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1 Introduction

Assume Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. We consider the following class of
eigenvalue problems  −∆u = λu in Ω,

−∂u
∂ν
∈ β(u) on ∂Ω ,

(1)

where λ ∈ R, β : D(β) ⊂ R → R is a maximal monotone mapping, and ∂u/∂ν denotes the outward
normal derivative of u. To our knowledge, such problems have not been much discussed so far in the
literature. On the other hand, it is worth pointing out that eigenvalue problems are always important,
particularly in analyzing more complicated equations. We just remember the recent advances in [1, 2,
4, 7], [9]-[14].

In this paper we consider a particular nonlinearity, β(r) = αr+, where α is a positive constant, and
r+ := max{r, 0} for all r ∈ R. Therefore, problem (1) becomes −∆u = λu in Ω,

−∂u
∂ν

= αu+ on ∂Ω .
(2)

The natural space for nonlinear eigenvalue problems of the type (1) is the Sobolev space H1(Ω).
∗Correspondence address: Gheorghe Morosanu: morosanug@ceu.hu
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Recall that if u ∈ H1(Ω) then u+, u− ∈ H1(Ω) and

∇u+ =

 0, if [u ≤ 0]

∇u, if [u > 0] ,
∇u− =

 0, if [u ≥ 0]

∇u, if [u < 0] ,

(see, e.g. [6, Theorem 7.6]), where u±(x) = max{±u(x), 0} for a.e. x ∈ Ω.
We will say that λ ∈ R is an eigenvalue of problem (2) if there exists u ∈ H1(Ω) \ {0} such that∫

Ω
∇u∇ϕ dx+ α

∫
∂Ω
u+ϕ dσ(x) = λ

∫
Ω
uϕ dx , (3)

for any ϕ ∈ H1(Ω). Such a function u will be called an eigenfunction corresponding to the eigenvalue
λ. In fact, u is more regular. Indeed, it is known (see [3, Proposition 2.9, p. 63]) that A = −∆ with
D(A) = {u ∈ H2(Ω); −∂u/∂ν ∈ β(u) a.a. x ∈ ∂Ω} is a maximal (cyclically) monotone operator in
L2(Ω), and moreover there exist some constants C1, C2 > 0 such that

‖v‖H2(Ω) ≤ C1‖v −∆v‖L2(Ω) + C2, ∀v ∈ D(A).

Therefore, if u is an eigenfunction of problem (2) corresponding to some λ, then it is easy to see that
the (unique) solution of the equation v +Av = f , where f = (1 + λ)u, is v = u, thus u ∈ H2(Ω), and

‖u‖H2(Ω) ≤ C1|1 + λ| · ‖u‖L2(Ω) + C2. (4)

Note that u satisfies problem (2) in a classical sense.
Define

λ1 = inf
v∈H1(Ω)\{0},

∫
Ω v dx≥0

∫
Ω
|∇v|2 dx+ α

∫
∂Ω
v2

+ dσ(x)∫
Ω
v2 dx

. (5)

The main result of this paper is given by the following theorem.

Theorem 1. The numbers λ0 = 0 and λ1 (defined by relation (5)) represent the first two eigenvalues
of problem (2), provided that α > 0 is small. They are isolated in the set of eigenvalues of problem
(2). Moreover, the sets of eigenfunctions corresponding to λ0 and λ1 are positive cones (more precisely,
one-dimensional half-spaces) in H1(Ω) .

The study of problem (2) is motivated by many applications. It is worth pointing out that we obtain
in the next section a Rayleigh type principle: for α > 0 small the first nontrivial eigenvalue λ1 is a
minimum value of the Rayleigh quotient associated with the corresponding classical Robin problem.

2 Proof of the main result

Lemma 1. No λ < 0 can be an eigenvalue of problem (2).
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Proof. Assume λ ∈ R is an eigenvalue of problem (2) with the corresponding eigenfunction u ∈
H1(Ω) \ {0}. Taking ϕ = u in (3) we find

λ =

∫
Ω
|∇u|2 dx+ α

∫
∂Ω
u2

+ dσ(x)∫
Ω
u2 dx

≥ 0 .

�

Lemma 2. λ0 = 0 is an eigenvalue of problem (2) and the set of its corresponding eigenfunctions is
given by all the negative real constants.

Proof. The first part of the lemma is obvious. Let us now consider u ∈ H1(Ω)\{0} an eigenfunction
corresponding to λ0. Taking ϕ = u in relation (3) we deduce that∫

Ω
|∇u|2 dx+ α

∫
∂Ω
u2

+ dσ(x) = 0 .

Therefore,
∫

Ω |∇u|
2 dx =

∫
∂Ω u

2
+ dσ(x) = 0. Consequently, u should be a negative real number. �

Lemma 3. λ0 is isolated in the set of eigenvalues of problem (2).

Proof. Assume by contradiction that λ0 is not isolated. Then there exists a sequence of positive
eigenvalues of problem (2), say (λn), such that λn ↘ 0. For each n we denote by un the corresponding
eigenfunction of λn. Since we deal with a homogeneous problem we can assume that for each n we have
‖un‖L2(Ω) = 1. Relation (3) implies that for each n we have∫

Ω
∇un∇ϕ dx+ α

∫
∂Ω

(un)+ϕ dσ(x) = λn

∫
Ω
unϕ dx , (6)

for any ϕ ∈ H1(Ω). Taking ϕ = un in relation (6) we find∫
Ω
|∇un|2 dx+ α

∫
∂Ω

(un)2
+ dσ(x) = λn

∫
Ω
u2
n dx = λn . (7)

We deduce that (un) is bounded in H1(Ω). In fact, by estimate (4) with λ = λn and u := un, it follows
that (un) is bounded in H2(Ω). Consequently, there exists u ∈ H2(Ω) such that, on a subsequence, un
converges strongly to u in H1(Ω) and in L2(∂Ω) as well. Furthermore, (un)+ converges strongly to u+

in L2(∂Ω).
The above pieces of information lead to∫

Ω
|∇u|2 dx+ α

∫
∂Ω
u2

+ dσ(x) = lim
n→∞

[∫
Ω
|∇un|2 dx+ α

∫
∂Ω

(un)2
+ dσ(x)

]
= lim

n→∞
λn = 0 .

Thus,
∫

Ω |∇u|
2 dx = 0 and

∫
∂Ω u

2
+ dσ(x) = 0. It follows that u is a negative constant satisfying

‖u‖L2(Ω) = 1. More precisely, u = −1/|Ω|1/2.
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Turning back, relation (6) with ϕ = u implies

λn

∫
Ω
unu dx = −α 1

|Ω|1/2

∫
∂Ω

(un)+ dσ(x) ≤ 0, for all n .

It follows that ∫
Ω
un dx ≥ 0, for all n ,

which implies ∫
Ω
u dx ≥ 0 .

This contradicts the fact that u is a negative constant. Consequently, the result of Lemma 3 holds true.
�

Remark 1. Let us assume that λ > 0 is an eigenvalue of problem (2) with the corresponding eigen-
function u. Taking ϕ ≡ 1 in relation (3) it follows that

α

∫
∂Ω
u+ dσ(x) = λ

∫
Ω
u dx ,

which implies that ∫
Ω
u dx ≥ 0 .

Thus, the nonzero eigenvalues of problem (2) have the corresponding eigenfunctions in the cone

C =
{
w ∈ H1(Ω);

∫
Ω
w dx ≥ 0

}
.

Consequently, the definition of λ1 given in relation (5) is natural (we will prove later that for α > 0
small enough λ1 is an eigenvalue of problem (2)).

Lemma 4. There exists u ∈ C \ {0} such that

λ1 =

∫
Ω
|∇u|2 dx+ α

∫
∂Ω
u2

+ dσ(x)∫
Ω
u2 dx

.

Proof. Let (un) ⊂ C \ {0} be a minimizing sequence for λ1, i.e.∫
Ω
|∇un|2 dx+ α

∫
∂Ω

(un)2
+ dσ(x)∫

Ω
u2
n dx

→ λ1 ,

as n→∞. We can assume that ‖un‖L2(Ω) = 1 for all n. It follows that un is bounded in H1(Ω). Thus,
there exists u ∈ H1(Ω) such that (a subsequence of) un converges weakly to u in H1(Ω) and strongly
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in L2(Ω) and L2(∂Ω). It follows that ‖u‖L2(Ω) = 1, i.e. u 6= 0, and
∫

Ω u dx ≥ 0. Thus, u ∈ C \ {0}. The
above pieces of information combined with the weak lower semicontinuity of the L2-norm imply∫

Ω
|∇u|2 dx+ α

∫
∂Ω
u2

+ dσ(x) ≤ lim
n→∞

[∫
Ω
|∇un|2 dx+ α

∫
∂Ω

(un)2
+ dσ(x)

]
= λ1 .

Since ‖u‖L2(Ω) = 1 the above inequality and the definition of λ1 show that the conclusion of Lemma 4
holds true. �

Remark 2. We point out the fact that λ1 > 0. Indeed, assuming by contradiction that λ1 = 0 then
by Lemma 4 there exists u ∈ C \ {0} such that∫

Ω
|∇u|2 dx+

∫
∂Ω
u2

+ dσ(x) = 0 .

It follows that u is a negative constant with
∫

Ω u dx ≥ 0, a contradiction. Consequently 0 = λ0 < λ1.
Moreover, it is trivial to see that no λ ∈ (0, λ1) can be an eigenvalue of problem (2).

In the following we show that for α > 0 small enough λ1 is an eigenvalue of problem (2). In order
to do that we denote for α ∈ (−ε,∞), with ε > 0 small enough,

λ1(α) = inf
u∈C\{0}

∫
Ω
|∇u|2 dx+ α

∫
∂Ω
u2

+ dσ(x)∫
Ω
u2 dx

,

and

µ1(α) = inf
u∈H1(Ω)\{0},

∫
Ω u dx=0

∫
Ω
|∇u|2 dx+ α

∫
∂Ω
u2

+ dσ(x)∫
Ω
u2 dx

.

It is clear that for all α > 0 we have µ1(α) ≥ λ1(α), but, it is not obvious if either µ1(α) > λ1(α) or
µ1(α) = λ1(α). However, we are able to prove the following result:

Lemma 5. For any α > 0 small enough we have µ1(α) > λ1(α).

Proof. Obviously, for all α ≥ 0, both λ1(α) and µ1(α) are finite. This property extends for α ∈
(−ε, 0), with ε > 0, small enough. Indeed, for all u ∈ H1(Ω) with ‖u‖L2(Ω) = 1, we have (by the
continuity of the trace operator)∫

∂Ω
u2

+ dσ(x) ≤
∫
∂Ω
u2 dσ(x) ≤ C

(∫
Ω
|∇u|2 dx+ 1

)
,

where C is a positive constant. Therefore,∫
Ω
|∇u|2 dx+ α

∫
∂Ω
u2

+ dσ(x) ≥ (1 + αC)
∫

Ω
|∇u|2 dx+ αC ≥ −εC ,
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for all α ∈ (−ε, 0), u ∈ H1(Ω) with ‖u‖L2(Ω) = 1, provided that ε > 0 satisfies 1 − εC ≥ 0. Thus,
both λ1(α) and µ1(α) are well defined for α ∈ (−ε,∞). (Even more, a similar proof as the one used in
Lemma 4 shows that both λ1(α) and µ1(α) are attained.)

Now, let us point out the fact that the functions λ1(α), µ1(α) : (−ε,∞)→ R are concave functions.
Clearly, for any ϕ ∈ C \ {0} the function

(−ε,∞) 3 α −→

∫
Ω
|∇ϕ|2 dx+ α

∫
∂Ω
ϕ2

+ dσ(x)∫
Ω
ϕ2 dx

,

is an affine function, consequently, a concave function. Since the infimum of a family of concave functions
is a concave function, it follows that λ1(α) is concave. Similarly, µ1(α) is also concave. Thus, we deduce
that λ1(α) and µ1(α) are continuous functions for α ∈ (−ε,∞). On the other hand, λ1(0) = 0 and
µ1(0) = λ1,N , where 0 and λ1,N are the first two eigenvalues of the Neumann problem (see, e.g. [5,
Chapter 4.2.1]), i.e.  −∆u = λu in Ω,

∂u

∂ν
= 0 on ∂Ω .

(8)

It is well-known that λ1,N > 0 (see, [5, Proposition 4.2.2 and Proposition 4.2.3]). Thus, we found
λ1(0) < µ1(0). This inequality and the fact that λ1(α) and µ1(α) are continuous functions for α ∈
(−ε,∞) imply that λ1(α) < µ1(α) for any α > 0, small enough. The proof of Lemma 5 is complete. �

Lemma 6. Assume that u ∈ C \ {0} is a minimizer for the infimum given by relation (5), with∫
Ω u dx > 0. Then λ1 is an eigenvalue of problem (2) and u is an eigenfunction corresponding to λ1.

Proof. Let ϕ ∈ H1(Ω) be fixed. Then for any ε lying in a small neighborhood of the origin, we have∫
Ω(u+ εϕ) dx > 0, i.e. u+ εϕ ∈ C. Define the function

f(ε) =

∫
Ω
|∇(u+ εϕ)|2 dx+ α

∫
∂Ω

(u+ εϕ)2
+ dσ(x)∫

Ω
(u+ εϕ)2 dx

.

Clearly, f is well defined in a small neighborhood of the origin and possesses a minimum in ε = 0.
Consequently,

f
′
(0) = 0 ,

or, by some simple computations,∫
Ω
∇u∇ϕ dx+ α

∫
∂Ω
u+ϕ dσ(x) = λ1

∫
Ω
uϕ dx .

Clearly the above equality holds true for any ϕ ∈ H1(Ω). We deduce that u is an eigenfunction
corresponding to the eigenvalue λ1, and the proof of Lemma 6 is complete. �
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Proposition 1. The number λ1, defined by relation (5), is an eigenvalue of problem (2), provided that
α > 0 is small enough.

Proof. The conclusion of Proposition 1 is a simple consequence of Lemmas 4, 5 and 6. �

Lemma 7. If λ1 is an eigenvalue of problem (2) and u ∈ H1(Ω)\{0} is an eigenfunction corresponding
to λ1, then u ≥ 0 in Ω (thus,

∫
Ω u dx > 0).

Proof. Relation (3) shows that∫
Ω
∇u∇ϕ dx+ α

∫
∂Ω
u+ϕ dσ(x) = λ1

∫
Ω
uϕ dx , (9)

for every ϕ ∈ H1(Ω). First, we claim that u+ 6= 0. Indeed, assuming the contrary, we deduce that∫
Ω
∇u−∇ϕ dx = λ1

∫
Ω
u−ϕ dx , (10)

for every ϕ ∈ H1(Ω). Taking ϕ = 1 we find ∫
Ω
u− dx = 0 ,

that means, u− = 0 and thus u = 0, a contradiction. Consequently, u+ 6= 0. Then, taking ϕ = u+ in
(9) we have

λ1 =

∫
Ω
|∇u+|2 dx+ α

∫
∂Ω
u2

+ dσ(x)∫
Ω
u2

+ dx

.

By Lemma 6 we infer that u+ is an eigenfunction corresponding to λ1, or∫
Ω
∇u+∇ϕ dx+ α

∫
∂Ω
u+ϕ dσ(x) = λ1

∫
Ω
u+ϕ dx , (11)

for every ϕ ∈ H1(Ω). Relations (9) and (11) imply that relation (10) holds true. Taking again ϕ = 1
in (10) we find again

∫
Ω u− dx = 0 which leads to u− = 0 in Ω. The proof of Lemma 7 is complete. �

Remark 3. By Lemma 7, if λ1 is an eigenvalue of problem (2), then it is the first eigenvalue of the
following Robin problem  −∆u = λu in Ω,

−∂u
∂ν

= αu on ∂Ω .
(12)

In the following we argue that fact in detail. It is well-known that the number

γ1 = inf
v∈H1(Ω)\{0}

∫
Ω
|∇v|2 dx+ α

∫
∂Ω
v2 dσ(x)∫

Ω
v2 dx

,
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known as the Rayleigh quotient, is positive and represents the first eigenvalue of problem (12). Moreover,
γ1 is simple, that means, all the associated eigenfunctions are merely multiples of each other. It is
also known that these eigenfunctions belong to C(Ω) ∩ C1(Ω) (see [4, Lemma 2.1]). Furthermore, an
eigenfunction of γ1 can be chosen with a single sign, particularly with positive sign (see, e.g. [7]). The
definitions of γ1 and λ1 show that γ1 ≥ λ1. Actually, by Lemma 7 we have λ1 = γ1, i.e. λ1 is the first
eigenvalue eigenvalue of problem (12). Thus, the set of eigenfunctions corresponding to λ1 is a positive
cone in H1(Ω). More precisely, if u is a positive eigenfunction for the Robin problem, associated with
γ1, then the set of eigenfunctions for problem (2), associated with λ1 (= γ1), is the one dimensional
half-space {tu; t > 0}. Hence λ1 is simple.

Finally, we focus our attention on proving that λ1 is isolated. We will use a technique borrowed
from [2] that will be described in the following.

Lemma 8. Assume λ > 0 is an eigenvalue of problem (2) and u ∈ H1(Ω) \ {0} is an eigenfunction
corresponding to λ. Define Ω− = {x ∈ Ω; u(x) < 0}. If |Ω−| > 0 then there exists a positive constant
C (independent of λ and u) such that

((λ+ 1)C)−N/2 ≤ |Ω−| .

Proof. Recalling again relation (3) we have∫
Ω
∇u∇ϕ dx+ α

∫
∂Ω
u+ϕ dσ(x) = λ

∫
Ω
uϕ dx ,

for every ϕ ∈ H1(Ω). Taking ϕ = u− we find∫
Ω
|∇u−|2 dx = λ

∫
Ω
u2
− dx ,

or by taking into account that L2?
(Ω) is continuously embedded in L2(Ω), where 2? = 2N/(N − 2) is

the critical Sobolev exponent, we deduce by the Hölder’s inequality∫
Ω
|∇u−|2 dx+

∫
Ω
u2
− dx = (λ+ 1)

∫
Ω
u2
− dx ≤ (λ+ 1)‖u−‖2Lp? (Ω)

|Ω−|1−2/2?
.

Next, since H1(Ω) is continuously embedded in L2?
(Ω) we deduce that there exists a positive constant

C such that
‖v‖2

L2? (Ω)
≤ C

(∫
Ω
|∇v|2 dx+

∫
Ω
v2 dx

)
,

for any v ∈ H1(Ω). The last two inequalities imply

1 ≤ (λ+ 1)C|Ω−|2/N .

The proof of Lemma 8 is complete. �

Lemma 9. λ1 is isolated in the set of eigenvalues of problem (2).
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Proof. By Remark 2 it is clear that λ1 is isolated from the left. We show that it is also isolated from
the right. Assume by contradiction that this is not the case. Then there exists a sequence of positive
eigenvalues of problem (2), say (λn), such that λn ↘ λ1. For each n we denote by un an eigenfunction
corresponding to λn. Since we deal with a homogeneous problem we can assume that for each n we
have ‖un‖L2(Ω) = 1. Relation (3) implies that for each n we have∫

Ω
∇un∇ϕ dx+ α

∫
∂Ω

(un)+ϕ dσ(x) = λn

∫
Ω
unϕ dx , (13)

for any ϕ ∈ H1(Ω). Arguing as in the proof of Lemma 3, we deduce that (un) is bounded in H2(Ω).
Consequently, there exists u ∈ H2(Ω) such that un converges, on a subsequence, to u in H1(Ω) and in
L2(∂Ω) as well. Furthermore, we also have (un)+ converges strongly to u+ in L2(∂Ω). Passing to the
limit as n→∞ in (13) we get∫

Ω
∇u∇ϕ dx+ α

∫
∂Ω

(u)+ϕ dσ(x) = λ1

∫
Ω
uϕ dx , (14)

for any ϕ ∈ H1(Ω). Since ‖u‖L2(Ω)=1 it follows that u 6= 0 and thus, it is an eigenfunction corresponding
to λ1. By Lemma 7 we deduce that u ≥ 0 in Ω. In fact, according to Remark 3, u ∈ C(Ω) ∩ C1(Ω)
and u(x) > 0 for all x ∈ Ω. Let now ε > 0 be arbitrary but fixed and let K ⊂ Ω be a compact such
that |Ω \K| < ε/2. Obviously, there exists a δ > 0 (depending on K) such that u(x) ≥ δ > 0 for every
x ∈ K.

On the other hand, it is clear that un converges to u a.e. in Ω and thus, in K. Consequently,
by the Egorov’s Theorem (see, e.g. [15, Théorème 2.37]) we deduce that for ε > 0 fixed above there
exists a measurable set ω ⊂ K with |ω| < ε/2 such that un converges uniformly to u on K \ ω. Since
u ≥ δ > 0 in K we deduce that for any n large enough we have un ≥ 0 on K \ ω. For each n we define
(Ωn)− = {x ∈ Ω; un(x) < 0}. We can assume that for each n it holds true that fact that |(Ωn)−| > 0.
Indeed, otherwise there exists a particular n for which we have un ≥ 0 (and un 6= 0) in Ω. Taking
ϕ = u in (13) and ϕ = un in (14) we deduce that

λn

∫
Ω
unu dx = λ1

∫
Ω
uun dx .

Since
∫

Ω uun dx > 0 the above equality leads to λn = λ1 which represents a contradiction with the
fact that λn > λ1. Consequently, we should have |(Ωn)−| > 0 for all n. It follows that for any n large
enough we have (Ωn)− ⊂ ω ∪ (Ω \K). Using the above facts and Lemma 8 we have that the following
inequalities hold true

((λn + 1)C)−N/2 ≤ |(Ωn)−| ≤ |ω|+ |Ω \K| < ε ,

provided that n is large enough. Therefore

((λ1 + 1)C)−N/2 ≤ ε,

for all ε > 0, which is impossible. Consequently, the conclusion of Lemma 9 holds true. �
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3 Final comments

In this section we point out some facts that are direct consequences of the discussion presented in the
above sections.

First, we highlight the fact that for any α > 0 the number γ1 = γ1(α), introduced in Remark 3 and
which represents the first eigenvalue of the Robin problem (that is problem (12)) is an eigenvalue of
problem (2). The above assertion is a consequence of the fact that there exists u ∈ H1(Ω) \ {0} with
u ≥ 0 a.e. in Ω such that ∫

Ω
∇u∇ϕ dx+ α

∫
∂Ω
uϕ dσ(x) = γ1

∫
Ω
uϕ dx ,

for all ϕ ∈ H1(Ω). Since u ≥ 0 a.e. in Ω it follows that actually, relation (3) is verified with λ = γ1.
The definitions of λ1(α) and γ1(α) imply that for any α > 0 we have γ1(α) ≥ λ1(α). Moreover, by
Remark 3 we know that for α > 0 small enough we have γ1(α) = λ1(α). However, we cannot conclude
that for any α > 0 we have γ1(α) = λ1(α).

Second, we focus our attention on the numbers λ1(α) and µ1(α) defined after Remark 2. It is clear
that for all α > 0 we have µ1(α) ≥ λ1(α). Moreover, for α > 0 small enough, by Lemma 5, we have that
µ1(α) > λ1(α) and λ1(α) is an eigenvalue of problem (2) (see, Lemma 6). On the other hand, nothing
is clear if α > 0 is far from the origin. At least theoretically it may happen that for some α > 0 large
to have µ1(α) = λ1(α). In that case the reasoning from Lemma 6 does not work and consequently we
cannot state whether λ1(α) is an eigenvalue or not. However, we can show the following result which
is undoubtedly connected with the above discussion:

Proposition 2. If there exists α > 0 for which any minimizer u ∈ C\{0} of λ1(α) satisfies
∫

Ω u dx = 0
then λ1(α) is not an eigenvalue of problem (2).

Proof. Assume, by contradiction, that λ1(α) is an eigenvalue of problem (2). Then, any eigenfunction
u corresponding to λ1(α) is a minimizer with

∫
Ω u dx = 0. On the other hand, by Lemma 7 we have∫

Ω u dx > 0, a contradiction. The proof of Proposition 2 is complete. �

Define
V = {u ∈ H1(Ω);

∫
Ω
u dx = 0} .

Clearly, H1(Ω) = V ⊕ R and V ⊂ C. It seems that for some α > 0 large λ1(α) is attained on V , i.e.,
λ1(α) = µ1(α). In this case, by Proposition 2, λ1(α) is not an eigenvalue of problem (2). Since in
general λ1 ≤ γ1, we would have in this case λ1(α) < γ1(α).

A similar proof as the one of Lemma 4 shows that for each α > 0 there exists vα ∈ V \ {0} a
minimizer of µ1(α). Moreover, as in Lemma 6 it can be proved that for vα given above we have∫

Ω
∇vα∇ϕ dx+ α

∫
∂Ω

(vα)+ϕ dσ(x) = µ1(α)
∫

Ω
vαϕ dx , (15)

for all ϕ ∈ V . However, the above relation is not enough to state that µ1(α) is an eigenvalue of problem
(2) in the sense of the definition given by relation (3).
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In connection with the above discussion, let us introduce the following definition: we say that λ > 0
is an extended eigenvalue of problem (2) if there exists u ∈ C \ {0} such that∫

Ω
∇u∇(ϕ− u) dx+ α

∫
∂Ω
u+(ϕ− u) dσ(x) ≥ λ

∫
Ω
u(ϕ− u) dx , (16)

for all ϕ ∈ C. It is obvious that the classical eigenvalues of problem (2) (given by relation (3)) are
also extended eigenvalues. On the other hand, it is also clear that µ1(α) is an extended eigenvalue of
problem (2), for any α > 0. Thus, relation (16) gives a connection between λ1(α) and µ1(α). In fact, if
u ∈ C \ {0} is an extended eigenfunction corresponding to some extended eigenvalue λ > 0 of problem
(2), then either u is an interior point of C (i.e., u = u1 + c, for some u1 ∈ V and c > 0) so that λ is a
classical eigenvalue, or u ∈ V \ {0} and v = u satisfies (15).

It is also worth pointing out the fact that since problem (2) has a nonlinear boundary condition,
the study of the existence of other eigenvalues (different from λ0 and λ1(α)) is more difficult than in
the case of problems involving linear boundary conditions. Methods which are usually used fail in this
case. In this context, we just notice that we cannot apply the Ljusternik-Schnirelman theory in this
case, since the Euler-Lagrange energetic functional associated with problem (2) is not even, a crucial
condition required by the application of the quoted method. However, in the 1-dimensional case the
existence of infinitely many eigenvalues can be easily stated. Note that problem (2) with Ω = (0, 1)
becomes  −u

′′
(t) = λu(t) for t ∈ (0, 1) ,

u
′
(0) = αu+(0), −u′(1) = αu+(1) .

(17)

On the other hand, it is known (see, e.g., [8, p. 10]) that the 1-dimensional Neumann problem −u
′′
(t) = λu(t) for t ∈ (0, 1) ,

u
′
(0) = u

′
(1) = 0 ,

(18)

has the eigenvalues µk = k2π2, k = 0, 1, ..., with the corresponding eigenfunctions uk(t) = − cos(kπt).
Simple computations show that for each k ∈ Z+, µ2k is an eigenvalue of problem (17) with the corre-
sponding eigenfunction u2k.

Finally, let us point out that all the discussion on problem (2) presented in this paper can be
extended (by using similar arguments) to the nonlinear eigenvalue problem −∆pu = λ|u|p−2u in Ω,

−|∇u|p−2∂u

∂ν
= αup−1

+ on ∂Ω ,

where p ∈ (1, N) is a real number and ∆p· = div(|∇ · |p−2∇·) stands for the p-Laplace operator.
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