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1 Introduction

In 1984, L. Caffarelli, R. Kohn and L. Nirenberg proved in [3], in the context of some more general
inequalities, the following result: given p ∈ (1, N), for all u ∈ C1

c (Ω), there exists a positive constant
Ca,b such that (∫

Ω
|x|−bq|u|q dx

)p/q

≤ Ca,b

∫

Ω
|x|−ap|∇u|p dx , (1.1)

where
−∞ < a <

N − p

p
, a ≤ b ≤ a + 1, q =

Np

N − p(1 + a− b)
,
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and Ω ⊆ RN is an arbitrary open domain. Note that the Caffarelli-Kohn-Nirenberg inequality (1.1)
reduces to the classical Sobolev inequality (if a = b = 0) and to the Hardy inequality (if a = 0 and
b = 1). Inequality (1.1) proves to be an important tool in studying degenerate elliptic problems. It is
also related with the understanding of some important phenomena such as best constants, existence
or nonexistence of extremal functions, symmetry properties of minimizers, compactness of minimizing
sequences, concentration phenomena, etc. We refer to [4, 5, 6, 1, 8, 9, 13, 16, 19, 21] for relevant
applications of the Caffarelli-Kohn-Nirenberg inequality.

In the years that followed this inequality was extensively studied (see, e.g. [4, 5, 6, 21] and the
references therein). An important consequence of the Caffarelli-Kohn-Nirenberg inequality is that it
enabled the study of some degenerate elliptic equations which involve differential operators of the type

div(a(x)|∇u(x)|p) ,

where a(x) is a nonnegative function satisfying infx a(x) = 0. Thus, the resulting operator is not
uniformly elliptic and consequently some of the techniques that can be applied in solving equations
involving uniformly elliptic operators fail in this new context. Degenerate differential operators involving
a non negative weight that is allowed to have zeros at some points or even to be unbounded are used
in the study of many physical phenomena related to equilibrium of anisotropic continuous media.

The goal of this paper is to obtain inequalities of type (1.1) in the case when the constant p is replaced
by a function p(x) of class C1 and to use them in studying some degenerate elliptic equations involving
variable exponent growth conditions. Our attempt will be considered in the context of bounded smooth
domains Ω ⊂ RN with N ≥ 2. Particularly, we supplement the result of X. Fan, Q. Zhang and D. Zhao
[7, Theorem 3.3], regarding the positivity of the first eigenvalue of the p(x)-Laplace operator.

2 Variable exponent Lebesgue and Sobolev spaces

We recall some definitions and basic properties of the Lebesgue–Sobolev spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω),

where Ω is a bounded domain in RN and p(x) : Ω → (1,∞) is a continuous function. For further in-
formation and proofs we refer to Kováčik and Rákosńık [12] and Musielak [15]. On the other hand,
regarding applications of variable exponent Lebesgue and Sobolev spaces to PDE’s we refer to Harjule-
hto, Hästö, Lê and Nuortio [11] while for some physical motivations of such problems we remember the
contributions of Rajagopal and Ruzicka [17], Ruzicka [18] and Zhikov [23].

For any continuous function h : Ω → (1,∞) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

Given p(x) ∈ C(Ω, (1,∞)), we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u; u is a measurable real-valued function such that
∫

Ω
|u(x)|p(x) dx < ∞}.
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Lp(x)(Ω) endowed with the Luxemburg norm, that is

|u|p(x) = inf

{
µ > 0;

∫

Ω

∣∣∣∣
u(x)
µ

∣∣∣∣
p(x)

dx ≤ 1

}
,

is a reflexive Banach space.
If p1, p2 are variable exponents so that p1(x) ≤ p2(x) almost everywhere in Ω then there exists the

continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω), whose norm does not exceed |Ω|+ 1.
We denote by Lq(x)(Ω) the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/q(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) the Hölder type inequality
∣∣∣∣
∫

Ω
uv dx

∣∣∣∣ ≤
(

1
p−

+
1
q−

)
|u|p(x)|v|q(x) (2.1)

holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the modular

of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) =
∫

Ω
|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) and p+ < ∞ then the following relations hold true

|u|p(x) > 1 ⇒ |u|p−p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x) (2.2)

|u|p(x) < 1 ⇒ |u|p+

p(x) ≤ ρp(x)(u) ≤ |u|p−p(x) (2.3)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0 (2.4)

|un|p(x) →∞ ⇔ ρp(x)(un) →∞ . (2.5)

Next, we define W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖ = | |∇u| |p(x).

The space (W 1,p(x)
0 (Ω), ‖ · ‖) is a separable and reflexive Banach space. We note that if q ∈ C+(Ω)

and q(x) < p?(x) for all x ∈ Ω then the embedding W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is compact and continuous,

where p?(x) = Np(x)
N−p(x) if p(x) < N or p?(x) = +∞ if p(x) ≥ N .

3 A Caffarelli-Kohn-Nirenberg type inequality in bounded domains
involving variable exponent growth conditions

Assume Ω ⊂ RN (N ≥ 2) is an open, bounded and smooth set.
For each x ∈ Ω, x = (x1, ..., xN ) and i ∈ {1, ..., N} we denote

mi = inf
x∈Ω

xi Mi = sup
x∈Ω

xi .
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For each i ∈ {1, ..., N} let ai : [mi,Mi] → R be functions of class C1. Particularly, the functions ai

are allowed to vanish.
Let −→a : Ω → RN be defined by

−→a (x) = (a1(x1), ..., aN (xN )) .

We assume that there exists a0 > 0 a constant such that

div−→a (x) ≥ a0 > 0, ∀ x ∈ Ω . (3.1)

Next, we consider p : Ω → (1, N) is a function of class C1 satisfying

−→a (x) · ∇p(x) = 0, ∀ x ∈ Ω . (3.2)

We prove the following result:

Theorem 1. Assume that −→a (x) and p(x) are defined as above and satisfy conditions (3.1) and (3.2).
Then there exists a positive constant C such that

∫

Ω
|u(x)|p(x) dx ≤ C

∫

Ω
|−→a (x)|p(x)|∇u(x)|p(x) dx, ∀ u ∈ C1

c (Ω) . (3.3)

Proof. The proof of Theorem 1 is inspired by the ideas in [22, Théorème 20.7].
Simple computations based on relation (3.2) show that for each u ∈ C1

c (Ω) the following equality
holds true

div(|u(x)|p(x)−→a (x)) =
N∑

i=1

∂

∂xi

(
|u(x)|p(x)ai(xi)

)

= |u(x)|p(x)div−→a (x)

+
N∑

i=1

ai(xi)
[
p(x)|u(x)|p(x)−2u(x)

∂u

∂xi
+ |u(x)|p(x) log(|u(x)|) ∂p

∂xi

]

= |u(x)|p(x)div−→a (x) + p(x)|u(x)|p(x)−2u(x)∇u(x) · −→a (x) +

|u(x)|p(x) log(|u(x)|)∇p(x) · −→a (x)

= |u(x)|p(x)div−→a (x) + p(x)|u(x)|p(x)−2u(x)∇u(x) · −→a (x)

On the other hand, the flux-divergence theorem implies that for each u ∈ C1
c (Ω) we have

∫

Ω
div(|u(x)|p(x)−→a (x)) dx =

∫

∂Ω
|u(x)|p(x)−→a (x) · −→n dσ(x) = 0 .

Using the above pieces of information we infer that for each u ∈ C1
c (Ω) it holds true

∫

Ω
|u(x)|p(x)div−→a (x) dx ≤ p+

∫

Ω
|u(x)|p(x)−1|∇u(x)||−→a (x)| dx .
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Next, we recall that for each ε > 0, each x ∈ Ω and each A, B ≥ 0 the following Young type inequality
holds true (see, e.g. [2, the footnote on p. 56])

AB ≤ εA
p(x)

p(x)−1 +
1

εp(x)−1
Bp(x) .

We fix ε > 0 such that
p+ε < a0 ,

where a0 is given by relation (3.1).
The above facts and relation (3.1) yield

a0

∫

Ω
|u(x)|p(x) dx ≤ p+

[
ε

∫

Ω
|u(x)|p(x) dx +

∫

Ω

(
1
ε

)p(x)−1

|−→a (x)|p(x)|∇u(x)|p(x) dx

]
,

for any u ∈ C1
c (Ω), or

(a0 − εp+)
∫

Ω
|u(x)|p(x) dx ≤

[(
1
ε

)p−−1

+
(

1
ε

)p+−1
]

p+

∫

Ω
|−→a (x)|p(x)|∇u(x)|p(x) dx ,

for any u ∈ C1
c (Ω). The conclusion of Theorem 1 is now clear. ¤

Remark 1. The result of Theorem 1 implies the fact that under the hypotheses (3.1) and (3.2) there
exists a positive constant D such that

∫

Ω
|u(x)|p(x) dx ≤ D

∫

Ω
|∇u(x)|p(x) dx, ∀ u ∈ C1

c (Ω) .

Thus, we deduce that in the hypotheses of Theorem 1 we have

inf
u∈W

1,p(x)
0 (Ω)\{0}

∫

Ω
|∇u|p(x) dx

∫

Ω
|u|p(x) dx

> 0 . (3.4)

The above relation asserts that in this case the first eigenvalue of the p(x)-Laplace operator (i.e.,
∆p(x)u := div(|∇u|p(x)−2∇u)) is positive. That fact is not obvious as X. Fan, Q. Zhang and D. Zhao
pointed out in [7]. Actually, the infimum of the set of eigenvalues corresponding to the p(x)-Laplace
operator can be 0 (see, [7, Theorem 3.1]). On the other hand, a necessary and sufficient condition such
that (3.4) holds true has not been obtained yet excepting the case when N = 1 (in that case, the infimum
is positive if and only if p(x) is a monotone function, see [7, Theorem 3.2]). However, the authors of [7]
pointed out that in the case N > 1 a sufficient condition to have (3.4) is to exist a vector l ∈ RN \ {0}
such that, for any x ∈ Ω, the function f(t) = p(x + tl) is monotone, for t ∈ Ix := {s; x + sl ∈ Ω} (see
[7, Theorem 3.3]). Assuming p is of class C1 the monotony of function f reads as follows: either

∇p(x + tl) · l ≥ 0, for all t ∈ Ix, x ∈ Ω ,
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or
∇p(x + tl) · l ≤ 0, for all t ∈ Ix, x ∈ Ω .

The above conditions seem to be related to condition (3.2) in our paper. On the other hand, in the
case when N = 1 relation (3.2) implies that p(x) should be a constant function. The two results do not
contradict each other but they seem to supplement each other.

Example 1. We point out an example of functions −→a (x) and p(x) satisfying conditions (3.1) and (3.2)
in the case when −→a (x) can vanish in some points of Ω. Let N ≥ 3 and Ω = B 1√

N

(0), the ball centered

in the origin of radius 1√
N

. We define −→a (x) : Ω → RN by

−→a (x) = (−x1, x2, x3, ..., xN−1, xN ) ,

(more exactly, function −→a (x) is associated to a vector x ∈ Ω the vector obtained from x by changing
in the first position x1 by −x1 and keeping unchanged xi for i ∈ {2, ..., N}). Clearly, −→a (x) is of class
C1, −→a (0) = 0 and we have

div(−→a (x)) = N − 2 ≥ 1, ∀ x ∈ Ω .

Thus, condition (3.1) is satisfied.
Next, we define p : Ω → (1, N) by

p(x) = x1(x2 + x3 + ... + xN−1 + xN ) + 2, ∀ x ∈ Ω .

It is easy to check that p is of class C1 and some elementary computations show that

∇p(x) · −→a (x) = (x2 + ... + xN )(−x1) + x1x2 + ... + x1xN = 0, ∀ x ∈ Ω .

It means that condition (3.2) is satisfied, too.

Example 2. We point out a second example, for N = 2. Taking Ω = B 1

31/3
(0), −→a (x) = (−x1, 2x2)

and p(x) = x2
1x2 + 3

2 it is easy to check that relations (3.1) and (3.2) are fulfilled.

Remark 2. If N , a and p are as in Example 1 or Example 2 then the result of Theorem 1 reads as
follows: there exists a positive constant C > 0 such that

∫

Ω
|u(x)|p(x) dx ≤ C

∫

Ω
|x|p(x)|∇u(x)|p(x) dx, ∀ u ∈ C1

c (Ω) . (3.5)

4 Applications in solving PDE’s involving variable exponent growth
conditions

In this section we assume that N , Ω, −→a (x) and p(x) are as in Example 1 or Example 2. We denote by
D1,p(x)

0 (Ω) the closure of C1
c (Ω) under the norm

‖u‖ = | |x · ∇u(x)| |p(x) .

Undoubtedly, (D1,p(x)
0 (Ω), ‖ · ‖) is a reflexive Banach space.
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4.1 A compact embedding result

We prove the following result:

Theorem 2. Assume that N , Ω, −→a (x) and p(x) are as in Example 1 or Example 2 and p− > 2N
2N−1 .

Then D1,p(x)
0 (Ω) is compactly embedded in Lq(Ω) for each q ∈

(
1, 2Np−

2N+p−

)
.

Proof. Let {un} be a bounded sequence in D1,p(x)
0 (Ω). There exists ε0 ∈ (0, 1) such that we have

Bε0(0) ⊂ Ω. Let ε ∈ (0, ε0) be arbitrary but fixed. It is obvious that {un} ⊂ D1,p(x)
0 (Ω \ Bε(0)) is a

bounded sequence. The classical compact embedding theorem for variable exponent spaces shows that
there exists a convergent subsequence of {un}, still denoted by {un}, in Lq(Ω \ Bε(0)). Thus, for any
n and m large enough we have ∫

Ω\Bε(0)
|un − um|q dx < ε . (4.1)

On the other hand, the Hölder inequality for variable exponent spaces implies
∫

Bε(0)
|un − um|q dx =

∫

Bε(0)
|x|− q

2 |x| q2 |un − um|q dx

≤ D1

∣∣∣|x|− q
2 χBε(0)

∣∣∣(
p(x)

q

)′
∣∣∣|x| q2 |un − um|q

∣∣∣
p(x)

q

,

where D1 is a positive constant.
Furthermore, inequality (3.5) and relations (2.2) and (2.3) imply

∣∣∣|x| q2 |un − um|q
∣∣∣

p(x)
q

≤
(∫

Ω
|x| p(x)

2 |un − um|p(x) dx

) q

p−
+

(∫

Ω
|x| p(x)

2 |un − um|p(x) dx

) q

p+

≤
[
(sup
x∈Ω

|x|+ 1)
qp+

2p− + (sup
x∈Ω

|x|+ 1)
q
2

] [
ρp(x)(un − um)

q

p− + ρp(x)(un − um)
q

p+

]

≤ D2

[(∫

Ω
|x|p(x)|∇(un − um)|p(x) dx

) q

p−
+

(∫

Ω
|x|p(x)|∇(un − um)|p(x) dx

) q

p+

]

where D2 is a positive constant.
Combining the above pieces of information we find that there exists a positive constant M such

that ∫

Bε(0)
|un − um|q dx ≤ M

∣∣∣|x|− q
2 χBε(0)

∣∣∣(
p(x)

q

)′ .

But using again relations (2.2) and (2.3) it is easy to see that

∣∣∣|x|− q
2 χBε(0)

∣∣∣(
p(x)

q

)′ ≤ ρ(
p(x)

q

)′
(
|x|− q

2 χBε(0)

)((
p(x)

q

)′)+

+ ρ(
p(x)

q

)′
(
|x|− q

2 χBε(0)

)((
p(x)

q

)′)−

,
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where
(

p(x)
q

)′
= p(x)

p(x)−q , and assuming ε ∈ (0, 1)

∫

Bε(0)
|x|

−qp(x)
2(p(x)−q) dx ≤

∫

Bε(0)
|x|

−qp−
2(p−−q) dx

=
∫ ε

0
ωNrN−1r

−qp−
2(p−−q) dr

= ωN
1
α

εα ,

where α = N − qp−
2(p−−q)

> 0 and ωN is the area of the unit ball in RN .
Consequently, ∫

Bε(0)
|un − um|q dx ≤ M1(εα1 + εα2) ,

with α1, α2 > 0 and M1 > 0 a constant.
The above inequality and relation (4.1) show that for any n and m large enough we have

∫

Ω
|un − um|q dx ≤ M2(ε + εα1 + εα2) ,

where M2 is a positive constant. We infer that {un} is a Cauchy sequence in Lq(Ω) and consequently
D1,p(x)

0 (Ω) is compactly embedded in Lq(Ω). The proof of Theorem 2 is complete. ¤

Remark 3. The proof of Theorem 2 still holds true if we replace the space Lq(Ω) by Lq(x)(Ω) , where
q : Ω → (1,∞) is a continuous function satisfying 1 < q− ≤ q+ < 2Np−

2N+p− .

4.2 Existence of solutions for a singular PDE involving variable exponent growth
conditions

Assume q(x) is a function satisfying the hypotheses given in Remark 3. We investigate the existence
of solutions of the problem




−div(|x|p(x)|∇u(x)|p(x)−2∇u(x)) = λ|u(x)|q(x)−2u(x) for x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω ,
(4.2)

where λ is a positive constant.
We say that u ∈ D1,p(x)

0 (Ω) is a weak solution of problem (4.2) if
∫

Ω
|x|p(x)|∇u|p(x)−2∇u∇v dx− λ

∫

Ω
|u|q(x)−2uv dx = 0, ∀ v ∈ D1,p(x)

0 (Ω) .

We show the following existence result on problem (4.2):

Theorem 3. For each λ > 0 problem (4.2) has a nontrivial weak solution.
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Proof of Theorem 3. In order to prove Theorem 3 we define, for each λ > 0, the energetic
functional associated to problem (4.2), Jλ : D1,p(x)

0 (Ω) → R by

Jλ(u) =
∫

Ω

|x|p(x)

p(x)
|∇u|p(x) dx− λ

∫

Ω

1
q(x)

|u|q(x) dx ,

for each u ∈ D1,p(x)
0 (Ω). Standard arguments (see, e.g. [14]) show that Jλ ∈ C1(D1,p(x)

0 (Ω),R) and its
derivative is given by

〈J ′λ(u), v〉 =
∫

Ω
|x|p(x)|∇u|p(x)−2∇u∇v dx− λ

∫

Ω
|u|q(x)−2uv dx ,

for all u, v ∈ D1,p(x)
0 (Ω). We infer that u is a solution of problem (4.2) if and only if it is a critical

point of Jλ. Consequently, we concentrate our efforts on finding critical points for Jλ. In this context
we prove the following assertions:

(a) The functional Jλ is weakly lower semi-continuous;

(b) The functional Jλ is bounded from below and coercive;

(c) There exists ψ ∈ D1,p(x)
0 (Ω) \ {0} such that Jλ(ψ) < 0.

The arguments to prove (a), (b) and (c) are detailed below.

(a) Similar arguments as in the proof of [14, Proposition 3.6 (ii)] can be used in order to obtain the
fact that Jλ is weakly lower semi-continuous.

(b) It is obvious that for any u ∈ D1,p(x)
0 (Ω) we have

Jλ(u) ≥ 1
p+

∫

Ω
|x|p(x)|∇u|p(x) dx− λ

q−

∫

Ω
|u|q(x) dx

≤ 1
p+

∫

Ω
|x|p(x)|∇u|p(x) dx− λ

q−
(|u|q−q(x) + |u|q+

q(x)) .

If ‖u‖ > 1 the above inequality and Theorem 2 imply that there exists a positive constant K such that

Jλ(u) ≥ 1
p+
‖u‖p− − Kλ

q−
(‖u‖q− + ‖u‖q+

) .

Taking into account that 1 < q− ≤ q+ < 2Np−
2N+p− < p− the above inequality shows that lim‖u‖→∞ Jλ(u) =

∞, that is Jλ is coercive.
On the other hand, it is clear that for any u ∈ D1,p(x)

0 (Ω) we have

Jλ(u) ≥ 1
p+

min{‖u‖p− , ‖u‖p+} − Kλ

q−
(‖u‖q− + ‖u‖q+

) ,

and thus, we deduce that Jλ is bounded from below.

(c) We fix ϕ ∈ C1
c (Ω), ϕ 6= 0. Then for each t ∈ (0, 1) we have

Jλ(tϕ) =
∫

Ω

|x|p(x)tp(x)

p(x)
|∇ϕ|p(x) dx− λ

∫

Ω

tq(x)

q(x)
|ϕ|q(x) dx

≤ tp
−

∫

Ω

|x|p(x)

p(x)
|∇ϕ|p(x) dx− λtq

+

∫

Ω

1
q(x)

|ϕ|q(x) dx .
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Thus, there exist L1 and L2 two positive constants such that for each t ∈ (0, 1) we have

Jλ(tϕ) ≤ L1t
p− − L2t

q+
.

Taking into account that q+ < p−, by the above inequality we infer that for any t ∈ (0,min{1, (L2
L1

)1/(p−−q+)})
we have

Jλ(tϕ) < 0 .

Next, we deduce by (a) and (b) that Jλ is weakly lower semi-continuous, bounded from below and
coercive. These facts in relation with [20, Theorem 1.2 ] show that there exists uλ ∈ D1,p(x)

0 (Ω) a global
minimum point of Jλ. Moreover, since (c) holds true it follows that uλ 6= 0. Standard arguments based
on Theorem 2 show that uλ is actually a critical point of Jλ and thus, a nontrivial weak solution of
problem (4.2). The proof of Theorem 3 is complete. ¤
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