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Abstract

We consider the Schrödinger equation{
−∆u+ V (x)u = λK(x)f(u) in RN ;
u ∈ H1(RN ), (Pλ)

where N ≥ 2, λ ≥ 0 is a parameter, V,K : RN → R are radially symmetric functions, and
f : R → R is a continuous function with sublinear growth at infinity. We first prove that
for λ small enough no non-zero solution exists for (Pλ), while for λ large enough at least
two distinct non-zero radially symmetric solutions do exist. By exploiting a Ricceri-type
three-critical points theorem, the principle of symmetric criticality and a group-theoretical
approach, the existence of at least N − 3 (N mod 2) distinct pairs of non-zero solutions is
guaranteed for (Pλ) whenever λ is large enough, N 6= 3, and f is odd.
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1 Introduction

In this paper we consider the Schrödinger equation{
−∆u+ V (x)u = λK(x)f(u) in RN ,
u ∈ H1(RN),

(Pλ)

where N ≥ 2, V,K : RN → R are some non-negative potentials, λ ≥ 0 is a parameter,
while f : R → R is a nonlinear continuous function. The interest in this problem comes
from mathematical physics; for instance, certain kinds of solitary waves in the nonlinear
Klein-Gordon or Schrödinger equations appear as solutions of problem (Pλ).

Problem (Pλ) or its related form has been studied by many authors during the last two
decades under various assumptions on the potentials V,K and on the nonlinear function
f . Most of these papers address the case when V and K have suitable sign- and growth-
properties, and f has a superlinear and subcritical growth. In these papers existence
and multiplicity results for (Pλ) are established via various variational arguments, see
Rabinowitz [9], Bartsch et al. [1, 2], and further subsequent papers. In particular, if
f is odd, the existence of infinitely many solutions for (Pλ) is usually guaranteed. A
particularly interesting paper is due to Clapp and Weth [3] where the existence of at least
N
2

+ 1 pairs of non-zero solutions for (Pλ) is proved for every λ > 0 by assuming certain
one-sided asymptotic estimates for V and K when f(s) = |s|p−2s, p ∈ (2, 2∗). Problem
(Pλ) has been also studied in the case when f is odd and has an asymptotically linear
growth at infinity; more precisely, Liu, van Heerden and Wang [7] prove a multiplicity
result for (Pλ) whenever V (x) = µg(x) + 1, µ > 0, and the number of solutions for
(Pλ) depends on the behavior of the dimension of the eigenspace of a specific Dirichlet
eigenvalue problem defined on the bounded domain Ω = int(g−1(0)).

The aim of the present paper is to supplement the aforementioned contributions by
requiring that the non-zero continuous function f : R → R has a sublinear growth at
infinity and a superlinear growth near zero. More precisely, we assume that

(f1) f(s) = o(|s|) as |s| → ∞;

(f2) f(s) = o(|s|) as s→ 0;

(f3) there exists s0 ∈ R such that F (s0) > 0, where F (s) =
∫ s

0
f(t)dt.

In order to avoid technicalities, we assume in the sequel that potentials V,K : RN → R
satisfy

(HV ) V ∈ C(RN) is radially symmetric and infRNV > 0;

(HK) K ∈ L∞(RN) ∩ L1(RN) is radially symmetric and K ≥ 0, K 6≡ 0.

Note that solutions of (Pλ) are being sought in weak form in the space

W =

{
u ∈ H1(RN) :

∫
RN

(|∇u|2 + V (x)u2)dx <∞
}
.
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In fact, under the above conditions on f , V and K which will be assumed throughout in
the sequel, every weak solution u of (Pλ) is a classical one. Indeed, we have ∆u =: h ∈
L2

loc(RN), thus u ∈ H2
loc(RN) (cf. Evans [4, §8.3]) and u satisfies (Pλ) for a.a. x ∈ RN .

The hypotheses (f1), (f2) and (f3) guarantee that the number

cf = max
s6=0

∣∣∣∣f(s)

s

∣∣∣∣
is well-defined, positive and finite. Now, we are in a position to state our main result.

Theorem 1.1 Assume that N ≥ 2. Let V,K : RN → R be two potentials such that both
(HV ) and (HK) hold, and let f : R → R be a continuous function verifying (f1) − (f3).
Then, the following assertions hold:

(i) For every λ ∈ [0, c−1
f ‖K‖

−1
L∞ infRNV ), problem (Pλ) has only the zero solution;

(ii) There exists Λ0 > 0 such that for every λ > Λ0, problem (Pλ) has at least two
distinct non-zero radially symmetric solutions in W ;

(iii) If f is odd and N 6= 3, there exists Λ1 > 0 such that for every λ > Λ1 problem (Pλ)
has at least sN = N −3 (N mod 2) distinct pairs of non-zero solutions {±uλi } ⊂ W ,
i = 1, ..., sN .

The proof of Theorem 1.1 (i) is direct. In order to prove Theorem 1.1 (ii)-(iii), we
find critical points of the energy functional associated with problem (Pλ) by means of a
Ricceri-type three-critical points theorem and the well-known Palais’ principle of sym-
metric criticality. In particular, the proof of the multiplicity in Theorem 1.1 (iii) requires
special treatment. Our strategy is to apply Ricceri’s result to some particular subspaces
of W which have two main properties:

• they can be compactly embedded into Lp(RN), p ∈ (2, 2∗);

• they cannot be compared from a symmetrical point of view, i.e., their pairwise
intersections contain only the 0 element.

After a careful group-theoretical analysis inspired from Bartsch and Willem [2], we are
able to construct s′N =

[
N−1

2

]
+ (−1)N such subspaces of W whenever N 6= 3. Further

energy-level analysis together with Ricceri’s multiplicity result provides at least two pairs
of distinct non-zero solutions for (Pλ) belonging to these subspaces separately whenever
λ is large enough. Thus, the minimal number of distinct pairs of non-zero solutions for
(Pλ) is sN = 2s′N = N − 3 (N mod 2). One can also observe that sN ≥ 2 for every N 6= 3.
Furthermore, in each dimension N ≥ 2, two pairs of solutions are radially symmetric,
while if sN > 2 (which occurs for N = 4 or N ≥ 6), the rest of the (sN − 2) pairs
of solutions are sign-changing and non-radially symmetric functions. This statement is
based on the aforementioned group-theoretical argument which is described in Section 2.

In Section 2 we recall Ricceri’s three-critical point theorem and display the group-
theoretical arguments needed for the proof of Theorem 1.1 (iii). In Section 3 we prove
our main theorem.
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2 Preliminaries

2.1 A Ricceri-type three-critical point theorem

The functional space

W =

{
u ∈ H1(RN) :

∫
RN

(|∇u|2 + V (x)u2)dx <∞
}

is endowed with its natural inner product 〈u, v〉W =
∫

RN (∇u∇v + V (x)uv) dx and norm

‖·‖W =
√
〈·, ·〉W . Due to hypothesis (HV ), it is clear that the embeddings W ⊂ H1(RN) ⊂

Lp(RN) are continuous, p ∈ [2, 2∗). Here, 2∗ = ∞ if N = 2, and 2∗ = 2N/(N − 2) for
N ≥ 3. Once (f1) and (f2) hold, the functional F : W → R defined by

F(u) =

∫
RN
K(x)F (u)dx

is well-defined, is of class C1, and the critical points of the functional Eλ : W → R defined
by

Eλ(u) =
1

2
‖u‖2W − λF(u)

are precisely the weak solutions for problem (Pλ). In order to find critical points for Eλ,
we will apply the principle of symmetric criticality together with a recent critical point
theorem due to Ricceri [10]. In order to recall Ricceri’s result, we need the following
definition: if X is a Banach space, we denote by WX the class of those functionals
E : X → R having the property that if {un} is a sequence in X converging weakly to
u ∈ X and lim infnE(un) ≤ E(u) then {un} has a subsequence converging strongly to u.

Theorem 2.1 [10, Theorem 2] Let (X, ‖ · ‖) be a separable, reflexive, real Banach space,
let E1 : X → R be a coercive, sequentially weakly lower semicontinuous C1 functional
belonging to WX , bounded on each bounded subset of X and whose derivative admits a
continuous inverse on X∗; and let E2 : X → R be a C1 functional with compact derivative.
Assume that E1 has a strict local minimum point u0 with E1(u0) = E2(u0) = 0. Assume
that τ < χ, where

τ := max

{
0, lim sup
‖u‖→∞

E2(u)

E1(u)
, lim sup

u→u0

E2(u)

E1(u)

}
, (2.1)

χ = sup
E1(u)>0

E2(u)

E1(u)
. (2.2)

Then, for each compact interval [a, b] ⊂ (1/χ, 1/τ) (with the conventions 1/0 =∞ and
1/∞ = 0) there exists κ > 0 with the following property: for every λ ∈ [a, b] and every
C1 functional E3 : X → R with compact derivative, there exists δ > 0 such that for each
θ ∈ [0, δ], the equation

E ′1(u)− λE ′2(u)− θE ′3(u) = 0

admits at least three solutions in X having norm less than κ.
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Remark 2.1 A close inspection of the proof of Theorem 2.1 provides us with further
information on the critical points of E1 − λE2 whenever λ ∈ (1/χ, 1/τ). First, from (2.1)
one can easily deduce that u0 is a strict local minimum point (without being a global
minimum point) of E1 − λE2. Second, since E1 − λE2 is coercive, bounded from below
which satisfies the Palais-Smale condition, there exists a global minimum point u1 ∈ X of
E1−λE2 with E1(u1)−λE2(u1) < 0 = E1(u0)−λE2(u0). Third, by applying a mountain
pass argument, see Pucci and Serrin [8], one can guarantee the existence of a third critical
point u2 ∈ X of E1 − λE2, different from u0 and u1, such that cλ = E1(u2)− λE2(u2) ≥
max{E1(u0)− λE2(u0), E1(u1)− λE2(u1)} = 0.

2.2 Special symmetries

Let N ≥ 2 be fixed and assume that a closed subgroup of the orthogonal group O(N)
acts on the space W , i.e., (φ, u) 7→ φ ∗ u ∈ W , φ ∈ G, u ∈ W . We define the set of fixed
points of W with respect to the group G which contains the G−invariant functions, i.e.,

WG = {u ∈ W : φ ∗ u = u for every φ ∈ G}.

In particular, if G = O(N) and ′∗′ is the standard linear and isometric action defined as

(φ ∗ u)(x) = u(φ−1x) for x ∈ RN , φ ∈ O(N), (2.3)

the set WO(N) is exactly the subspace of radially symmetric functions of W . Standard
arguments show that WO(N) ⊂ Lp(RN) is compact for every p ∈ (2, 2∗), see Lions [6].

In order to prove Theorem 1.1 (iii), more specific groups and actions are needed whose
origin can be found in Bartsch and Willem [2]. Let us fix N = 4 or N ≥ 6 and define the
number

tN =

[
N − 3

2

]
+ (−1)N .

Note that tN ≥ 1 and for every i ∈ {1, ..., tN}, we may introduce the following subgroups
of the orthogonal group O(N):

GN,i =

{
O(N

2
)×O(N

2
), if i = N−2

2
,

O(i+ 1)×O(N − 2i− 2)×O(i+ 1), if i 6= N−2
2
.

We introduce the involution function τi : RN → RN associated with GN,i by

τi(x) =

{
(x3, x1), if i = N−2

2 , and x = (x1, x3) with x1, x3 ∈ R
N
2 ;

(x3, x2, x1), if i 6= N−2
2 , and x = (x1, x2, x3) with x1, x3 ∈ Ri+1, x2 ∈ RN−2i−2.

By definition, we clearly have that τi /∈ GN,i, τiGN,iτ
−1
i = GN,i and τ 2

i = idRN .
Now, let Gτi

N,i = 〈GN,i, τi〉 = GN,i ∪ τiGN,i. We know from the properties of τi that
only two types of elements in Gτi

N,i can be distinguished; namely, φ = g ∈ GN,i, and
φ = τig ∈ Gτi

N,i \ GN,i (with g ∈ GN,i). The action of the compact group Gτi
N,i on W is

defined by
(g ∗ u)(x) = u(g−1x), ((τig) ∗ u)(x) = −u(g−1τ−1

i x), (2.4)

for g ∈ GN,i, u ∈ W and x ∈ RN . Now from Bartsch and Willem [2, pp. 455-457], the
embedding WG

τi
N,i
⊂ Lp(RN) is compact for every p ∈ (2, 2∗).

The next result is of crucial importance in Theorem 1.1 (iii).
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Theorem 2.2 The following statements hold true:

(i) If N = 4 or N ≥ 6, then WG
τi
N,i
∩WO(N) = {0} for all i ∈ {1, ..., tN};

(ii) If N = 6 or N ≥ 8, then WG
τi
N,i
∩W

G
τj
N,j

= {0} for every i, j ∈ {1, ..., tN} with i 6= j.

Proof. (i) Let u ∈ WG
τi
N,i
∩WO(N). Due to the Gτi

N,i−invariance of u and (2.4) we have

u(x) = −u(τ−1
i x) for every x ∈ RN . Since u is also radial and |x| = |τix|, we necessarily

have that u = 0.
(ii) Although in [5] a similar property is proved, for the sake of completeness we give

the proof here as well. Let N = 6 or N ≥ 8 be fixed; then tN ≥ 2. Fix i, j ∈ {1, ..., tN}
with i < j and denote by 〈GN,i;GN,j〉 the group generated by GN,i and GN,j.

We claim that the group 〈GN,i;GN,j〉 acts transitively on the sphere SN−1. If this fact
holds, the conclusion easily follows. Indeed, let u ∈ WG

τi
N,i
∩W

G
τj
N,j

. In particular, u is

both GN,i−, and GN,j−invariant, i.e. gi ∗u = gj ∗u = u for every gi ∈ GN,i and gj ∈ GN,j,
respectively. Consequently, u is also 〈GN,i, GN,j〉−invariant; thus, u(x) = u(gijx) for every
gij ∈ 〈GN,i, GN,j〉 and x ∈ RN . Since 〈GN,i;GN,j〉 acts transitively on the sphere SN−1,
we have that

Orbit{gijx : gij ∈ 〈GN,i, GN,j〉} = |x|SN−1 for all x ∈ RN .

Therefore, u is radially symmetric, and we can apply (i) thus obtaining that u = 0.
The transitivity of 〈GN,i, GN,j〉 on SN−1 will be proved step by step, namely, first on

SN−j−2×{0j+1}, then on SN−i−2×{0i+1}, and finally on the whole SN−1. For simplicity,
set 0k = (0, ..., 0) ∈ Rk, k ∈ {1, ..., N}.

First step. 〈GN,i;GN,j〉 acts transitively on SN−j−2 × {0j+1}.
When j = N−2

2
, then GN,j = O(N

2
) × O(N

2
), thus the proof is trivial since O(N

2
) acts

transitively on S
N−2

2 . Assume now that j 6= (N − 2)/2. We first show that for every
x = (x1, x2, x3) ∈ SN−j−2 with x1 ∈ Ri+1, x2 ∈ Rj−i, x3 ∈ RN−2j−2, and y ∈ Sj fixed
arbitrarily, there exists gij ∈ 〈GN,i;GN,j〉 such that

gij(y, 0N−j−1) = (x, 0j+1). (2.5)

Since O(j+1) acts transitively on Sj, for every x̃2 ∈ Rj−i with the property that (x1, x̃2) ∈
Sj, there exists an element gj ∈ O(j + 1) such that

gjy = (x1, x̃2). (2.6)

Note that |x1|2 + |x̃2|2 = 1 and |x1|2 + |x2|2 + |x3|2 = 1; thus |x̃2|2 = |x2|2 + |x3|2.
If x̃2 = 0j−i then x2 = 0j−i and x3 = 0N−2j−2; thus, x = (x1, 0N−j−i−2). Let gij :=

gj × idRN−j−1 ∈ GN,j. Then, due to (2.6), we have relation (2.5) by

gij(y, 0N−j−1) = (gjy, 0N−j−1) = (x1, 0j−i, 0N−j−1) = (x1, 0N−i−1) = (x, 0j+1).

If x̃2 6= 0j−i, let ρ = |x̃2| > 0. Since O(N − 2i− 2) acts transitively on SN−2i−3 (thus,
also on the sphere ρSN−2i−3), there exists gi ∈ O(N −2i−2) such that gi(x̃2, 0N−j−i−2) =
(x2, x3, 0j−i) ∈ ρSN−2i−3. Let

g̃i = idRi+1 × gi × idRi+1 ∈ GN,i and g̃j = gj × idRN−j−1 ∈ GN,j,
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the element gj coming from relation (2.6). Then gij := g̃ig̃j ∈ 〈GN,i;GN,j〉 and on account
of (2.6) and i+ 1 < N − j − 1 (since i < j ≤ tN), we obtain relation (2.5) by

g̃ig̃j(y, 0N−j−1) = g̃i(gjy, 0N−j−1) = g̃i(x1, x̃2, 0N−j−1)

= (x1, gi(x̃2, 0N−j−i−2), 0i+1) = (x1, x2, x3, 0j−i, 0i+1)

= (x, 0j+1).

Now, let x, x̃ ∈ SN−j−2. Then, fixing y ∈ Sj, due to (2.5), there are g1, g2 ∈ 〈GN,i;GN,j〉
such that g1(y, 0N−j−1) = (x, 0j+1) and g2(y, 0N−j−1) = (x̃, 0j+1). Consequently, g2g

−1
1 ∈

〈GN,i;GN,j〉 and g2g
−1
1 (x, 0j+1) = (x̃, 0j+1), i.e., 〈GN,i;GN,j〉 acts transitively on SN−j−2×

{0j+1}.
Second step. 〈GN,i;GN,j〉 acts transitively on SN−i−2 × {0i+1}.

The proof is similar to that of the first step. We now show that for every x = (x1, x2, x3) ∈
SN−i−2 with x1 ∈ Ri+1, x2 ∈ RN−j−i−2, x3 ∈ Rj−i, and y ∈ SN−j−2 fixed arbitrarily, there
is gij ∈ 〈GN,i;GN,j〉 such that

gij(y, 0j+1) = (x, 0i+1). (2.7)

Let x̃2 ∈ RN−j−i−2 be such that |x1|2 + |x̃2|2 = 1. Then, due to the first step, one can find
g̃ij ∈ 〈GN,i;GN,j〉 such that g̃ij(y, 0j+1) = (x1, x̃2, 0j+1).

If x̃2 = 0N−j−i−2 then x2 = 0N−j−i−2 and x3 = 0j−i. Consequently, (2.7) is verified
with the choice gij := g̃ij ∈ 〈GN,i;GN,j〉.

If x̃2 6= 0N−j−i−2 then let ρ = |x̃2| > 0. Since O(N − 2i − 2) acts transitively on
SN−2i−3 (thus, also on the sphere ρSN−2i−3), there exists gi ∈ O(N − 2i − 2) such that
gi(x̃2, 0j−i) = (x2, x3) ∈ ρSN−2i−3. Let g̃i = idRi+1 × gi × idRi+1 ∈ GN,i. Then

g̃ig̃ij(y, 0j+1) = g̃i(x1, x̃2, 0j+1) = (x1, gi(x̃2, 0j−i), 0i+1) = (x, 0i+1).

Consequently, gij := g̃ig̃ij ∈ 〈GN,i;GN,j〉 verifies relation (2.7). Now, following the last
part of the first step we obtain the required statement.

Third (concluding) step. 〈GN,i;GN,j〉 acts transitively on SN−1.
We first show that for every x = (x1, x2, x3) ∈ SN−1 with x1 ∈ Ri+1, x2 ∈ RN−j−i−2,
x3 ∈ Rj+1, and y ∈ SN−i−2 fixed arbitrarily, there is gij ∈ 〈GN,i;GN,j〉 such that

gij(y, 0i+1) = x. (2.8)

Let x̃3 ∈ Rj−i such that |x̃3| = |x3|. Then, due to the second step, there exists g̃ij ∈
〈GN,i;GN,j〉 such that g̃ij(y, 0i+1) = (x1, x2, x̃3, 0i+1).

If x̃3 = 0j−i then x3 = 0j+1 and (2.8) is verified with gij := g̃ij ∈ 〈GN,i;GN,j〉.
If x̃3 6= 0j−i, let ρ = |x̃3| = |x3| > 0. Since O(j+1) acts transitively on Sj, there exists

gj ∈ O(j+1) such that gj(x̃3, 0i+1) = x3 ∈ ρSj. Let us fix the element g̃j = idRN−j−1×gj ∈
GN,j. Then the element gij := g̃j g̃ij ∈ 〈GN,i;GN,j〉 verifies relation (2.8); indeed, one has

g̃j g̃ij(y, 0i+1) = g̃j(x1, x2, x̃3, 0i+1) = (x1, x2, gj(x̃3, 0i+1)) = (x1, x2, x3) = x.

Now, let x, x̃ ∈ SN−1. Then, fixing y ∈ SN−i−2, on account of (2.8), there are
g1, g2 ∈ 〈GN,i;GN,j〉 such that g1(y, 0i+1) = x and g2(y, 0i+1) = x̃. Consequently, g2g

−1
1 ∈

〈GN,i;GN,j〉 and g2g
−1
1 (x) = x̃, i.e., the group 〈GN,i;GN,j〉 acts transitively on SN−1, which

concludes the proof. �
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3 Proof of Theorem 1.1

In the sequel we assume that all the assumptions of Theorem 1.1 are fulfilled.

Proof of Theorem 1.1 (i). Assume that u ∈ W is a solution of (Pλ). Multiplying (Pλ)
by the test function u and using the definition of the number cf > 0, we obtain

‖u‖2W =

∫
RN

(|∇u|2 + V (x)u2)dx

= λ

∫
RN
K(x)f(u)u

≤ λ
‖K‖L∞
infRN V

cf

∫
RN
V (x)u2

≤ λ
‖K‖L∞
infRN V

cf‖u‖2W .

Now, if 0 ≤ λ < c−1
f ‖K‖

−1
L∞ infRNV, the above estimate implies u = 0, which concludes the

proof of (i). �

As we pointed out in the Introduction, the solutions of (Pλ) are exactly the critical
points for the functional Eλ = E1 − λE2 : W → R, where

E1(u) =
1

2
‖u‖2W and E2(u) = F(u), u ∈ W.

Before proving (ii) and (iii) of Theorem 1.1, we need the following

Lemma 3.1 (i) lim sup‖u‖W→∞
F(u)

‖u‖2W
≤ 0;

(ii) lim supu→0
F(u)

‖u‖2W
≤ 0;

(iii) Let X be a closed subspace of W which is compactly embedded into Lr(RN), r ∈
(2, 2∗). Then F|X has a compact derivative.

Proof. Due to (f1) and (f2), for every fixed ε > 0 there is a δε ∈ (0, 1) such that

|f(s)| < ε
infRN V

‖K‖L∞
|s| for all |s| ≤ δε and |s| ≥ δ−1

ε .

Since f ∈ C(R,R), there also exist two constants M1
ε ,M

2
ε > 0 such that

|f(s)|
|s|q−1

≤M1
ε and

|f(s)|
|s|p−1

≤M2
ε for all |s| ∈ [δε, δ

−1
ε ],

where 1 < q < 2 < p < 2∗. Combining the above two relations, we obtain that

|f(s)| ≤ ε
infRN V

‖K‖L∞
|s|+M1

ε |s|q−1 for all s ∈ R; (3.1)
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|f(s)| ≤ ε
infRN V

‖K‖L∞
|s|+M2

ε |s|p−1 for all s ∈ R. (3.2)

On account of (3.1), since K ∈ L∞(RN) ∩ L1(RN) and the embedding W ⊂ Lr(RN) is
continuous for r ∈ (2, 2∗), by the Hölder inequality one can find C1

ε > 0 such that

F(u) ≤
∫

RN
K(x)|F (u)|

≤
∫

RN
K(x)

[
ε

infRN V

2‖K‖L∞
u2 +

M1
ε

q
|u|q
]

≤ ε

2
‖u‖2W + C1

ε‖u‖
q
W .

Consequently, for every u ∈ W \ {0}, we have that

F(u)

‖u‖2W
≤ ε

2
+ C1

ε‖u‖
q−2
W .

Since q < 2, the arbitrariness of ε > 0 yields (i).
A similar argument based on (3.2) gives the existence of a C2

ε > 0 such that for every
u ∈ W \ {0},

F(u)

‖u‖2W
≤ ε

2
+ C2

ε‖u‖
p−2
W .

Since ε > 0 is arbitrary and p > 2, (ii) follows readily.
The proof of (iii) is standard. �

For any 0 < r1 < r2, let A[r1, r2] = {x ∈ RN : r1 ≤ |x| ≤ r2} be the closed annulus
with radii r1 and r2 . Since K ∈ L∞(RN) is a radially symmetric function with K ≥ 0
and K 6≡ 0 (cf. hypothesis (HK)), one can find real numbers R > r > 0 and K0 > 0 such
that

essinfx∈A[r,R]K(x) ≥ K0. (3.3)

Proof of Theorem 1.1 (ii). Let s0 ∈ R from (f3). For a fixed σ ∈ (0, (R− r)/2) with
r, R from (3.3), we can define a radially symmetric truncation function uσ ∈ WO(N) such
that

(a) suppuσ ⊆ A[r, R];

(b) ‖uσ‖L∞ ≤ |s0|;

(c) uσ(x) = s0 for every x ∈ A[r + σ,R− σ].

Here is an example of such a function uσ : RN → R

uσ(x) =


s0
σ

(|x| − r)+ if |x| ≤ r + σ;
s0 if r + σ < |x| ≤ R− σ;
s0
σ

(R− |x|)+ if |x| ≥ R− σ,

9



where z+ = max(z, 0). Denoting by ωN the volume of the unit ball in RN , we clearly have
from the properties (a)-(c) and relation (3.3) that

‖uσ‖2W ≥ s2
0ωN inf

RN
V
(
(R− σ)N − (r + σ)N

)
,

and

F(uσ) ≥ ωN [K0F (s0)
(
(R− σ)N − (r + σ)N

)
− ‖K‖L∞ max

|t|≤|s0|
|F (t)| ×

×
(
(r + σ)N − rN +RN − (R− σ)N

) ]
.

If σ is close enough to 0, the right-hand sides of both inequalities are strictly positive.
Therefore, we can define the number

λ0 = inf

{
‖u‖2W
2F(u)

: u ∈ WO(N), F(u) > 0

}
. (3.4)

Moreover, it is also clear (cf. Lemma 3.1 and the above estimates) that

χ0 = sup

{
2F(u)

‖u‖2W
: u ∈ WO(N) \ {0}

}
∈ (0,∞)

and χ−1
0 = λ0.

Now, we are in a position to apply Theorem 2.1 with X = WO(N) and E1, E2 :
WO(N) → R defined by E1 = E1|WO(N)

and E2 = E2|WO(N)
. On account of Lemma 3.1, the

assumptions of Theorem 2.1 are fulfilled with u0 = 0 ∈ WO(N) and τ = 0. Thus, for every
λ > Λ0 := λ0 = χ−1

0 > 0, the functional Eλ|WO(N)
has at least three distinct critical points

in WO(N). Since Eλ is O(N)−invariant, i.e., Eλ(φ ∗ u) = Eλ(u) for every φ ∈ O(N) and
u ∈ W (cf. relation (2.3) and hypotheses (HV ) and (HK)), the principle of symmetric
criticality implies that the critical points of Eλ|WO(N)

are also critical points for Eλ. This
concludes the proof. �

Remark 3.1 Theorem 2.1 allows us to assert that problem (Pλ) is stable to small per-
turbations of subcritical type. To be more precise, let us consider the perturbed problem{

−∆u+ V (x)u = λK(x)f(u) + µL(x)g(u) in RN ,
u ∈ H1(RN),

(Pλ,µ)

where µ ∈ R, L ∈ L∞(RN)∩L1(RN) is a radially symmetric function, while g : R→ R is
a continuous function such that for some c > 0 and 2 < p < 2∗,

|g(s)| ≤ c(|s|+ |s|p−1) for all s ∈ R.

We can easily prove that the function J : W → R defined by

J(u) =

∫
RN
L(x)G(u)dx,

is of class C1 and E3 = J |WO(N)
has a compact derivative, where G(s) =

∫ s
0
g(t)dt.

Consequently, we may apply Theorem 2.1 in its generality providing precise information on
the stability of (Pλ); namely, problem (Pλ,µ) has at least three distinct radially symmetric
solutions whenever λ > Λ0 and µ is small enough. Furthermore, some norm-estimates of
the solutions of (Pλ,µ) are also available on compact intervals of [Λ0,∞).
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Proof of Theorem 1.1 (iii). Let N 6= 3. Since f is odd, the energy functional Eλ is even,
and its critical points (hence solutions for (Pλ)) appear in symmetric pairs. Consequently,
a similar argument as in (ii) shows that there exists λ0 > 0 such that for every λ > λ0,
problem (Pλ) has at least two pairs {±uλ0,1} and {±uλ0,2} of non-zero distinct radially
symmetric solutions for (Pλ) which belong to WO(N). In the case when N = 2 or N = 5
we have sN = 2, i.e., the conclusion of (iii) follows from the latter arguments.

Consequently, it remains to consider N = 4 or N ≥ 6. In this case tN ≥ 1, so we may
fix i ∈ {1, ..., tN} arbitrarily. Without any loss of generality, we may assume for 0 < r < R
in relation (3.3) that r(5 + 4

√
2) ≥ R. Due to the latter choice, it is clear that the sets

Q1 =

(x1, x3) ∈ Ri+1 × Ri+1 :

√(
|x1| −

R + 3r

4

)2

+ |x3|2 ≤
R− r

4

 ;

Q2 =

(x1, x3) ∈ Ri+1 × Ri+1 :

√(
|x3| −

R + 3r

4

)2

+ |x1|2 ≤
R− r

4


are disjoint. For every σ ∈ (0, 1], we introduce the set

Di
σ =

x ∈ RN :

√(
|x1| −

R + 3r

4

)2

+ |x3|2 ≤ σ
R− r

4
,

√(
|x3| −

R + 3r

4

)2

+ |x1|2 ≤ σ
R− r

4
,

|x2| ≤ σ
R− r

4

}
,

where x = (x1, x2, x3) ∈ RN with x1, x3 ∈ Ri+1, x2 ∈ RN−2i−2 whenever i 6= N−2
2

, and

x = (x1, x3) ∈ RN with x1, x3 ∈ RN
2 whenever i = N−2

2
(and x2 is considered formally

0). Note that the set Di
σ ⊂ RN is Gτi

N,i-invariant, i.e., φDi
σ ⊂ Di

σ for every φ ∈ Gτi
N,i.

Moreover, meas(Di
σ) > 0 for every σ ∈ (0, 1] and

lim
σ→1

meas(Di
1 \Di

σ) = 0. (3.5)

Let s0 ∈ R from (f3) and for a fixed number σ ∈ (0, 1), we construct the following
special truncation function

uiσ(x) =

R− r
4
−max

√(|x1| −
R+ 3r

4

)2

+ |x3|2, σ
R− r

4


+

−

R− r
4
−max

√(|x3| −
R+ 3r

4

)2

+ |x1|2, σ
R− r

4


+

×
×
(
R− r

4
−max

(
|x2|, σ

R− r
4

))
+

16s0
(R− r)2(1− σ)2

.
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The special shape of uiσ shows that φ ∗ uiσ = uiσ for every φ ∈ Gτi
N,i (see relation (2.4)),

thus uiσ ∈ WG
τi
N,i

. Moreover, the following useful properties hold:

(a’) suppuiσ = Di
1 ⊆ A[r, R];

(b’) ‖uiσ‖L∞ ≤ |s0|;

(c’) |uiσ(x)| = |s0| for every x ∈ Di
σ.

Since F is even (thus F (s0) = F (−s0)), by exploiting the properties (a’)-(c’), we obtain
that

F(uiσ) ≥ K0F (s0)meas(Di
σ)− ‖K‖L∞ max

|t|≤|s0|
|F (t)|meas(Di

1 \Di
σ).

If σ is close enough to 1, the right-hand side of the latter term is strictly positive, see
(3.5). Consequently, we can introduce the number

λi = inf

{
‖u‖2W
2F(u)

: u ∈ WG
τi
N,i
, F(u) > 0

}
. (3.6)

As before, one has that

χi = sup

{
2F(u)

‖u‖2W
: u ∈ WG

τi
N,i
\ {0}

}
∈ (0,∞)

and χ−1
i = λi.

We can apply Theorem 2.1 with X = WG
τi
N,i

and E1, E2 : WG
τi
N,i
→ R defined by

E1 = E1|W
G
τi
N,i

and E2 = E2|W
G
τi
N,i

. Due to Lemma 3.1, the assumptions of Theorem 2.1

are satisfied with u0 = 0 ∈ WG
τi
N,i

and τ = 0. Consequently, for every λ > χ−1
i = λi > 0,

the functional Eλ|W
G
τi
N,i

has at least three distinct critical points in WG
τi
N,i
. More precisely

(cf. Remark 2.1), one of them is 0 (which is a strict local minimizer of Eλ|W
G
τi
N,i

), while the

other two elements uλi,1, u
λ
i,2 ∈ WG

τi
N,i
\ {0} are such that uλi,1 is a global minimum point of

Eλ|W
G
τi
N,i

with Eλ(u
λ
i,1) < 0, and uλi,2 is a mountain pass-type critical point of Eλ|W

G
τi
N,i

with

Eλ(u
λ
i,2) ≥ 0. Since f is odd, the energy functional Eλ is even; in particular, uλi,1 6= ±uλi,2,

and the pairs {±uλi,1} and {±uλi,2} are distinct critical points for Eλ|W
G
τi
N,i

.

Due to the evenness of Eλ, relation (2.4), and hypotheses (HV ), (HK), we have that
Eλ(φ ∗ u) = Eλ(u) for every φ ∈ Gτi

N,i and u ∈ W , i.e., Eλ is Gτi
N,i−invariant on W .

On account of the principle of symmetric criticality, the critical point pairs {±uλi,1} and
{±uλi,2} of Eλ|W

G
τi
N,i

are also critical point pairs for Eλ whenever λ > λi, hence solutions

for problem (Pλ).
Now, it remains to count the number of distinct solutions of the above type. Due

to Theorem 2.2, there are at least (1 + tN) subspaces of W whose mutual intersections
contain only the 0 element:

(I) the subspace WO(N) of radially symmetric functions of W , and
(II) tN subspace(s) of W of the type WG

τi
N,i

.
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As we pointed out above, each of these subspaces contain two distinct pairs of non-zero
solutions for (Pλ) whenever λ is large enough. More precisely, if

λ > Λ1 := max{λ0, λ1, ..., λtN},

where λ0 comes from the radial case (see (3.4)), while λi is from (3.6), i ∈ {1, ..., tN},
problem (Pλ) has at least

sN = 2(1 + tN) = N − 3(N mod 2)

distinct pairs of non-zero solutions. This concludes our proof. �

Remark 3.2 The statement of Theorem 1.1 (iii) is not relevant for N = 3 since s3 =
0. However, Theorem 1.1 (ii) gives two distinct (pairs of) non-zero, radially symmetric
solutions for (Pλ) whenever λ is large enough (and f is odd).

Remark 3.3 The proof of Theorem 1.1 (iii) shows that in each dimension N ≥ 2, two
pairs of solutions are radially symmetric. Moreover, if N = 4 or N ≥ 6, then sN ≥ 4 and
the rest of the (sN − 2) pairs of solutions are sign-changing and non-radially symmetric
functions in W.

Remark 3.4 From a Strauss-type estimate (see Lions [6]) we know that every u ∈ W
satisfies u(x) → 0 as |x| → ∞. Thus, all solutions in Theorem 1.1 (ii)-(iii) have this
property.
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[6] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49
(1982), no. 3, 315-334.

13



[7] Z. Liu, F. A. van Heerden, Z.-Q. Wang, Nodal type bound states of Schrödinger equa-
tions via invariant set and minimax methods. J. Differential Equations 214 (2005),
no. 2, 358-390.

[8] P. Pucci, J. Serrin, A mountain pass theorem. J. Differential Equations 60 (1985),
no. 1, 142-149.

[9] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math.
Phys. 43 (1992), no. 2, 270-291.

[10] B. Ricceri, A further three critical points theorem. Nonlinear Analysis 71 (2009), no.
9, 4151-4157.

14


