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Abstract

The main goal of this paper is to establish an existence result for differential inclusions governed by
a quasilinear elliptic operator and two multivalued functions given by Clarke’s generalized gradient
of some locally Lipschitz functionals. We divide the boundary ∂Ω of our domain into two open
measurable parts Γ1 and Γ2 and we impose a nonhomogeneous Neumann boundary condition on Γ1,
while on Γ2 we impose a Dirichlet boundary condition. This kind of problems have been treated
in the past by various authors. However, in all the work we are aware of, either a Neumann, or a
Dirichlet boundary condition was imposed on the entire boundary. Another main point of interest
of this paper is that our problem depends on a real parameter λ > 0 and we are able to prove the
existence of solutions for any λ ∈ (0,+∞).
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1 Introduction and preliminary results

Inequality problems and differential inclusions have within a very short period of time undergone a
remarkable development both in pure and applied mathematics as well as in other sciences such as
mechanics, engineering and economics. This development has facilitated the solution of many open
questions in mechanics and engineering sciences and also allowed the mathematical study of new classes
of interesting problems.

Hemivariational inequalities were introduced by P.D. Panagiotopoulos at the beginning of 1980’s
as variational formulation for several classes of mechanical problems with nonsmooth and nonconvex
energy superpotentials (see [23, 24]). In the case of convex superpotentials, hemivariational inequalities
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reduce to variational inequalities which were studied earlier by many authors (see e.g. the work of G.
Fichera [12] or P. Hartman and G. Stampacchia [13]). We point out the fact that unlike variational
inequalities, the hemivariational inequalities are not equivalent to minimum problems but, give rise to
substationarity problems. For a comprehensive treatment of the theory of hemivariational inequalities
and differential inclusions involving Clarke’s generalized gradient the reader can consult the monographs
[20, 21, 22] and more recently, [16]. For more information and connections regarding hemivariational
inequalities and differential inclusions see the recent papers [2, 3, 8, 9, 10, 11, 19] and the references
therein.

Hemivariational inequalities and differential inclusions are closely related, in the sense that almost
all problems formulated in terms of hemivariational inequalities can be reformulated equivalently as
multivalued differential inclusions involving the concept of Clarke’s generalized gradient of a locally
Lipschitz function.

For the convenience of the reader we present next some notations and preliminary results from
nonsmooth analysis that will be used throughout the paper. For a given Banach space (X, ‖ · ‖X) we
denote by X∗ its dual space and by 〈·, ·〉 the duality pairing between X∗ and X. The inner product
and the euclidian norm in RN (N ≥ 1) will be denoted by ” · ” and | · |, respectively.

We recall that a functional h : X → R is called locally Lipschitz if for every u ∈ X there exists a
neighborhood U of u and a constant L = L(U) > 0 such that

|h(w)− h(v)| ≤ L‖w − v‖X , for all v, w ∈ U.

Definition 1.1. Let h : X → R be a locally Lipschitz functional. The generalized derivative of h at
u ∈ X in the direction v ∈ X, denoted h0(u; v), is defined by

h0(u; v) = lim sup
w→u
t↓0

h(w + tv)− h(w)
λ

.

Lemma 1.1. Let h : X → R be locally Lipschitz of rank L near the point u ∈ X. Then

(a) The function v 7→ h0(u; v) is finite, positively homogeneous, subadditive and satisfies

|h0(u; v)| ≤ L‖v‖X ;

(b) h0(u; v) is upper semicontinuous as a function of (u, v).

The proof can be found in Clarke [7], Proposition 2.1.1.

Definition 1.2. The generalized gradient of a locally Lipschitz functional h : X → R at a point u ∈ X,
denoted ∂h(u), is the subset of X∗ defined by

∂h(u) = {ζ ∈ X∗ : h0(u; v) ≥ 〈ζ, v〉, for all v ∈ X}.
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We point out the fact that for each u ∈ X we have ∂h(u) 6= ∅. In order to see that it suffices to
apply the Hahn-Banach theorem (see e.g. Brezis [1], p. 1).

The following theorem for set valued mappings is due to Lin (see [17], Theorem 1) and will be one
of the key arguments in the sequel.

Theorem 1.1. Let K be a nonempty convex subset of a Hausdorff topological vector space X. Let
P ⊆ K ×K be a subset such that

(i) for each η ∈ K the set Λ(η) = {ζ ∈ K : (η, ζ) ∈ P} is closed in K;

(ii) for each ζ ∈ K the set Θ(ζ) = {η ∈ K : (η, ζ) 6∈ P} is either convex or empty;

(iii) (η, η) ∈ P for each η ∈ K;

(iv) K has a nonempty compact convex subset K0 such that the set

B = {ζ ∈ K : (η, ζ) ∈ P for all η ∈ K0}

is compact.

Then there exists a point ζ0 ∈ B such that K × {ζ0} ⊂ P.

2 Formulation of the problem

Let Ω be a bounded open subset of RN (N ≥ 3) and 1 < p < +∞. We denote ∂Ω = Γ the boundary of
Ω and we assume that Γ1, Γ2 are two open measurable parts that form a partition of Γ (i.e. Γ1∪Γ2 = Γ
and Γ1 ∩ Γ2 = ∅) such that meas(Γ2) > 0.

We are interested in studying nonsmooth quasilinear elliptic inclusions with mixed boundary con-
ditions of the following type:

(Pλ) :


div(a(x,∇u)) ∈ λ∂j1(x, u)− g(x), in Ω

−a(x,∇u) · n ∈ µ(x, u)∂j2(x, u), on Γ1,

u = 0, on Γ2,

where a : Ω × RN → RN is of the form a(x, ξ) = (a1(x, ξ), . . . , aN (x, ξ)), with ai : Ω × RN → R for
i ∈ {1, . . . , N}, λ > 0 is a real parameter, ∂ji(x, u) stands for the Clarke generalized gradient of the
mapping u 7→ ji(x, u) (i = 1, 2) and n is the unit outward normal to ∂Ω.

Examples.

1. Set a(x, ξ) = |ξ|p−2ξ. Then a(x, ξ) is the continuous derivative with respect to the second variable
of the mapping A(x, ξ) = 1

p |ξ|
p, i.e. a(x, ξ) = ∇ξA(x, ξ). Then we get the p−Laplace operator

div(|∇u|p−2∇u).
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2. Set a(x, ξ) = (1+ |ξ|2)(p−2)/2ξ. Then a(x, ξ) is the continuous derivative with respect to the second
variable of the mapping A(x, ξ) = 1

p

[
(1 + |ξ|2)p/2 − 1

]
, i.e. a(x, ξ) = ∇ξA(x, ξ). Then we get the

the mean curvature operator
div

(
(1 + |∇u|2)(p−2)/2∇u

)
.

We point out the fact that our operator is not necessarily a potential operator, but we have chosen
these examples due to the fact that boundary value problems involving the above mentioned operators
were studied intensively in the last decades since quasilinear operators can model a variety of physical
phenomena (e.g. the p-Laplacian it is used in non-Newtonian fluids, reaction-diffusion problems as well
as in flow through porous media).

Let us introduce the functional space

V = {v ∈ W 1,p(Ω) : γv = 0 on Γ2}

where γ : W 1,p(Ω) → Lp(Γ) is the Sobolev trace operator. For simplicity, everywhere below, we
will omit to write γv to indicate the Sobolev trace on the boundary, writing v instead of γv. Since
meas(Γ2) > 0, it is well known that V is a closed subspace of W 1,p(Ω) and can be endowed with the
norm

‖v‖V = ‖∇v‖Lp(Ω),

which is equivalent to the usual norm on W 1,p(Ω) due to the Poincaré-Friedrichs inequality (see e.g.
Proposition 2.94 in [4]).

Definition 2.1. We say that u ∈ V is a weak solution of the problem (Pλ) if there exist ζ1 ∈ Lp′(Ω)
satisfying ζ1(x) ∈ ∂j1(x, u(x)) and ζ2 ∈ Lp′(∂Ω) satisfying ζ2(x) ∈ ∂j2(x, u(x)) for almost every x ∈ Ω
such that ∫

Ω
div a(x,∇u) · (v − u) dx = λ

∫
Ω

ζ1(v − u) dx−
∫

Ω
g(x)(v − u) dx

and

−
∫

Γ1

a(x,∇u) · n(v − u) dσ =
∫

Γ1

ζ2µ(x, u)(v − u) dσ,

for all v ∈ V .

Let us turn now our attention towards the terms given by Clarke’s generalized gradient. At our best
knowledge differential inclusions of the type (Pλ) were only studied in the past either with Neumann
condition, or with Dirichlet condition on the entire boundary. This cases can be obtained when Γ1 = Γ,
or Γ2 = Γ. We present next several particular cases of our problem that have been treated in the last
years by various authors.

1. Γ1 = Γ (Neumann problem).
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• If j1 and j2 are primitives of some Carathéodory functions f : Ω×R → R and h : ∂Ω×R → R

j1(x, t) =
∫ t

0
f(x, s) ds and j2(x, t) =

∫ t

0
h(x, s) ds

then the functions t 7→ j1(x, t) and t 7→ j2(x, t) are differentiable. Thus ∂j1(x, t) = {f(x, t)},
∂j2(x, t) = {g(x, t)} and (Pλ) reduces to the following eigenvalue problem div(a(x,∇u)) = λf(x, u)− g(x) in Ω

−a(x,∇u) · n = µ(x, u)h(x, u) on ∂Ω
(2.1)

A particular case of problem (2.1) was studied by Y.X. Huang [14] (there the author studies
the case when a(x, ξ) = |ξ|p−2ξ, f(x, u) = m(x)|u|p−2u, g ≡ 0 and h ≡ 0).

• In the case when the functionals f and h from the previous example are only locally bounded,
i.e. f ∈ L∞loc(Ω × R) and h ∈ L∞loc(∂Ω × R) then t 7→ j1(x, t) and t 7→ j2(x, t) are locally
Lipschitz functionals and, according to Proposition 1.7 in [20] we have

∂j1(x, t) =
[
f(x, t), f(x, t)

]
and ∂j2(x, t) =

[
h(x, t), h(x, t)

]
,

where
f(x, t) = lim

δ↓0
ess inf |s−t|<δf(x, s) f(x, t) = lim

δ↓0
ess sup|s−t|<δf(x, s)

and
h(x, t) = lim

δ↓0
ess inf |s−t|<δh(x, s) h(x, t) = lim

δ↓0
ess sup|s−t|<δh(x, s).

In this case problem (Pλ) reduces to div(a(x,∇u)) ∈ λ
[
f(x, u), f(x, u)

]
− g(x) in Ω

−a(x,∇u) · n ∈ µ(x, u)
[
h(x, u), h(x, u)

]
on ∂Ω

(2.2)

A particular case of problem (2.2) was studied by F. Papalini [25] in the case of the p-
Laplacian. The approach is variational and it is based on the nonsmooth critical point
theory for locally Lipschitz functionals developed by K.-C. Chang in [6].

• In the case when g ≡ 0 and µ(x, t) ≡ µ > 0 problem (Pλ) becomes div(a(x,∇u)) ∈ λ∂j1(x, u), in Ω

−a(x,∇u) · n ∈ µ∂j2(x, u), on ∂Ω,
(2.3)

A problem similar to problem (2.3) was studied A. Kristály, W. Marzantowicz and Cs. Varga
in [15] where the authors use a nonsmooth three critical points theorem to prove that there
exists a compact interval [a, b] such that for every λ ∈ [a, b] there exists µ0 ∈ (0, λ + 1) such
the for each µ ∈ [0, µ0], the studied problem admits at least three distinct solutions.
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2. Γ2 = Γ (Dirichlet problem)

In this case our problem can be rewritten equivalently as follows:

u ∈ W 1,p
0 (Ω) : Au + λ∂j1(·, u) 3 g in W−1,p′(Ω), (2.4)

where Au(x) = −div a(x,∇u(x)).

Problem (2.4) was treated in the case λ = 1 and g ≡ 0 by S. Carl and D. Motreanu [5] who used
the method of sub and supersolutions to obtain general comparison results. We also remember
the work of Z. Liu and G. Liu [18] and ji-an Wang [26] who studied eigenvalue problems for elliptic
hemivariational inequalities that can be rewritten equivalently as differential inclusions similar to
(2.4). In [18] and [26] the authors used the surjectivity of multivalued pseudomonotone operators
to prove the existence of solutions.

As we have seen above, in most papers dealing with differential inclusions of the type (Pλ) nonsmooth
critical point theory, or the pseudomonotonicity of a certain multivalued operator played an essential
role in obtaining the existence of solutions. However, in all the works we are aware of, additional
assumptions on the structure of the elliptic operator and/or the generalized Clarke’s gradient are
needed to obtain the existence of the solution (e.g. the elliptic operator is of potential type, or the
locally Lipschitz functional is required to be regular, or to satisfy some conditions of Landesman-Lazer
type, or the Clarke’s generalized gradient is supposed to satisfy more restrictive growth conditions). In
this paper our approach is topological and the novelty is that we are able to obtain the existence of at
least one weak solution for any λ ∈ (0,+∞) without assuming any of the above restrictions.

3 Hypotheses and the main result

In this section we present the conditions that need to be imposed in order to prove the existence of
weak solutions and we prove our main result.

Here and hereafter, we shall assume fulfilled the following conditions:
(H1) a : Ω× RN → RN is an operator of the form a(x, ξ) = (a1(x, ξ), . . . , aN (x, ξ)) which satisfies

(i) for each i ∈ {1, . . . , N} ai : Ω × RN → R is a Carathéodory function and there exists c0 > 0 and
α ∈ Lp′(Ω) such that

|ai(x, ξ)| ≤ α(x) + c0|ξ|p−1,

for almost every x ∈ Ω and all ξ ∈ RN ;

(ii) there exist c1 > 0 and β ∈ L1(Ω) such that

a(x, ξ) · ξ ≥ c1|ξ|p − β(x)

for almost every x ∈ Ω and all ξ ∈ RN ;
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(iii) for almost every x ∈ Ω and all ξ1, ξ2 ∈ RN

[a(x, ξ1)− a(x, ξ2)] · (ξ1 − ξ2) ≥ 0.

(H2) j1 : Ω× R → R is a function which satisfies:

(i) for all t ∈ R the function x 7→ j1(x, t) is measurable;

(ii) for almost every x ∈ Ω the function t 7→ j1(x, t) is locally Lipschitz;

(iii) there exists c2 > 0 such that for almost every x ∈ Ω and all t ∈ R

|∂j1(x, t)| ≤ c2(1 + |t|p−1);

(iv) there exists γ1 ∈ Lp(Ω) such that for almost every x ∈ Ω and all t ∈ R

|j0
1(x, t;−t)| ≤ γ1(x)|t|p−1.

(H3) j2 : ∂Ω × R → R is measurable with respect to the first variable and there exists γ2 ∈ Lp′(∂Ω)
such that

|j2(x, t1)− j2(x, t2)| ≤ γ2(x)|t1 − t2|

for almost every x ∈ ∂Ω and all t1, t2 ∈ R.
(H4) µ : ∂Ω× R → R is a Carathéodory function and there exists µ∗ > 0 such that

0 ≤ µ(x, t) ≤ µ∗

for almost every x ∈ ∂Ω and all t ∈ R.
(H5) g ∈ Lp′(Ω).

Let us introduce now the operator A : V → V ∗ defined by

〈Au, v〉 =
∫

Ω
a(x,∇u) · ∇v dx (3.1)

and denote by φ the element of V ∗ given by the Riesz-Fréchet representation theorem as follows,

〈φ, v〉 =
∫

Ω
g(x)v dx.

Taking into account the above notations and the definition of the Clarke generalized gradient the weak
solvability of problem (Pλ) reduces to finding solutions for the following hemivariational inequality
(HI)λ Find u ∈ V such that

〈Au, v − u〉+ λ

∫
Ω

j0
1(x, u; v − u) dx +

∫
Γ1

µ(x, u)j0
2(x, u; v − u) dσ ≥ 〈φ, v − u〉

for all v ∈ V .
We point out the fact that we do not deal with a classical hemivariational inequality due to the

presence of the term
∫
Γ1

µ(x, u)j0
2(x, u; v−u) dσ in the left-hand side of the inequality and consequently

several difficulties occur in determining the existence of solutions since the classical methods fail to be
applied directly. Our main result is given by the following theorem.

7



Theorem 3.1. Suppose that conditions (H1)− (H5) are fulfilled. Then for each λ ∈ (0,+∞) problem
(Pλ) admits at least one weak solution.

Proof. The proof of Theorem 3.1 will be carried out in several steps and relies essentially on topological
arguments.

First we point out the fact that under (H1) the operator A : V → V ∗ defined in (3.1) is well defined
and satisfies the following properties:

• there exists c3 > 0 such that 〈Au, u〉 ≥ c1‖u‖p
V − c3, for all u ∈ V ;

• 〈Av −Au, v − u〉 ≥ 0 for all u, v ∈ V .

• 〈Aun, v〉 → 〈Au, v〉 for all v ∈ V , whenever un → u in V .

Let us fix λ > 0. We shall prove next that there exists at least one u ∈ V which solves (HI)λ. In
order to do this let us fix R > 0 and define K = B̄V (0, R) and

P =
{

(v, u) ∈ K ×K : 〈Au, v − u〉+ λ

∫
Ω

j0
1(x, u; v − u) dx +

∫
Γ1

µ(x, u)j0
2(x, u; v − u) dσ ≥ 〈φ, v − u〉

}
Step 1. For each v ∈ K the set Λ(v) = {u ∈ K : (v, u) ∈ P} is weakly closed.

Let v ∈ K be fixed and {un}n ⊂ Λ(v) be a sequence which converges weakly to some u ∈ V .
Using the fact that the embeddings V ⊂ Lp(Ω) and V ⊂ Lp(Γ1) are compact we conclude that

un → u, in Lp(Ω)

and
un → u, in Lp(Γ1).

Combining the fact that un ∈ Λ(v) for all n ∈ N with the monotonicity of A we deduce that

〈Aw,w − un〉+ λ

∫
Ω

j0
1(x, un;w − un) dx +

∫
Γ1

µ(x, un)j0
2(x, un;w − un) dσ ≥ 〈φ,w − un〉

for all w ∈ V and passing to lim sup as n →∞ in the above relation and using Lemma 1.1 we get
the following estimates

〈φ,w − u〉 = lim sup
n→∞

〈φ,w − un〉

≤ lim sup
n→∞

[
〈Aw,w − un〉+ λ

∫
Ω

j0
1(x, un;w − un) dx +

∫
Γ1

µ(x, un)j0
2(x, un;w − un) dσ

]
≤ 〈Aw,w − u〉+ λ

∫
Ω

lim sup
n→∞

j0
1(x, un;w − un) dx +

∫
Γ1

µ(x, u) lim sup
n→∞

j0
2(x, un;w − un) dσ

+
∫

Γ1

lim sup
n→∞

|µ(x, un)− µ(x, u)||j0
2(x, un;w − un)| dσ

≤ 〈Aw,w − u〉+ λ

∫
Ω

j0
1(x, u;w − u) dx +

∫
Γ1

µ(x, u)j0
2(x, u;w − u) dσ
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Taking w = u + t(v − u) for t ∈ (0, 1) and keeping in mind Lemma 1.1 we obtain

t

[
〈Aw, v − u〉+ λ

∫
Ω

j0
1(x, u; v − u) dx +

∫
Γ1

µ(x, u)j0
2(x, u; v − u) dσ

]
≥ t〈φ, v − u〉.

Finally we divide by t > 0, then let t → 0 to obtain that u ∈ Λ(v), which shows that Λ(v) is a
weakly closed subset of K.

Step 2. For each u ∈ K the set Θ(u) = {v ∈ K : (v, u) 6∈ P} is either empty or convex.

Let us fix u ∈ K and assume that Θ(u) is nonempty. For v1, v2 ∈ Θ(u) and t ∈ (0, 1) let us define
w = v1 + t(v2 − v1). A simple computation leads to

〈Au, w − u〉+ λ

∫
Ω

j0
1(x, u;w − u) dx +

∫
Γ1

µ(x, u)j0
2(x, u;w − u) dσ

= (1− t)
[
〈Au, v1 − u〉+ λ

∫
Ω

j0
1(x, u; v1 − u) dx +

∫
Γ1

µ(x, u)j0
2(x, u; v1 − u) dσ

]
+t

[
〈Au, v2 − u〉+ λ

∫
Ω

j0
1(x, u; v2 − u) dx +

∫
Γ1

µ(x, u)j0
2(x, u; v2 − u) dσ

]
< (1− t)〈φ, v1 − u〉+ t〈φ, v2 − u〉 = 〈φ,w − u〉,

which shows that w ∈ Λ(u), therefore Θ(u) is a convex subset of K.

Step 3. The set B = {u ∈ K : (v, u) ∈ P for all v ∈ K} is weakly compact.

We observe that B =
⋂

v∈K

Λ(v) is weakly closed as it is an intersection of weakly closed sets. On

the other hand, B is a subset of K which is weakly compact therefore B is weakly compact.

Step 4. For each positive integer n the restriction of (HI)λ to B̄V (0, n) admits at least one solution.

From the above steps, for each positive integer n we can apply Theorem 1.1 with K0 = K =
B̄V (0, n) (obviously (u, u) ∈ P for all u ∈ B̄V (0, n)) and obtain the existence of an element
un ∈ B̄V (0, n) such that B̄V (0, n)× {un} ⊆ P, which can be rewritten equivalently as

〈Aun, v − un〉+ λ

∫
Ω

j0
1(x, un, v − un) dx +

∫
Γ1

j0
2(x, un; v − un) dσ ≥ 〈φ, v − un〉, (3.2)

for all v ∈ B̄V (0, n).

Step 5. There exists n∗ > 0 such that un∗ ∈ int B̄V (0, n∗).

Arguing by contradiction let us assume that ‖un‖V = n for all n > 0. Taking v = 0 in (3.2) we
obtain

〈Aun, un〉 ≤ 〈φ, un〉+ λ

∫
Ω

j0
1(x, un;−un) dx +

∫
Γ1

µ(x, un)j0
2(x, un;−un) dσ

≤ ‖φ‖V ∗‖un‖V + λ

∫
Ω

γ1(x)|un|p−1 dx + µ∗
∫

Γ1

γ2(x)|un| dσ

≤ ‖φ‖V ∗‖un‖V + λ‖γ1‖Lp(Ω)‖un‖p−1
Lp(Ω) + µ∗‖γ2‖Lp′ (Γ1)‖un‖Lp(Γ1)

≤ c̃1‖un‖V + c̃2‖un‖p−1
V ,
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for a suitable constants c̃1, c̃2 > 0. On the other hand, we know that

〈Aun, un〉 ≥ c1‖un‖p
V − c3.

Combining the above estimates and keeping in mind that 1 < p and ‖un‖V = n for all n > 0 we
arrive at

c1n
p − c3 ≤ c̃1n

p−1 + c̃2n.

Dividing by np−1 and letting n →∞ we get a contradiction as the left-hand term of the inequality
diverges while the right-hand term remains bounded.

Step 6. un∗ solves (HI)λ.

Let v ∈ V be fixed. From Step 5. we know that un∗ < n∗ which allows us to choose t ∈ (0, 1)
such that w = un∗ + t(v − un∗) ∈ B̄V (0, n∗). Plugging w in (3.2) we have

t〈φ, v − un∗〉 = 〈φ,w − un∗〉

≤ 〈Aun∗ , w − un∗〉+ λ

∫
Ω

j0
1(x, un∗ ;w − un∗) dx +

∫
Γ1

µ(x, u∗n)j0
2(x, un∗ ;w − un∗) dσ

= t

[
〈Aun∗ , v − un∗〉+ λ

∫
Ω

j0
1(x, un∗ ; v − un∗) dx +

∫
Γ1

µ(x, u∗n)j0
2(x, un∗ ; v − un∗) dσ

]
.

Dividing the above relation by t > 0 we conclude that un∗ is indeed a solution for (HI)λ.

�
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