.

26

Chapter 4

Statistical testing

"The sun comes up just about as often as it goes down, in the long run, but this doesn't

make its motion random." Donald E. Knuth

Naturally it is impossible to give a mathematical proof that a generator is a random

bit generator. The tests described here help detect certain kinds of weaknesses the gener-

ator may have. A posteriori testing means that we take a sample output sequence of the

generator and subject it to various statistical tests. However even if a sequence behaves

randomly with respect to n di�erent tests we cannot be sure in general that it will not be

a miserable failure when it comes to the (n + 1)st test; yet each test gives us more and

more con�dence in the randomness of the sequence. There are several options available for

those who are interested in analyzing their PRNG. The National Institute of Standards

and Technology lists the following reliable test-suites [17]:

Source/a�liation Statistical test

1. Donald Knuth The Art Of Computer

Stanford University Programming Vol. 2

2. George Marsaglia DIEHARD

Florida State University

3. Helen Gustafson, et. al. Crypt-XS

Queensland University of Technology

4. Alfred Menezes, et. al. Handbook of Applied Cryptography

CRC Press, Inc.

5. Andrew Rukhin, et. al. NIST ITL NIST Statistical Test Suite

The DIEHARD suite of statistical tests developed by George Marsaglia consists of

�fteen tests, namely the: birthday spacings, overlapping permutations, ranks of 31 × 31

27

and 32×32 matrices, ranks of 6×8 matrices, monkey tests on 20-bit Words, monkey tests

OPSO, OQSO, DNA, count the 1's in a stream of bytes, count the 1's in speci�c bytes,

parking lot, minimum distance, random spheres, squeeze, overlapping sums and runs.

The Crypt-XS suite of statistical tests was developed by researchers at the Information

Security Research Center at Queensland University of Technology in Australia. Crypt-

XS tests include the frequency, binary derivative, change point, runs, sequence complexity

and linear complexity.

The NIST Statistical Test Suite is the result of collaborations between the Computer

Security Division and the Statistical Engineering Division at NIST. Statistical tests in

the package include the: frequency, block frequency, cumulative sums, runs, long runs,

Marsaglia's rank, spectral (based on the Discrete Fourier Transform), nonoverlapping

template matchings, overlapping template matchings, Maurer's universal statistical, ap-

proximate entropy (based on the work of Pincus, Singer and Kalman), random excursions

(due to Baron and Rukhin), Lempel-Ziv complexity and linear complexity.

As the above list shows there are many kind of tests - each describing di�erent char-

acteristics a random sequence should comprise. There is no way we could introduce all

of them. Instead we will describe the �ve most commonly used tests in the following

sections. We will also say a few words about a priori testing. Before we start to list the

parameters of these tests we will show an example how statistical test works in practice.

4.1 An insight to statistical testing

The following example was published by Marsaglia in his remarkable article the "Monkey

tests for random number generators" [9]. He uses the famous 'monkey at the typewriter'

metaphor to demonstrate how random number generators work. Imagine a monkey who

has a typewriter with 26 uppercase letters A,B, . . . , Z that he strikes at random. More

exactly he produces uniform reals in [0, 1) by means of a procedure UNI() then converts

them by taking the integer part of 26 · UNI(). Now the CAT test: how many keys must

the monkey strike until he spells CAT?

There are 263 = 17, 576 possible 3-letter words so the average number of keystrokes

necessary to produce CAT should be around 17,576, and the time to reach CAT should

be very close to exponentially distributed.

The monkey which uses the linear congruential method Xn+1 = 69069 ·Xn mod 232

and generates UNI() by dividing Xn by 232 gets CAT after 13,561 keystrokes, then after

18,263, then another 14,872 strokes produces the third CAT. Quite satisfactory.

Now consider the shift-register monkey with feedback function x31 + x3 + 1 that pro-

duces 31-bit integers. The shift-register monkey never spells CAT, even after two million

keystrokes. He can not get KAT, DOG, GOD, SEX, WOW or ZIG either. But he can

28

get ZAG, and too often - every few thousand keystrokes. Indeed, it turns out that this

monkey was only able to get 7,834 of the possible 17,576 3-letter words, (in a string of

1,000,000 keystrokes) and of course with his limited vocabulary, he gets those words too

often.

Note that inability to get CAT does not mean that there are broken keys on the

typewriter. This monkey still types each of the letters A to Z with the expected frequencies

(and thus would pass a standard test for letter frequency). For example, 26,000 keystrokes

produced 984 C's, 967 A's and 1021 T's, quite satisfactory. Yet continuing the run to

2,600,000 keystrokes failed to produce a single CAT!

As silly as it seems, this is a very e�ective and convincing way to show the unsuitability

of certain random number generators. Of course for practical purposes every 3-letter word

has to be tested, not just CAT.

4.2 Five basic tests

The following statistical tests are widely used for determining whether a binary sequence

possess some speci�c characteristics that a truly random sequence would be likely to

exhibit. We emphasize again that the outcome of each test is not de�nite, but rather

probabilistic. If a sequence passes all �ve tests, there is no guarantee that it was indeed

produced by a random bit generator. Let EN = {e1, e2, . . . , eN−1} be a binary sequence

of length n.

(i) Frequency test (monobit test)

The purpose of this test is to determine whether the number of 0's and 1's in EN are

approximately the same, as would be expected for a random sequence. Let n0, n1 denote

the number of 0's and 1's in EN respectively. The statistic used is

X1 =
(n0 −N/2)2

N/2
+

(n1 −N/2)2

N/2
=

(n0 − n1)
2

N/2

which approximately follows a χ2 distribution with degree of freedom one if N ≥ 10.

(ii) Serial test (two-bit test)

Let n00, n01, n10 and n11 denote the number of occurrences of 00, 01, 10 and 11 in EN

respectively and let n0 and n1 be the same as above. The statistic used is

X2 =
4

N − 1
(n2

00 + n2
01 + n2

10 + n2
11)−

2

N
(n2

0 + n2
1)− 1

29

which approximately follows a χ2 distribution with degree of freedom two if N ≥ 21.

(iii) Poker test

Let m be a positive integer such that bN/mc ≥ 5 · 2m and let k = bN/mc. Divide

the sequence EN into k non-overlapping parts each of length m. There are 2m di�erent

m words. Let denote ni the number of occurrences of the i
th type of sequence of length

m where 1 ≤ i ≤ 2m. The statistic used is

X3 =
2m

N

(
2m∑
i=1

n2
i

)
− k

which approximately follows a χ2 distribution with degree of freedom 2m − 1. Note that

the poker test is a generalization of the frequency test: setting m = 1 in the poker test

yields the frequency test.

(iv) Runs test

A run of EN is a subsequence of EN consisting of consecutive 0's or consecutive 1's

which is neither preceded nor succeeded by the same symbol. The purpose of the runs

test is to determine whether the number of runs (of either zeros or ones) of various lengths

in the sequence EN is as expected for a random sequence. A run of zeros is called a gap

and a run of ones is called a block. The expected number of gaps and blocks of length i

in a random sequence of length N is mi = (N − i+ 3)/2i+2. Let k be equal to the largest

integer i for which mi ≥ 5. Let Bi, Gi be the number of blocks and gaps, respectively, of

length i in EN for each i, 1 ≤ i ≤ k. The statistic used is

X4 =
k∑
i=1

(Bi −mi)
2

mi

+
k∑
i=1

(Gi −mi)
2

mi

which approximately follows a χ2 distribution with degree of freedom 2k − 2.

(v) Autocorrelation test

The purpose of this test is to check for correlations between the sequence EN and

(non-cyclic) shifted versions of it. Let d be a �xed integer, 1 ≤ d ≤ bN/2c. The number
of bits in EN not equal to their d-shifts is A(d) =

∑N−d−1
i=1 ei⊕ ei+d, where ⊕ denotes the

XOR operator. The statistic used is

30

X5 = 2

(
A(d)− N − d

2

)
/
√
N − d

which approximately follows an N(0; 1) distribution if N − d ≥ 10. Since small values of

A(d) are as unexpected as large values of A(d), a two-sided test should be used.

As the above examples show in most of the cases we try to pinpoint a characteristics of

binary sequences that we can compare with the χ2 or the normal distribution. There are

some other type of tests. For example we can assign to each binary sequence a random

walk on the real line (0 means we go one step to the left and 1 means we go one step

to the right). We know that the expected outcome of such a walk should be around

zero. Another test is to �nd the shortest linear feedback shift register which outputs our

sequence. Random sequences are characterized by a longer feedback register. A short

feedback register implies non-randomness and so on. As we indicated in the beginning of

this chapter there are countless number of tests and we do not intend to introduce all of

them. Rather we move on to the topic of theoretical testing.

4.3 A priori testing

The idea behind a priori or as Knuth calls it "theoretical" testing is to prove something

on the distribution of the PRNG instead of taking a sample from the possible outputs

and testing them. Cassaigne, Maduit, Rivat and Sárközy provided many results in this

topic, especially connected to the Legendre-symbol [13], [14], [15]. To give an insight now

we present two examples for such results. For convenience sake we remind the reader to

the de�nition of well-distribution measure.

W (EN)
def
= max

a,b,t

∣∣∣∣∣
t∑

j=0

ea+jb

∣∣∣∣∣
where EN = {e1, e2, . . . , eN} ∈ {−1, 1}N and the maximum is taken over all a, b, t such

that a ∈ Z, b, t ∈ N and 1 ≤ a+ b ≤ a+ tb ≤ N .

Theorem 8. For all binary sequences EN = {e1, e2, . . . , eN} ∈ {−1, 1}N we have

X1 ≤
1

N
(W (EN))2

where X1 is the test statistics for the monobit test.

Proof of Theorem 8

Let n− and n+ denote the number of −1's and 1's in EN respectively. We have

31

n− = −1

2

N∑
i=1

(ei − 1), and n+ =
1

2

N∑
i=1

(ei + 1)

and so

X1 =
1

N
(n− − n+)2 =

1

N

(
N∑
i=1

ei

)2

≤ 1

N
(W (EN))2

�

Another result involves the Correlation measure. Let X = {x1, . . . , xk} ∈ {−1, 1}k,
M ∈ N and E ∈ {−1, 1}∞. We write

T (E,M,X) = |{n : 0 ≤ n < M, {en+1,en+2,...,en+k} = X}|

Then E is said to be normal (or ∞-distributed) if

|T (E,M,X)−M/2k| = o(M)

for all �xed k and X, as M → ∞. With the help of T (E,M,X) we can transfer the

normality requirement to �nite sequences.

De�nition 16. A �nite sequence EN = {e1, e2, . . . , eN} ∈ {−1, 1}N is said to be pseudo-

random if for all k ∈ N with k ≤ (logN)/ log 2 and for all X = {x1, . . . , xk} ∈ {−1, 1}k

we have ∣∣∣∣T (EN , N + 1− k,X)− N + 1− k
2k

∣∣∣∣ ≤ √N.
De�nition 16 may be too strict, since it considers a sequence either pseudorandom or

not. A more �exible approach is to construct a measure from T (EN ,M,X).

De�nition 17. We de�ne the Normality measure of order k by:

Nk(EN) = max
X∈{−1,1}k

max
0<M≤N+1−k

|T (EN ,M,X)−M/2k|,

and the Normality measure by

N(EN) = max
k≤(logN)/ log 2

Nk(EN).

Sequences with reasonably small values of Normality measure can be accepted as

pseudorandom. It depends on the application how we interpret "reasonably", but as a rule

of thumb we can say that it should be less or proportional to
√
N . The following theorem

32

guarantees that Normality measure can be controlled with the help of the Correlation

measure. For the reader's convenience we repeat the de�nition of the Correlation measure

of order k:

Ck(EN) = max
M,D
|V (EN ,M,D)| = max

M,D

∣∣∣∣∣
M∑
n=1

en+d1 . . . en+dk

∣∣∣∣∣,
where D = (d1, . . . , dk) ∈ Nk, 0 ≤ d1 ≤ · · · ≤ dk and the maximum is taken over all D

and M such that M + dk ≤ N . Now the theorem

Theorem 9. (Mauduit&Sárközy) For all N , EN and k < N we have

Nk(EN) ≤ max
1≤t≤k

Ct(EN).

Proof of Theorem 9

For all k,N ∈ N, X = {x1, . . . , xk} ∈ {−1, 1}k and 1 ≤M ≤ N + 1− k we have

|T (E,M,X)−M/2k| =

=

∣∣∣∣|{n : 0 ≤ n < M, {en+1, en+2, . . . , en+k} = X}| − M

2k

∣∣∣∣ =

=

∣∣∣∣∣
M−1∑
n=0

x1 · · ·xk
2k

k∏
j=1

(en+j + xj)−
M

2k

∣∣∣∣∣ =

=

∣∣∣∣∣∣x1 · · ·xk2k

∑
1≤d1<···<dt≤k

 ∏
j∈{1,...,k}\{d1,...,dt}

xj

M−1∑
n=0

en+d1 · · · en+dt

∣∣∣∣∣∣ ≤
≤ 1

2k

∑
∅6=D⊂{1,2,...,k}

∣∣∣∣∣
M−1∑
n=0

en+d1 · · · en+dt

∣∣∣∣∣ ≤ 1

2k

k∑
t=1

(
k

t

)
Ct(EN) ≤

≤ max
1≤t≤k

|Ct(EN)|

�

We managed to trace back two important characteristics of random sequences to the

Well-distribution and Correlation measures. Should any PRNG have good scores at these

measures they immediately pass the normality and monobit tests as well. Rivat and

Sárközy proved in a conference paper that all the �ve basic tests can be controlled with

the help of the Well-distribution and Correlation measures [18]. They also proved that

the Legendre-symbol - with appropriate setup - can be adjusted to pass these tests. This

can be considered the main advantage of a priori testing. In the next chapter we will

introduce new measures and obtain some theoretical results.

33

Chapter 5

Results

"Perhaps in ten years society may derive advantage from the curves which these visionary

algebraists will have laboriously squared. I congratulate posterity beforehand. But to tell

you the truth I see nothing but a scienti�c extravagance in all these calculations. That

which is neither useful nor agreeable is worthless. And as for useful things, they have all

been discovered; and to those which are agreeable, I hope that good taste will not admit

algebra among them." Frederick the Great

We have seen how useful the Well-distribution and Correlation measure is in theoretical

testing. On the other hand it is clear hand that these two measures cannot possibly

describe all the characteristics that pseudorandom sequences possess. This observation

led to the introduction of the symmetry measure. To justify the necessity of a new

measure we have to prove that it is fairly independent from the old ones. The following

two constructions show that this is indeed the case. For the readers convenience we repeat

the de�nition of the symmetry measure

S(EN) = max
a<b

∣∣∣∣∣∣
[b−a

2
]−1∑

j=0

ea+jeb−j

∣∣∣∣∣∣,
where the maximum is taken over all a, b ∈ N such that 1 ≤ a < b ≤ N .

Example 1

Consider a sequence EN = {e1, e2, . . . , eN} ∈ {−1, 1}N such that each of the Sym-

metry, Correlation and Well-distribution measure of it are possibly small (it is a fact

that all these measures can be O
(
(N logN)1/2)

)
simultaneously). We de�ne E∗2N =

{e∗1, e∗2, . . . , e∗2N} ∈ {−1, 1}2N by

34

e∗n =

en for 1 ≤ n ≤ N

en−N for N < n ≤ 2N

Then it is easy to see that the Well-distribution measure measure of E∗2N is less than

a constant times the corresponding measure of EN . Furthermore the Symmetry measure

S(E∗2N) ≤ S(EN) + C2(EN), but

C2(E
∗
2N) ≥

∣∣∣∣∣
N∑
n=1

e− n∗e∗n+N

∣∣∣∣∣ = N

Example 2

Consider the same sequence EN again. We de�ne E ′2N = {e′1, e′2, . . . , e′2N} ∈ {−1, 1}2N

by

e′n =

en for 1 ≤ n ≤ N

e2N−n for N < n ≤ 2N

Then the correlation measure of order 2 is less than a constant times S(EN)+C2(EN),

while W (E ′2N) ≤ 2W (EN). But

S(E ′2N) ≥

∣∣∣∣∣
N∑
n=1

e− n′e′2N−n

∣∣∣∣∣ = N

�

There are many possible symmetrical patterns that a sequence can exhibit. The

symmetry measure only indicates if a sequence has a large symmetrical subsequence or

not. It is a reasonable idea to broaden the range of patterns that the symmetry measure

can detect. In the forthcoming sections we will show two possible generalizations. We

will also give upper and lower bounds for the generalized measures.

5.1 Generalizations

Let A = (a1, a2, . . . , at) ∈ Nt, B = (b1, b2, . . . , bt) ∈ Nt, a1 < a2 < · · · < at and 1 ≤ A <

B ≤ N elementwise (i.e. 1 ≤ ai < bi ≤ N for i = 1, 2, . . . , t). We write

SM(EN , t) = max
A<B


∣∣∣∣∣∣
[
b1−a1

2
]−1∑

j=0

(ea1+jeb1−j)

∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣
[
bt−at

2
]−1∑

j=0

(eat+jebt−j)

∣∣∣∣∣∣
 , (5.1)

35

where the maximum is taken over all possible A's and B's such that A < B. In this way

SM(EN , t) indicates if the sequence has multiple symmetrical subsequences or not.

We de�ne SD(EN , d) by

SD(EN , d) = max
a,b

∣∣∣∣∣∣
[b−a

2d
]−1∑

j=0

ea+djeb−dj

∣∣∣∣∣∣, (5.2)

which counts the largest symmetric arithmetic progression of di�erence d ∈ N outgoing

from a speci�c center (determined by a and b).

Note that SM(EN , 1) = S(EN) = SD(EN , 1) so indeed both measures are generaliza-

tions of the symmetry measure.

Theorem 10. There is an integer N0 such that for N > N0 we have

a) SM(EN , t) >
7
√
t

20

√
N − t

2
, (5.3)

b) SD(EN , d) >
7

20d

√
N. (5.4)

In the next theorem we will estimate SM(EN , t) and SD(EN , d) for �xed t's and

d's and for 'random' binary sequences EN ∈ {1,−1}N (i.e. we are choosing each EN ∈
{1,−1}N with probability 1/2N). In this way the upper bounds hold only for the majority

of sequences.

Theorem 11. For all ε > 0 there exits N0(ε) such that for N > N0(ε) we have:

a) P

(
(SM(EN , t) <

17t

4
(N logN)1/2

)
> 1− ε, (5.5)

b) P

(
(SD(EN , d) <

17

4
√
d

(N logN)1/2
)
> 1− ε. (5.6)

5.2 Proofs

Proof of Theorem 10

We will use the same exponential sum in order to prove both parts of Theorem 10,

namely let EN = {e1, e2, . . . , eN} be the usual N long binary sequence and f(z) =∑N
n=1 enz

n. Throughout the proof e(α) will denote exp (2πiα). By the Cauchy-Schwarz

inequality and the Parseval formula we obtain:

K
def
=

∫ 1

0

|f(e(α))|4dα ≥
(∫ 1

0

|f(e(α))|2dα
)2

≥ N2. (5.7)

36

On the other hand:

K =

∫ 1

0

|f 2(e(α))|2dα =

∫ 1

0

∣∣∣∣∣
N∑
n=1

N∑
m=1

eneme((n+m)α)

∣∣∣∣∣
2

dα =

=

∫ 1

0

∣∣∣∣∣∣
2N∑
k=2

 ∑
max{1, k−N}≤n≤min{N, k−1}

enek−n

 e(kα)

∣∣∣∣∣∣
2

dα =

=
2N∑
k=2

∣∣∣∣∣∣
∑

max{1, k−N}≤n≤min{N, k−1}

enek−n

∣∣∣∣∣∣
2

. (5.8)

Now this sum can be estimated from above by both symmetry measures. First for

2 ≤ k1, k2, . . . , kt ≤ 2N such that k1, . . . , kt are di�erent, we have

t∑
i=1

∣∣∣∣∣∣
∑

max{1, ki−N}≤n≤min{N, ki−1}

eneki−n

∣∣∣∣∣∣
2

≤

≤

 t∑
i=1

∣∣∣∣∣∣
∑

max{1, ki−N}≤n≤min{N, ki−1}

eneki−n

∣∣∣∣∣∣
2

≤ (2SM(EN , t) + t)2.

Which yields

N2 ≤ K =
2N∑
k=2

∣∣∣∣∣∣
∑

max{1, k−N}≤n≤min{N, k−1}

enek−n

∣∣∣∣∣∣
2

≤

≤
⌈

2N − 1

t

⌉
(2SM(EN , t) + t)2 . (5.9)

By (5.7) and (5.9) we can conclude

SM(EN , t) ≥
√
t

2
√

2

√
N − t

2
>

7
√
t

20

√
N − t

2

which completes the the proof of Theorem 1 (5.3). Similarly we can estimate (5.8) by

using the de�nition of SD(EN , d):

∣∣∣∣∣∣
∑

max{1, ki−N}≤n≤min{N, ki−1}

eneki−n

∣∣∣∣∣∣ ≤ (2dSD(EN , d) + 1)2

N2 ≤
2N∑
k=2

∣∣∣∣∣∣
∑

max{1, ki−N}≤n≤min{N, ki−1}

eneki−n

∣∣∣∣∣∣ ≤ (2N − 1)(2dSD(EN , d) + 1)2,

37

from which (5.4) follows. �

Proof of Theorem 11

The following lemma was used in the paper of Cassaigne, Mauduit and Sárközy [14],

we shall need it as well. They omit the proof, thus we prove it here.

Lemma 1. Let k be an integer such that k ≤ tα where 0 ≤ α < 2/3. If t→∞ then(
t

[t/2] + k

)
=

(
t

[t/2]

)
exp

(
−2k2

t
+O

(
k3

t2

))
. (5.10)

Proof of Lemma 1

We denote by A the fraction of binomials.

A =

(
t

[t/2]+k

)(
t

[t/2]

) =
([t/2]!)2

([t/2]− k)!([t/2] + k)!
=

=
([t/2] + 1− k)([t/2] + 2− k) . . . ([t/2] + k − k)

([t/2] + 1)([t/2] + 2) . . . ([t/2] + k)
=

=

(
1− k

[t/2] + 1

)(
1− k

[t/2] + 2

)
. . .

(
1− k

[t/2] + k

)
. (5.11)

Its clear from (5.11) that

(
1− 2k

t

)k
≤ A ≤

(
1− 2k

t+ 2k

)k
.

It is enough to prove that A · exp
(

2k2

t

)
= exp

(
O
(
k3

t2

))
as t→∞. Let k = tβ,

lim
t→∞

A · e
2k2

t = lim
t→∞

A · e2t2β−1 ≥ lim
t→∞

(
1− 2tβ

t

)tβ
e2t

2β−1

=

= lim
t→∞

(1− 2t2β−1

tβ

) tβ

2t2β−1

2t2β−1

e2t
2β−1

=

= e−2t
2β−1

e2t
2β−1

= 1,

38

lim
t→∞

A · e
2k2

t = lim
t→∞

A · e2t2β−1 ≤ lim
t→∞

(
1− 2tβ

t+ 2tβ

)tβ
e2t

2β−1

=

= lim
t→∞

(1− 2t2β/(t+ 2tβ)

tβ

) tβ

2t2β/(t+2tβ)

2t2β/(t+2tβ)

e2t
2β−1

=

= e
−2t2β−1 1

1+o(tβ/t) e2t
2β−1

= e
o(t3β/t2)

1+o(tβ/t) ≤ eo(t
3β/t2) ≤ eo(t

3α/t2).

Indeed the above estimates together establish (5.10) and complete the proof of the

lemma.

Write L = 4.25(N logN)1/2. Then we have

P (SD(EN , d) > L/
√
d) = P

max
a<b

∣∣∣∣∣∣
[(b−a)/2d]−1∑

j=0

ea+djeb−dj

∣∣∣∣∣∣ > L√
d

 ≤
≤
∑
a<b

P

∣∣∣∣∣∣
[(b−a)/2d]−1∑

j=0

ea+djeb−dj

∣∣∣∣∣∣ > L√
d

 ≤
≤
(
N

2

)
max
a<b

P

∣∣∣∣∣∣
[(b−a)/2d]−1∑

j=0

ea+djeb−dj

∣∣∣∣∣∣ > L√
d

 ,

where a, b ∈ N such that 1 ≤ a < b ≤ N . It su�ces to show that for all such a's and b's

we have:

P

∣∣∣∣∣∣
[(b−a)/2d]−1∑

j=0

ea+djeb−dj

∣∣∣∣∣∣ > L/
√
d

 <
2ε

N2
. (5.12)

Let l = [(b− a)/2d]. If l ≤ L/
√
d then the probability in (8) is zero so we may assume

that l > L/
√
d. Write

M
def
= 6(l log l)1/2 (5.13)

and

|{j : 0 ≤ j ≤ l − 1, ea+djeb−dj = −1}| = h. (5.14)

Then we have

39

l−1∑
j=0

ea+djeb−dj = |{j : 0 ≤ j ≤ l − 1, ea+djeb−dj = 1}|−

− |{j : 0 ≤ j ≤ l − 1, ea+djeb−dj = −1}| =

= (l − h)− h = l − 2h.

The number of 2l-long sequences for which (5.14) holds is
(
l
h

)
2h2l−h =

(
l
h

)
2l. So the

probability of (5.14) is 1
2l

(
l
h

)
. Since M ≤ L/

√
d it is enough to consider

P

(∣∣∣∣∣
l−1∑
j=1

ea+djeb−dj

∣∣∣∣∣ > M

)
=

∑
h: |l−2h|>M

1

2l

(
l

h

)
=

1

2l

∑
h: |h−l/2|>M/2

(
l

h

)
. (5.15)

If N is large enough so is l since l > L/
√
d. Using Lemma 1 we can estimate the above

sum.

∑
h: |h−l/2|>M/2

(
l

h

)
=

∑
h: |h−l/2|>3(l log l)1/2

(
l

h

)
< l

(
l

[l/2] + [3(l log l)1/2]

)
≤

≤ l

(
l

[l/2]

)
exp

(
−2(3(l log l)1/2)2

1

l
+ o(1)

)
<

< l

(
l

[l/2]

)
exp (−18 log l + o(1)) <

2l

l16
. (5.16)

Finally by (5.13) and (5.16) we conclude

P

(∣∣∣∣∣
l−1∑
j=0

ea+djeb−dj

∣∣∣∣∣ > L/
√
d

)
≤ P

(∣∣∣∣∣
l−1∑
j=0

ea+djeb−dj

∣∣∣∣∣ > M

)
<

<
1

2l
2l

l16
<

(√
d

L

)16

= o

(
1

N8

)
<

2ε

N2
,

which proves (5.12) and completes the second part of Theorem 2 (5.6). The �rst part

immediately follows from the fact that SD(EN , d) · t · d ≥ SM(EN , t) is true for every d.

In particular when d = 1

P (SM(EN , t) > tL) ≤ P (tSD(EN , 1) > tL) < ε.

�

40

5.3 Constructions

To justify the newly introduced generalized symmetry measures, we now show a sequence

which passes the usual statistical tests even though it has a deeply symmetric structure.

Theorem 12. There exists a sequence for which S(EN) is small, but SD(EN , 2) is big,

that is

S(EN) ≤ 54N1/2 logN

N/4 ≤ SD(EN , 2) ≤ N/2

Proof of Theorem 12

For the proof we will use two lemmas.

Lemma 2. If p is a prime number, f(x) ∈ Fp[x] is a polynomial of degree k such that it

is not in the form f(x) ∈ b(g(x))2 with b ∈ Fp, g(x) ∈ Fp[x], and X, Y are real numbers

with 0 < Y ≤ p then writing

χ∗p(n) =


(
n
p

)
for (n, p) = 1

0 for p|n

we have ∣∣∣∣∣ ∑
X<n≤X+Y

χ∗p(f(n))

∣∣∣∣∣ < 9kp1/2 log p.

For the proof see [13]. Indeed there this result is deduced from Weil's theorem [20].

Also we need the following result of Gyarmati we mentioned previously.

Lemma 3. The �rst p−1
2

elements of Ep−1 have small symmetry measure. That is

S(E p−1
2

) < 18p1/2 log p,

where E p−1
2

=
{(

1
p

)
,
(

2
p

)
, . . . ,

(
(p−1)/2

p

)}
For the proof see [3].

Now we can construct a sequence which has the required property. We de�ne Êp−1 =

(e1, e2, . . . , ej, . . . , ep−1) where

ej =



(
j
p

)
, if 1 ≤ j ≤ p−1

2(
p−j
p

)
, if p+1

2
≤ j ≤ p− 1, j is even

−
(
p−j
p

)
, if p+1

2
≤ j ≤ p− 1, j is odd

41

In this way the second part of the sequence is the re�ection of the �rst part except

that we changed the sign of every second term. We will show that Êp−1 has small S(Êp−1)

although SD(Êp−1, 2) is huge. Indeed it is easy to check the second statement. Using

(5.2) we obtain: ∣∣∣∣∣∣
[(p−1)/4]−1∑

j=0

e1+2jep−2j

∣∣∣∣∣∣ =
p− 1

4
≤ SD(Ep−1, 2). (5.17)

To prove the �rst statement we have to check that H(Êp−1, a, b) is small for every a

and b such that 1 ≤ a < b ≤ p.

I. If b ≤ p−1
2

we can directly apply Lemma 3 and obtain

S(Êp−1) = max
a<b≤(p−1)/2

∣∣∣H(Êp−1, a, b)
∣∣∣ < 18p1/2 log p. (5.18)

II. If a > p−1
2

we have a very similar case, except here the sign of every second term

was changed. We denote the subsequence of the �rst (p− 1)/2 element of Êp−1 by E p−1
2

and the subsequence of the remaining (p− 1)/2 element by Ê p−1
2
. Observe that for every

given a and b the magnitude of the sum

H(Ê p−1
2
, a, b) =

[(b−a)/2]−1∑
j=0

ea+jeb−j

is the same as H(E p−1
2
, p−1

2
+ 1− b, p−1

2
+ 1− a) up to sign. Hence,

∣∣∣H(Ê p−1
2
, a, b)

∣∣∣ =

∣∣∣∣H(E p−1
2
,
p− 1

2
+ 1− b, p− 1

2
+ 1− a)

∣∣∣∣ < 18p1/2 log p. (5.19)

III.The remaining case is where a ≤ p−1
2

and b > p−1
2
.

a) For a = p− b we have S(Êp−1) = 0 by construction.

b) If a > p− b then

∣∣∣∣∣∣
[b−a

2
]−1∑

j=0

ea+jeb−j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
p−1
2
−a∑

j=0

ea+jeb−j +

[b−a
2

]−1∑
j= p+1

2
−a

ea+jeb−j

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
p−1
2
−a∑

j=0

ea+jeb−j

∣∣∣∣∣∣+ 18p
1
2 log p. (5.20)

In this way we split the sum into a �rst (outer) and a second (inner) part. The inner

part of the sum can be estimated by (5.19), so we only need to deal with the outer part.

42

∣∣∣∣∣∣
p−1
2
−a∑

j=0

ea+jeb−j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
p−1
2
−a∑

j=0, j even

(
a+ j

p

)(
p− b+ j

p

)
−

p−1
2
−a∑

j=1, j odd

(
a+ j

p

)(
p− b+ j

p

)∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
[p−1

4
−a

2
]∑

k=0

(
a+ 2k

p

)(
p− b+ 2k

p

)∣∣∣∣∣∣+

∣∣∣∣∣∣
[p−1

4
−a

2
]∑

k=0

(
a+ 2k + 1

p

)(
p− b+ 2k + 1

p

)∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
[p−1

4
−a

2
]∑

k=0

(
(2k)2 + (a− b)2k − ab

p

)∣∣∣∣∣∣+

∣∣∣∣∣∣
[p−1

4
−a

2
]∑

k=0

(
(2k + 1)2 + (a− b)(2k + 1)− ab

p

)∣∣∣∣∣∣ .
Let f1(x) = 4x2+2(a−b)x−ab ∈ Fp[x] and f2(x) = 4x2+2(b−a+1)x+ab+a−b+1 ∈

Fp[x]. It is easy to check that both f1(x) and f2(x) can be written as b1(g1(x))2 and

b2(g2(x))2 respectively if and only if a + b ≡ 0 (mod p). Now this is impossible since we

assumed that a > p− b. Applying Lemma 2 twice with 0 and [p−1
4
− a

2
] in place of X and

Y we get

∣∣∣∣∣∣
p−1
2
−a∑

j=0

ea+jeb−j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
[p−1

4
−a

2
]∑

k=0

(
f1(k)

p

)∣∣∣∣∣∣+

∣∣∣∣∣∣
[p−1

4
−a

2
]∑

k=0

(
f2(k)

p

)∣∣∣∣∣∣ =

=

∣∣∣∣∣ ∑
X≤k≤X+Y

χ∗p(f1(k))

∣∣∣∣∣+

∣∣∣∣∣ ∑
X≤k≤X+Y

χ∗p(f2(k))

∣∣∣∣∣ ≤
≤ 18p1/2 log p+ 18p1/2 log p = 36p1/2 log p. (5.21)

By (5.20) and (5.21) we obtain that S(Êp−1) ≤ 54p1/2 log p.

c) For a < p − b we can repeat the previous argument by symmetry. Again we split

the sum. The inner part can be estimated by (5.18) and for the outer part we obtain the

same result as in (5.21).

Now by (5.18), (5.19) and (5.21) we gather

S(Êp−1) ≤ 54p1/2 log p,

which together with (5.17) completes the proof of Theorem 3. �

Now we show an example for a sequence EN for which SD(EN , d) is small for every

possible d.

43

Theorem 13. If p is an odd prime and we write

E(p−1)/2 =

((
1

p

)
,

(
2

p

)
, . . . ,

(
(p− 1)/2

p

))
then we have

SD(E(p−1)/2, d) ≤ 18p1/2 log p

for every d ∈ N.

Proof of Theorem 13

By de�nition

SD(E p−1
2
, d) = max

a<b

∣∣∣∣∣∣
[(b−a)/2d]−1∑

j=0

ea+djeb−dj

∣∣∣∣∣∣.
We have to estimate the sum for all possible a's and b's.

∣∣∣∣∣∣
[(b−a)/2d]−1∑

j=0

ea+djeb−dj

∣∣∣∣∣∣ =

[(b−a)/2d]−1∑
j=0

(
a+ dj

p

)(
b− dj
p

)
=

=

[(b−a)/2d]−1∑
j=0

(
−(dj)2 + (b− a)dj + ab

p

)
. (5.22)

Let f(x) = −d2x2 + (b − a)dx + ab ∈ Fp[x]. It is easy to see that f(x) is the form

of b(g(x))2 if and only if a + b ≡ 0 (mod p). In the present case this is impossible, since

1 ≤ a < b ≤ (p− 1)/2. Applying Lemma 2 with 0 and (b− a)/2d in place of X and Y we

get

∣∣∣∣∣ ∑
X≤j≤X+Y

χ∗p(f(j))

∣∣∣∣∣ =

[(b−a)/2d]−1∑
j=0

(
−(dj)2 + (b− a)dj + ab

p

)
< 18p1/2 log p. (5.23)

From (5.22) and (5.23) we obtain S(E(p−1)/2) < 18p1/2 log p which gives the desired

result. �

44

Chapter 6

Conclusions

"It's hard to make predictions - especially about the future." Robert Storm Petersen

We established de�nitions of randomness and random sequences in order to understand

the notion of pseudorandomness. With the very weak assumption that one-way functions

exists we proved the existence of pseudorandom number generators. We have shown that

it is not easy for a generator to ful�ll all the requirements the di�erent applications need.

Statistical tests are implemented to determine whether a generator is suitable for its task

or not. There are two di�erent kind of approach regarding statistical tests. A posteriori

testing means that we take a sample output sequence of the PRNG and examine if it

exhibits such characteristics that we would expect from a random sequence. Theoretical

or a priori testing means we analyze the PRNG to learn something on the distribution of

it's output.

The correlation and well-distribution measures proved to be very successful tools in

a priori testing. However these measures are not sensitive to symmetric patterns. A

symmetry measure was introduced to detect long symmetrical subsequences in binary

sequences. Since there are other possible symmetrical patterns we proposed two ways to

generalize the symmetry measure.

One way is to check whether the sequence shows symmetric patterns in the form of

an arithmetic progression. The other is to consider multiple symmetry centers when we

search for symmetric subsequences. We introduced SD(EN , d) and SM(EN , t) for these

two tasks respectively. They are indeed a generalization of the symmetry measure, since

they produce the same value as S(EN) for d = 1 = t.

We gave upper and lower bounds to these generalized measures. In addition to that

we provided an example to prove that SD(EN , 2) and S(EN) are independent of each

other. The same argument shows that if (d1, d2) = 1 then SD(EN , d1) and SD(EN , d2)

45

are unrelated. It seems plausible that similar constructions may work for SM(EN , t),

however proving it is much harder. A possible future research problem is to construct

sequences for which S(EN) small, but SM(EN , t) is big.

It remains to be shown that these two measures are as useful in theoretical testing

as the correlation a well-distribution measures. As we have seen there are countless of

other tests. There is no need to introduce a new criteria unless we are either able to trace

back many pseudorandom characteristics to this single measure or we can construct large

families of pseudorandom sequences with the help of it. Further research is needed to

verify that SD(EN , d) and SM(EN , t) ful�ll these requirements.

46

References

[1] P. van Oorschot A. Menezes and S. Vanstone. Handbook of Applied Cryptography.

CRC Press, 1996.

[2] BusinessDictionary.com.

http : //www.businessdictionary.com/definition/information− society.html.

[3] Katalin Gyarmati. On a pseudorandom property of binary sequences. The Ramanu-

jan Journal, Vol. 8:89�302, 2004.

[4] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman

and Hall/CRC, 2007.

[5] Donald E. Knuth, editor. Art of computer programming, Volume 2: Seminumerical

Algorithms. Addison-Wesley, Reading, Massachusetts, 1981.

[6] M. Blum L. Blum and Michael Shub. A simple unpredictable pseudo-random number

generator. SIAM Journal on Computing, 15:364�383, 1986.

[7] L. Levin. On the notion of a random sequence. Soviet Mathematics Doklady, 14:1413�

1416, 1973.

[8] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and Its Applications.

Springer Science, 1993.

[9] G. Marsaglia. Monkey tests for random number generators. Computers and Mathe-

matics with Applications, 9:1�10, 1993.

[10] G. Marsaglia. On the randomness of pi and other decimal expansions. Interstat, 5,

2005.

[11] P. Martin-Löf. The de�nition of random sequences. Inform. and Control, 6:602�619,

1966.

47

[12] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Modeling

and Computer Simulation, 8 (1):3�30, 1998.

[13] C. Mauduit and A. Sárközy. On �nite pseudorandom binary sequences i: measure of

pseudorandomness, the legendre symbol. Acta Arithmetica, 82:365�377, 1997.

[14] J. Cassaigne C. Mauduit and A. Sárközy. On �nite pseudorandom binary sequences

vii: The measure of pseudorandomness. Acta Arithmetica, 103, 2002.

[15] L. Goubin C. Mauduit and A. Sárközy. Construction of large families of pseudoran-

dom binary sequences. Journal of Number Theory, 106:56�69, 2004.

[16] Ivan Niven. Irrational Numbers. The Mathematical Association of America, New

Jersey, 1956.

[17] National Institute of Standards and Technology. Statistical testing of random number

generators. http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf.

[18] J. Rivat and A. Sárközy. On pseudorandom sequences and their applications. Infor-

mation Transfer and Combinatorics, Lecture Notes in Computer Science, 4123:343�

361, 2006.

[19] C. P. Schnorr. A uni�ed approach to the de�nition of a random sequence. Mathe-

matical Systems Theory, 5:246�258, 1971.

[20] A. Weil. Sur les courbes algébriques et les veriétés qui s'en déduisent. Acta Sci. Ind.,

1041, Hermann, Paris 1948.

[21] Wikipedia.com.

http : //en.wikipedia.org/wiki/algorithmically_random_sequence.

48

	Copyright
	1 Introduction
	2 Randomness and random sequences
	2.1 Intuitive notion of randomness
	2.2 Normality and equidistribution
	2.3 Further approaches
	2.4 Finite pseudorandom sequences

	3 Pseudorandom number generators
	3.1 Middle-square method
	3.2 Linear congruential method
	3.3 Linear feedback shift registers
	3.4 Further theoretical discussion
	3.5 Modern PRNGs

	4 Statistical testing
	4.1 An insight to statistical testing
	4.2 Five basic tests
	4.3 A priori testing

	5 Results
	5.1 Generalizations
	5.2 Proofs
	5.3 Constructions

	6 Conclusions
	Bibliography

