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Abstract

In this paper, proximal point algorithms for nonexpansive (sequences of nonexpan-
sive) maps and maximal monotone operators are studied. A modification of Xu’s
algorithm is given and a strong convergence result associated with it is proved when
the error sequence is in `p for 1 ≤ p < 2. We also propose some other modifications
of the celebrated Rockafellar’s algorithm which generate weak or strong convergent
sequences.
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1 Introduction

In what follows, H will be a real Hilbert space with scalar product 〈·, ·〉 and the Hilbertian
norm ‖ · ‖. Recall that a mapping (possibly multivalued) A : D(A) ⊂ H → H is said to
be a monotone operator if

〈x− x′, y − y′〉 ≥ 0, ∀ (x, y), (x′, y′) ∈ A.

Viewed as a subset of H×H, a monotone operator A is said to be maximal monotone if it is
not properly contained in any other monotone operator on H. According to Minty’s result,
this is equivalent to saying that the map I+λA is a surjection for some λ > 0 (equivalently
for all λ > 0), where I denotes the identity operator on H. If A is maximal monotone, and
λ > 0, then the operator Jλ : H → D(A) defined by Jλ(x) = (I + λA)−1(x) is called the
resolvent of A. It is well known that Jλ is single-valued and nonexpansive; meaning that for
all x, y ∈ H, ‖Jλ(x)−Jλ(y)‖ ≤ ‖x−y‖. The Yosida approximation Aλ : H → H can also
be defined by the formula Aλ(x) = λ−1(I − Jλ)(x) for x ∈ H. This operator is Lipschitz
continuous with constant λ−1, that is, for x, y ∈ H, ‖Aλ(x)−Aλ(y)‖ ≤ λ−1‖x−y‖. From
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the literature, we know that Aλ(x) ∈ A(Jλ(x)) for all x ∈ H, and ‖Aλ(x)‖ ≤ |A(x)| for
all x ∈ D(A), where |A(x)| = inf{‖y‖ : y ∈ A(x)}.
Notation: We adopt the notation: For a given sequence {xn}, s − limn→∞ xn denotes
the strong limit of {xn} and ωw({xn}) will denote the weak ω-limit set of {xn}, that is,

ωw({xn}) := {x ∈ H | xnk
⇀ x for some subsequence {xnk

} of {xn}} .

Here “⇀” denotes weak convergence.

Denote F := A−1(0) = F (Jλ), the set of all fixed points of Jλ for all λ > 0, and for a given
function f , the set of all its fixed points will be denoted by F (f). If ϕ : H → (−∞,+∞]
is a proper and convex function, then the subdifferential of ϕ is the operator (possibly
multivalued) ∂ϕ : H → H defined by

∂ϕ(x) = {w ∈ H | ϕ(x)− ϕ(v) ≤ 〈w, x− v〉, ∀ v ∈ H}.

An interesting and important topic in nonlinear analysis and convex optimization concerns
the following problem:

find an x such that 0 ∈ A(x), (1)

where A is a maximal monotone operator. In fact many problems that involve convexity
can be formulated as finding the zeros of maximal monotone operators. In particular,
A = ∂ϕ, where ϕ is a proper, convex and lower semi-continuous function, is a maximal
monotone operator and a point p ∈ H minimizes ϕ if and only if 0 ∈ ∂ϕ(p). One method
for finding the zeros of (1), devised by Rockafellar [5], is the proximal point algorithm
(PPA), which starts at an arbitrary initial point x0 ∈ H and generates recursively a
sequence of points

xn+1 = (I + βnA)−1xn + en, ∀ n ≥ 0, (2)

where {βn} ⊂ (0,∞) and {en} is considered to be the error sequence. He proved the
weak convergence of the sequence {xn} defined by (2) above, provided the sequence {βn}
is bounded away from zero and the error sequence {en} is summable. From the numerical
point of view, weak convergence is not enough for an efficient algorithm. In this regard,
Rockafellar’s open question of whether the PPA converges strongly in general, became
of central importance. Güler [3] constructed an example in `2 showing that there exists
a proper, convex and lower semi-continuous function ϕ such that given any bounded
positive sequence {βn}, there exists a point x0 ∈ D(ϕ) for which the PPA given by xn+1 =
(I+βnA)−1xn and starting at x0 converges weakly, but not strongly to a minimizing point
of ϕ. Knowing that the PPA does not converge strongly in general motivated the following
question: Can we modify Rockafellar’s algorithm in such a way that strong convergence
is guaranteed? Several attempts have been made in this direction by different authors,
among them, Solodov and Svaiter [6], and Xu [8]. In particular, Xu’s algorithm requires
that the error sequence be summable, which is too strong from the computational point of
view. Again we ask: Can we replace the summability of {en} by a weaker condition and
still get strong convergence results? We answer affirmatively this question (see Section
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3).

In a recent paper of Takahashi [7], a strong convergence theorem of a modified PPA was
proved for resolvents of accretive operators in Banach spaces by the so called viscosity
approximation method without taking into account the error terms. The (n+1)th iterate
was given as

xn+1 = αnf(xn) + (1− αn)(I + βnA)−1(xn),

where f : C → C is a strict contraction (a-contraction with 0 < a < 1) defined on a
nonempty closed convex subset C of a reflexive Banach space. In a Hilbert space setting,
an analogue of the above mentioned theorem can also be proved even when one takes
into account the error terms in `1. The result will in turn be a generalization of Xu’s
Theorem 5.1 [8]. Motivated by Takahashi’s result, we explore the case when f : H → H
is a nonexpansive map. In fact, we consider more, namely the case when f := fn is any
sequence of nonexpansive maps. More precisely, we propose two main algorithms. In the
first algorithm, the (n+ 1)th iterate takes the form

xn+1 = αnfn(xn) + (1− αn)(I + βnA)−1(xn) + en. (3)

As expected, our algorithm as given by (3) guarantees weak convergence result. What is
more, for a special choice of fn, strong convergence is obtained. Even more, we show that
one can always find a sequence of regularization parameters such that strong convergence
is obtained. This leads to a new algorithm whose (n+ 1)th iterate is given by

xn+1 = αn(I + λnA)−1(xn) + (1− αn)fn(xn) + en. (4)

Another algorithm is defined by

xn+1 = αn(I + λnA)−1u+ (1− αn)fn(xn) + en, (5)

where u is any point of H (not necessarily the starting point x0 of the PPA). Of course
the algorithm given by (4) is just the relaxed form of this algorithm. It is then shown that
the trajectory of the PPA given by algorithm 5 and starting at any point x0 approaches
a zero of A (that is, a fixed point of Jλn for all λn > 0) if λn grows large without bound
as n does. Our results generalize, improve and extend the results in Section 5 of [8].

2 Remarks on the PPA

Throughout this paper A : D(A) ⊂ H → H is assumed to be a maximal monotone
operator. We begin this section with a result that says that the boundedness of a sequence
generated by the PPA necessarily implies the existence of zeros of A provided {βn} /∈ `1.

Theorem 1 Assume en = 0 for n = 0, 1, . . ., and
∑∞

n=0 βn = ∞. If there exists x0 ∈ H
such that the sequence {xn} generated by (2) is bounded, then F := A−1(0) is nonempty.

Proof:
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Let x0 ∈ H be such that the sequence {xn} generated by (2) is bounded. Let (x, y) ∈ A.
We have

xn+1 − x+ βn(Axn+1 − y) + βny 3 xn − x.

Multiplying this equation scalarly by xn+1 − x yields,

‖xn+1 − x‖2 + βn〈Axn+1 − y, xn+1 − x〉+ βn〈y, xn+1 − x〉 = 〈xn − x, xn+1 − x〉

≤ 1

2
‖xn − x‖2 +

1

2
‖xn+1 − x‖2.

Therefore,

1

2
‖xn+1 − x‖2 + βn〈y, xn+1 − x〉 ≤

1

2
‖xn − x‖2.

By summing from n = 0 to n = N , we get,

〈y,
∑N

n=0 βnxn+1∑N
n=0 βn

− x〉 ≤ ‖x0 − x‖2

2
∑N

n=0 βn
· (6)

Since {xn} is bounded, so is {wn}, where

wn := (
n∑
k=0

βk)
−1

n∑
k=0

βkxk+1. (7)

Let p be a weak cluster point of {wn}. Then passing to the limit in (6), we obtain,

〈y, p− x〉 ≤ 0 (8)

for all (x, y) ∈ A since
∑∞

n=0 βn = ∞. By (8) and the maximality of A, it follows that
(p, 0) ∈ A, which implies that F 6= ∅. �

Remarks:

1). Conversely, if F 6= ∅, then for all x0 ∈ H, {βn} ⊂ (0,∞), {en} ⊂ H, and
∑∞

n=0 ‖en‖ <
∞, the sequence {xn} generated by (2) is bounded. Indeed, for p ∈ F , we have

‖xn+1 − p‖ ≤ ‖xn − p‖+ ‖en‖,

and therefore, by summing from n = 0 to n = N , we get

‖xN+1 − p‖ ≤ ‖x0 − p‖+
N∑
n=0

‖en‖ ≤ ‖x0 − p‖+
∞∑
n=0

‖en‖ <∞.

If in addition,
∑∞

n=0 βn = ∞, then the average wn defined by (7) converges weakly to
some point p ∈ F , (see [4], p. 139).

If we assume more, that is,
∑∞

n=0 β
2
n =∞, then the sequence {xn} itself converges weakly

to some point p ∈ F , (see [4], p. 142).
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2). In the case when A = ∂ϕ where ϕ is proper, convex and lower semi-continuous, the
weaker additional condition

∑∞
n=0 βn =∞ is enough to ensure weak convergence of {xn},

(see again [4], p. 142).

The interested reader is referred to Remark 3.1 ([4], p. 145) to see what happens for the
case when {βn} ∈ `1.
Recall that an operator A : D(A) ⊂ H → H is said to be coercive if it satisfies the
following condition

lim
‖ξ‖→∞, (ξ,η)∈A

(η, ξ − v0)

‖ξ‖
=∞, (9)

for some v0 ∈ H.

We know that if A is coercive, then its range R(A) = H, thus F 6= ∅, (see for example [4]).
We now show that if {en} is bounded and {βn} is bounded below away from zero, then
the sequence {xn} generated by (2) is bounded, provided A is assumed to be coercive.

Theorem 2 Assume A is coercive and maximal monotone. Let ‖en‖ ≤ C and βn ≥ ε > 0
for n ≥ 0, where C and ε are given constants. Then for any x0 ∈ H the sequence {xn}
generated by (2) is bounded.

Proof: The proof is essentially done in, [4, p. 152]. We just adapt the old proof to the
present framework.

Since A is coercive, the set F := A−1(0) is nonempty. Now setting un := xn − en−1, (2)
becomes

un + en−1 ∈ un+1 + βnA(un+1), for n ≥ 1,

which implies that

‖un+1 − p‖2 ≤ 〈un − p, un+1 − p〉+ 〈en−1, un+1 − p〉, for n ≥ 1,

for every p ∈ F . Therefore,

‖un+1‖ ≤ ‖un‖+ C + 2dist(0, F ), for n ≥ 1. (10)

Denote C1 := C + 2‖v0‖. By (9), there exists K > 0 such that

(ξ, η) ∈ A, ‖ξ‖ > K implies
(η, ξ − v0)

‖ξ − v0‖
≥ C1

ε
. (11)

Suppose that there exists k such that ‖uk+1‖ > K. Then multiplying

uk − v0 + ek−1 ∈ uk+1 − v0 + βkA(uk+1)

by (uk+1 − v0)/‖uk+1 − v0‖, where v0 is the vector associated with the coercivity of A,
and making use of (11), we get,

‖uk+1 − v0‖+ C1 ≤ ‖uk − v0‖+ ‖ek−1‖ ≤ ‖uk‖+ ‖v0‖+ C,
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or
‖uk+1‖ ≤ ‖uk+1 − v0‖+ ‖v0‖ ≤ ‖uk‖+ 2‖v0‖+ C − C1,

which implies that
‖uk+1‖ ≤ ‖uk‖.

Therefore we have

‖un+1‖ ≤ max{K + C + 2dist(0, F ), ‖un‖} for n ≥ 1. (12)

Setting ρn = max{K + C + 2dist(0, F ), ‖un‖}, we deduce from (12) that

ρn+1 ≤ ρn, for n ≥ 1.

Hence

‖xn‖ ≤ ‖un‖+ C ≤ ρn + C ≤ max{K + C + 2dist(0, F ), ‖x1 − e0‖}+ C, for n ≥ 1,

showing that {xn} is bounded. �

Remark: If A is maximal monotone, strongly monotone (hence coercive), βn → ∞,
‖en‖ → 0, then for any x0 ∈ H the sequence {xn} generated by (2) converges strongly to
p = A−1(0). Indeed, if we denote un := xn − en−1, and on multiplying

un − p+ en−1 ∈ un+1 − p+ βnA(un+1)

scalarly by un+1 − p yields,

(1 + cβn)‖un+1 − p‖2 ≤ ‖un − p‖‖un+1 − p‖+ ‖en−1‖‖un+1 − p‖,

where c is the strong monotonicity constant. Therefore if we set M := supn{‖un − p‖
+ ‖en−1‖}, then we have

‖un+1 − p‖ ≤
M

(1 + cβn)
→ 0.

Hence {xn} converges strongly to p.

When A is the subdifferential, coercivity of A is equivalent to the conditions given in the
following result which is due to Brézis [2, p. 42] (see also [1, p. 56]).

Proposition 1 [2] Let ϕ : H → (−∞,+∞] be a proper, convex, lower semi-continuous
function, and let A = ∂ϕ. Then the following conditions are equivalent;

(i) lim
‖ξ‖→∞, (ξ,η)∈A

ϕ(ξ)

‖ξ‖
=∞ ;

(ii) A is coercive, that is, there exists a v0 ∈ H such that

lim
‖ξ‖→∞, (ξ,η)∈A

(η, ξ − v0)

‖ξ‖
=∞ ;
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(iii) R(A) = H and A−1 is bounded.

We remark that coercivity of A = ∂ϕ is stronger than the condition

lim
‖ξ‖→∞

ϕ(ξ) =∞. (13)

In the case of the subdifferential, Theorem 2 can be proved under the weaker coercivity
condition (13). More precisely, we have:

Theorem 3 Assume A = ∂ϕ, where ϕ : H → (−∞,∞] is a proper, convex and lower
semicontinuous function satisfying condition (13). Let

∑∞
n=0 ‖en‖2 <∞ and βn ≥ ε > 0

for a given constant ε and n ≥ 0. Then for any x0 ∈ H the sequence {xn} generated by
(2) is bounded.

Proof:

According to Theorem 1.10 of [4], there exists a p ∈ D(ϕ) such that ϕ(p) = infx∈H ϕ(x),
that is, F := A−1(0) is nonempty. Denote un := xn − en−1. Then by definition of the
subdifferential and on multiplying

un + en−1 ∈ un+1 + βnA(un+1)

scalarly by un+1 − un yields

‖un+1 − un‖2 + βn(ϕ(un+1)− ϕ(un)) ≤ ‖un+1 − un‖2 + βn〈Aun+1, un+1 − un〉

= 〈en−1, un+1 − un〉 ≤
1

2
‖en−1‖2 +

1

2
‖un+1 − un‖2,

for n ≥ 1. Therefore,

1

2
‖un+1 − un‖2 + βn(ϕ(un+1)− ϕ(un)) ≤ 1

2
‖en−1‖2 for n ≥ 1,

which implies that

ϕ(un+1) ≤ ϕ(un) +
1

2ε
‖en−1‖2 for n ≥ 1.

By summing,

ϕ(un+1) ≤ ϕ(u1) +
1

2ε

n−1∑
j=0

‖ej‖2 ≤ ϕ(u1) +
1

2ε

∞∑
j=0

‖ej‖2 <∞.

It follows from (13) that {un} is bounded, and so is {xn}, since en → 0. �

Remark: According to Theorem 3.6 of [4], we have under the assumptions of Theorem
3,

ϕ(un+1) = ϕ(xn+1 − en)→ inf
x∈H

ϕ(x).

This implies that every weak limit point of {xn} belongs to F := A−1(0) (the set of all
minimum points of ϕ). Therefore if F is singletone (which happens if, for example, ϕ is
strictly convex), then

xn ⇀ p,

where p is the (unique) minimum point of ϕ. If in addition, we assume that the “level
sets” {v ∈ H : ϕ(v) ≤ λ}, λ ∈ R, are compact (which happens in many cases), then we
have strong convergence: ‖xn − p‖ → 0.
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3 Remarks on Xu’s algorithm

In the present section we consider the following algorithm which is a slight modification
of Xu’s algorithm 5.1 [8].

Algorithm 1 Let A be a maximal monotone operator.
Step 1. Choose x0, u ∈ H arbitrarily.
Step 2. For each n ≥ 0, choose a regularization parameter βn > 0 and compute

yn = (I + βnA)−1(xn) + en. (14)

Step 3. For each n ≥ 0, choose the relaxation parameter αn ∈ (0, 1) and compute the
(n+ 1)th iterate:

xn+1 = αnu+ (1− αn)yn + e′n, (15)

where {en} and {e′n} can be interpreted as sequences of computational errors. Here en is
considered to be the “main error” while e′n is a “smaller error”. More precisely, we assume
that there exists K > 0 such that ‖e′n‖ ≤ K‖en‖, for all n ≥ 0.

Note that if the sequences {en} and {xn} generated by the above algorithm are bounded,
then F := A−1(0) is nonempty, provided βn →∞.

Indeed, if we denote un := yn − en, then by (15), {yn} is bounded, and so is {un}. Hence
there exists a subsequence {unk

} which converges weakly to some p ∈ H. From (14) and
(15), we derive

un + βnA(un) 3 αn−1u+ (1− αn−1)(un−1 + en−1) + e′n

which is equivalent to

A(un) 3 1

βn
(αn−1u− un + (1− αn−1)(un−1 + en−1) + e′n). (16)

Since A is demiclosed, unk
⇀ p and the right hand side of (16) converges strongly to zero,

it follows that (p, 0) ∈ A, hence F 6= ∅. We have therefore proved that:

Proposition 2 Assume that βn → ∞. If the sequences {en} and {xn} defined by algo-
rithm 1 are bounded, then F := A−1(0) is nonempty.

On the other hand, for a coercive operator A, it is immediate that the set F := A−1(0) is
nonempty. If in addition, we assume that the sequence {en} is bounded and the sequence
{βn} is bounded below away from zero, then we can show that the sequence {xn} generated
by algorithm 1 is itself bounded. We state this fact more formally in the following theorem
whose proof is similar to the proof of Theorem 2.

Theorem 4 Assume that A : D(A) ⊂ H → H is maximal monotone and coercive. Let
‖en‖ ≤ C and βn ≥ ε > 0 for n ≥ 0, where C and ε are given constants. Then for any
x0, u ∈ H, the sequence {xn} generated by algorithm 1 is bounded.
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Taking u = x0 and e′n = 0 for all n ≥ 0, the above algorithm reduces to algorithm 5.1
[8]. On proving strong convergence in this case, the error sequence in Theorem 5.1 [8] is
required to be summable, a condition too strong for computational purposes. We now
address the question of whether or not can the summability of {en} be replaced by a
weaker condition and still get strong convergence results. For this purpose, we recall the
following lemma due to Xu [8].

Lemma 1 [8]. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− an)sn + anbn + cn, n ≥ 0,

where {an}, {bn} {cn} satisfy the conditions;

(i) {an} ⊂ [0, 1],
∑∞

n=0 an =∞,

(ii) lim supn→∞ bn ≤ 0,

(iii) cn ≥ 0 for all n ≥ 0 with
∑∞

n=0 cn <∞.

Then limn→∞ sn = 0.

More often, we shall use the following inequality which is usually referred to as the sub-
differential inequality.

‖x+ y‖2 ≤ ‖y‖2 + 2〈x, x+ y〉 for all x, y ∈ H.

The following theorem extends and improves Theorem 5.1 [8].

Theorem 5 Assume that

(i) Either {‖en‖} ∈ `1, αn ∈ (0, 1) with αn → 0 and
∑∞

n=0 αn =∞;

(ii) Or {‖en‖} ∈ `p\`1, p ∈ (1, 2), αn ∈ (0, 1) with αn ≥ ε‖en‖2−p for some ε > 0, and
αn → 0.

If A is maximal monotone and F := A−1(0) 6= ∅, then the sequence {xn} generated by
algorithm 1 converges strongly to q = PFu provided βn →∞.

Proof: (The first part of the proof is analogous to the proof of Theorem 5.1 [8])

(i). Case {‖en‖} ∈ `1, and αn ∈ (0, 1) satisfying, αn → 0 and
∑∞

n=0 αn = ∞. We divide
the proof into steps.

Step 1 : Note that for q ∈ F , we have

‖xn+1 − q‖ ≤ αn‖u− q‖+ (1− αn)‖yn − q‖+ ‖e′n‖
≤ αn‖u− q‖+ (1− αn)‖xn − q‖+ (1− αn)‖en‖+ ‖e′n‖,

which implies that

‖xn+1 − q‖ ≤
n∏
k=0

(1− αk)‖x0 − q‖+

[
1−

n∏
k=0

(1− αk)

]
‖u− q‖+

n∑
k=0

(‖ek‖+ ‖e′k‖),
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showing that {xn} is bounded, and so is {yn}.
Step 2 : We want to show that limn→∞〈u − q, xn − q〉 ≤ 0. Take a subsequence {xnk

} of
{xn} so that

limn→∞〈u− q, xn − q〉 = lim
k→∞
〈u− q, xnk

− q〉.

Since {xn} is bounded, {xnk
} converges weakly on a subsequence, again denoted by {xnk

},
to some x∞. Then it follows that

limn→∞〈u− q, xn − q〉 = 〈u− q, x∞ − q〉.

It remains to show that x∞ ∈ F . Note that

‖xn+1 − yn‖ ≤ αn‖u− yn‖+ ‖e′n‖ ≤Mαn + ‖e′n‖ → 0,

which implies that ynk−1 − enk−1 ⇀ x∞. On the other hand, since

A(ynk−1 − enk−1) 3
1

βnk−1

(xnk−1 − ynk−1 + enk−1)→ 0,

and because A is demiclosed, we have x∞ ∈ F .

Step 3 : Now we show that {xn} converges strongly to q = PFu. Applying the subdiffer-
ential inequality, we get

‖xn+1 − q‖2 = ‖αn(u− q + e′n) + (1− αn)(yn − q + e′n)‖2

≤ (1− αn)‖yn − q + e′n‖2 + 2αn〈u− q + e′n, xn+1 − q〉
≤ (1− αn)(‖xn − q‖+ ‖en‖+ ‖e′n‖)2 + 2αn〈u− q + e′n, xn+1 − q〉
≤ (1− αn)‖xn − q‖2 + αnbn + cn,

where cn = (1 + K)‖en‖(2‖xn − q‖ + (1 + K)‖en‖) with
∑∞

n=0 cn <∞ and from Step 2,
limn→∞bn ≤ 0 where bn = 2〈u − q + e′n, xn+1 − q〉. Hence it follows from Lemma 1 that
xn → q.

(ii). Suppose that
∑∞

n=0 ‖en‖ = ∞ and
∑∞

n=0 ‖en‖p < ∞, for some p ∈ (1, 2). Denote
zn := yn − en and ẽn := (1− αn)en + e′n. Then we have from (14) and (15),

zn = (I + βnA)−1(xn) and xn+1 = αnu+ (1− αn)zn + ẽn. (17)

Let p ∈ F . We have

‖xn+1 − p‖2 ≤ (1− αn)2‖zn − p+ ẽn‖2 + 2αn〈u− p+ ẽn, xn+1 − p〉
≤ (1− αn)2(‖xn − p‖+ ‖ẽn‖)2 + 2αn〈u− p+ ẽn, xn+1 − p〉
≤ (1− αn)2(‖xn − p‖+ (1 +K)‖en‖)2 + 2Mαn‖xn+1 − p‖,

where M > 0 is a constant such that ‖x0 − p‖ ≤ M , and ‖u − p‖ + ‖ẽn‖ ≤ M for all
n ≥ 0.
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Assume that ‖en‖ is small enough for all n ≥ 0, otherwise one can consider algorithm 1
for n ≥ N , with x0 := xN . We want to prove that for C := 2M , we have

‖xn − p‖ ≤ C for all n ≥ 0. (18)

Inequality (18) is clearly true for n = 0. Assume that it is true for some n. Then, we
have from the previous estimate,

‖xn+1 − p‖2 ≤ (1− αn)2(C + (1 +K)‖en‖)2 + 2Mαn‖xn+1 − p‖.

Therefore,

(‖xn+1 − p‖ −Mαn)2 ≤M2α2
n + (1− αn)2(C + (1 +K)‖en‖)2,

which implies that

‖xn+1 − p‖ ≤Mαn +
√
M2α2

n + (1− αn)2(C + (1 +K)‖en‖)2. (19)

Now let us prove that

Mαn +
√
M2α2

n + (1− αn)2(C + (1 +K)‖en‖)2 ≤ C,

or equivalently,

M2α2
n + (1− αn)2(C + (1 +K)‖en‖)2 ≤ C2 − 2MCαn +M2α2

n,

or equivalently,

(1− αn)(C + (1 +K)‖en‖)2 ≤ C2. (20)

Since αn ≥ ε‖en‖2−p, to prove (20), it suffices to show that

(1− ε‖en‖2−p)(C + (1 +K)‖en‖)2 ≤ C2,

or equivalently,

C2−εC2‖en‖2−p+2C(1+K)‖en‖−2C(1+K)ε‖en‖3−p+(1+K)2‖en‖2−(1+K)2ε‖en‖4−p ≤ C2,

or equivalently,

−εC2 + 2C(1 +K)‖en‖p−1 − 2C(1 +K)ε‖en‖+ (1 +K)2‖en‖p − (1 +K)2ε‖en‖2 ≤ 0,

which holds true because ‖en‖ is small and p > 1. Therefore from (19) and (20) we see
that (18) holds true for n+ 1.

Step 2 : As in Step 2 of the first part, we take a subsequence {xnk
} of {xn} such that

limn→∞〈u− q, xn − q〉 = 〈u− q, x∞ − q〉.
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On the other hand, for any p ∈ F , we have from (17)

‖xn+1 − zn‖ ≤ αn(‖u‖+ ‖zn‖) + ‖ẽn‖ ≤ αn(‖u‖+ ‖zn − p‖) + ‖ẽn‖
≤ αn(‖u‖+ ‖xn − p‖) + ‖ẽn‖ ≤ αnM + ‖ẽn‖ → 0,

implies that
znk−1 = (I + βnk−1A)−1(xnk−1) ⇀ x∞.

Therefore (x∞, 0) ∈ A, which implies that x∞ ∈ F .

Step 3 : Finally, we show that {xn} converges strongly to q = PFu. We have

‖xn+1 − q‖2 ≤ (1− αn)‖zn − q + ẽn‖2 + 2αn〈u− q + ẽn, xn+1 − q〉
≤ (1− αn)(‖xn − q‖+ ‖ẽn‖)2 + 2αn〈u− q + ẽn, xn+1 − q〉
≤ (1− αn)(‖xn − q‖+ (1 +K)‖en‖)2 +

αn
2
bn

≤ (1− αn)‖xn − q‖2 + (1 +K)2‖en‖2 +
αn
2
bn +

2(1− αn)

[(√
ε

2
‖xn − q‖‖en‖1−

p
2

)(√
2

ε
(1 +K)‖en‖

p
2

)]
≤ (1− αn)

(
1 +

ε

2
‖en‖2−p

)
‖xn − q‖2 +

αn
2
bn +

2

ε
(1 +K)2‖en‖p +

(1 +K)2‖en‖2, (21)

where bn = 4〈u−q+ ẽn, xn+1−q〉 with limn→∞bn ≤ 0. Set an := αn

2
. Then

∑∞
n=0 an =∞,

an → 0 and

αn = an +
1

2
αn ≥ an +

ε

2
‖en‖2−p.

Therefore, we have from (21)

‖xn+1 − q‖2 ≤ (1− an)‖xn − q‖2 + anbn + cn,

where cn = (1 + K)2(‖en‖2 + 2
ε
‖en‖p) with

∑∞
n=0 cn < ∞ because 1 < p < 2 and∑∞

n=0 ‖en‖p < ∞ implies that
∑∞

n=0 ‖en‖2 < ∞. Hence it follows from Lemma 1 that
{xn} converges strongly to q = PFu. �

Example:

Let ‖en‖ = 1
(n+1)2/3 , e′n = 0 for all n ≥ 0, p = 5

3
, and αn = ‖en‖2−p = 1

(n+1)1/3 . This case

is not covered in Theorem 5.1 [8]. However according to Theorem 5, {xn} as defined in
algorithm 1 converges strongly to q = PFu, if βn →∞.

4 Other Modified Rockafellar’s Algorithms

Let fn : H → H be a sequence of nonexpansive maps. We define the following algorithm:
Step 1. Choose x0 ∈ H arbitrarily.
Step 2. For each n ≥ 0, choose the regularization parameter λn > 0 and compute

yn = fn(xn) + e′n and zn = (I + λnA)−1u+ e′′n.

12



Step 3. For each n ≥ 0, choose the relaxation parameter αn ∈ (0, 1) and compute (n+1)th
iterate:

xn+1 = αnzn + (1− αn)yn + e′′′n ,

where {e′n}, {e′′n} and {e′′′n } are interpreted as sequences of computational errors.

The error terms e′n and e′′n are considered to be the “main errors” whereas e′′′n as being
“smaller”. While this algorithm takes into account all the possible errors at each step,
its disadvantage is that it might not be so convenient to work with in theory. There is
therefore a need to present it in a simplified version. Notice that the (n+ 1)th iterate can
be written as

xn+1 = αn(I + λnA)−1u+ (1− αn)fn(xn) + en,

where en = αne
′′
n + (1− αn)e′n + e′′′n . If {‖e′n‖}, {‖e′′n‖}, {‖e′′′n ‖} ∈ `p for 1 ≤ p ≤ ∞, then

{‖en‖} ∈ `p also. So we can redefine this algorithm as follows:

Algorithm 2 Let fn : H → H be a sequence of nonexpansive maps.
Step 1. Choose x0, u ∈ H arbitrarily.
Step 2. For each n ≥ 0, choose the regularization parameter λn > 0 and compute

yn = fn(xn) and zn = (I + λnA)−1u.

Step 3. For each n ≥ 0, choose the relaxation parameter αn ∈ (0, 1) and compute the
(n+ 1)th iterate:

xn+1 = αnzn + (1− αn)yn + en,

where {en} is a sequence of computational errors.

From now on, we will always assume our algorithms have already been converted into a
form similar to the one given above, that is, the errors are present in Step 3 only.

Theorem 6 Assume
∑∞

n=0 ‖en‖ < ∞ and fn : H → H is a sequence of nonexpansive
maps. If A is maximal monotone, ∅ 6= F := A−1(0) ⊂

⋂
n F (fn), αn ∈ (0, 1) with∑∞

n=0 αn = ∞, βn > 0 and λn → ∞, then for every x0, u ∈ H, the sequence {xn}
generated by algorithm 2 converges strongly to q = PFu. Here F (fn) denotes the set of
all fixed points of fn.

Proof:

For p ∈ F , we have

‖xn+1 − p‖ ≤ αn‖u− p‖+ (1− αn)‖xn − p‖+ ‖en‖,

which implies that

‖xn+1 − p‖ ≤
n∏
k=0

(1− αk)‖x0 − p‖+

[
1−

n∏
k=0

(1− αk)

]
‖u− p‖+

n∑
k=0

‖ek‖,

13



showing that {xn} is bounded, and so is {yn}.
Set q = PFu. Then,

‖xn+1 − q‖2 = ‖(1− αn)(yn − q + en) + αn((I + λnA)−1u− q + en)‖2

≤ (1− αn)‖yn − q + en‖2 + 2αn〈(I + λnA)−1u− q + en, xn+1 − q〉
≤ (1− αn)(‖xn − q‖+ ‖en‖)2 + 2Mαn‖(I + λnA)−1u− q + en‖
= (1− αn)‖xn − q‖2 + αnbn + cn,

where bn = 2M‖(I+λnA)−1u− q+en‖ → 0 and cn = ‖en‖(2‖xn− q‖+‖en‖)→ 0. Hence
by Lemma 1, ‖xn − q‖ → 0. �

In the case when fn = (I + βnB)−1, we can show that if {en} is bounded and {βn} is
bounded below away from zero, then the sequence {xn} generated by algorithm 2 with
fn = (I + βnB)−1 is bounded, provided B is assumed to be coercive. (See Section 2).

Theorem 7 Assume A, B are maximal monotone operators and B is coercive with ∅ 6=
F := A−1(0) ⊂ B−1(0). Let ‖en‖ ≤ C and βn ≥ ε > 0 for n ≥ 0, where C and ε are
given constants. Then for any x0, u ∈ H the sequence {xn} generated by algorithm 2 with
fn = (I + βnB)−1 is bounded.

Corollary 1 Assume A is maximal monotone operator and coercive. Let ‖en‖ ≤ C and
βn ≥ ε > 0 for n ≥ 0, where C and ε are given constants. Then for any x0, u ∈ H the
sequence {xn} generated by algorithm 2 with fn = (I + βnA)−1 is bounded.

We now discuss in details the following relaxed algorithm.

Algorithm 3 Let fn : H → H be a sequence of nonexpansive maps.
Step 1. Choose x0 ∈ H arbitrarily.
Step 2. For each n ≥ 0, choose the regularization parameter βn > 0 and compute

yn = (I + βnA)−1(xn) and zn = fn(xn).

Step 3. For each n ≥ 0, choose the relaxation parameter αn ∈ (0, 1) and compute (n+1)th
iterate:

xn+1 = αnzn + (1− αn)yn + en,

where {en} is a sequence of computational errors.

In the next theorem we generalize Theorem 5.2 [8]. Note that if fn = 0 for all n ≥ 0, we
are in the case (14), (15) with u = 0.

Claim: If p ∈
⋂
n F (fn) and p ∈ F , then {xn} is bounded.

‖xn+1 − p‖ ≤ αn‖fn(xn)− p‖+ (1− αn)‖yn − p‖+ ‖en‖
≤ αn‖xn − p‖+ (1− αn)‖xn − p‖+ ‖en‖
= ‖xn − p‖+ ‖en‖,
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which implies that

‖xn+1 − p‖ ≤ ‖x0 − p‖+
∞∑
n=0

‖en‖ <∞,

showing that {xn} is bounded. Moreover,

‖xn+1 − p‖ −
n∑
k=0

‖ek‖ ≤ ‖xn − p‖ −
n−1∑
k=0

‖ek‖.

Hence {‖xn − p‖} converges.

If in addition,
⋂
n F (fn) ⊃ F , then {‖xn − p‖} converges for all p ∈ F . Moreover, if

βn →∞, then ωw({xn}) ⊂ F so that Opial’s lemma (see for instance, [4], p. 5) guarantees
the weak convergence of {xn} to a point of F .

We have thus proved the following result.

Theorem 8 Let A be a maximal monotone operator with ∅ 6= F := A−1(0) ⊂
⋂
n F (fn),

where fn : H → H is a sequence of nonexpansive maps. Assume that
∑∞

n=0 ‖en‖ < ∞,
αn ∈ (0, 1) with αn → 0, and βn → ∞. Then for every x0 ∈ H, the sequence {xn}
generated by algorithm 3 converges weakly to some point q ∈ F .

Remarks:
1). If fn := f = I for all n ≥ 0, then F (f) ⊃ F , and hence Algorithm 3 reduces to
Algorithm 5.2 of [8].
2). Note that Aλ is nonexpansive for λn := λ = 1 for all n ≥ 0. In this case, if∑∞

n=0 αn < ∞, βn → ∞ and F = A−1(0) 6= ∅, then we again get weak convergence for
the sequence generated by algorithm 3 with fn = A1. However, this result is weaker than
Theorem 8.

Indeed, for q ∈ F

‖xn+1 − q‖ = ‖αn(A1(xn)− A1q − q) + (1− αn)(yn − q)‖
≤ αn‖xn − q‖+ αn‖q‖+ (1− αn)‖xn − q‖+ ‖en‖
= ‖xn − q‖+ αn‖q‖+ ‖en‖,

which implies that

‖xn+1 − q‖ −
n∑
k=0

(αk‖q‖+ ‖ek‖) ≤ ‖xn − q‖ −
n−1∑
k=0

(αk‖q‖+ ‖ek‖),

showing that limn→∞ ‖xn− q‖ = ρ(q) for all q ∈ F . Therefore {xn} is bounded, and so is
{yn}. Moreover,

‖xn+1 − Jβn(xn)‖ ≤ αn‖A1(xn)− A1(q)‖+ αn‖q‖+ αn‖q − Jβn(xn)‖+ ‖en‖
≤ 2αn‖xn − q‖+ αn‖q‖+ ‖en‖ → 0,

where Jβn(xn) = (I + βnA)−1(xn). Consequently, x∞ ∈ A−1(0) if xnk
⇀ x∞. Hence by

Opial’s lemma, there exists p ∈ F such that xn ⇀ p.

It is easy to see that this result holds for any sequence of nonexpansive maps, hence the
following theorem.
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Theorem 9 Let A be a maximal monotone operator with F := A−1(0) 6= ∅, and fn :
H → H be a sequence of nonexpansive maps. Assume that

∑∞
n=0 ‖en‖ <∞, αn ∈ (0, 1),

with
∑∞

n=0 αn < ∞, and βn → ∞. Then for every x0 ∈ H, the sequence {xn} generated
by algorithm 3 converges weakly to some point q ∈ F .

3). Special Case: fn := f = PF , where F = A−1(0) 6= ∅. In this case we have strong
convergence.

Theorem 10 Let A be a maximal monotone operator with F := A−1(0) 6= ∅. Assume
that

∑∞
n=0 ‖en‖ < ∞, αn ∈ (0, 1), αn → 0 with

∑∞
n=0 αn = ∞, and βn → ∞. Then for

every x0 ∈ H, the sequence {xn} generated by algorithm 3 with fn = PF (for all n ≥ 0)
converges strongly to some point q ∈ F .

We first show that vn = PFxn is strongly convergent (to some q ∈ F ).

‖xn+m − vn‖ = ‖αn+m−1(PFxn+m−1 − vn + en+m−1) + (1− αn+m−1)(yn+m−1 − vn + en+m−1)‖
≤ αn+m−1‖xn+m−1 − vn‖+ (1− αn+m−1)‖xn+m−1 − vn‖+ ‖en+m−1‖
= ‖xn+m−1 − vn‖+ ‖en+m−1‖

≤ ‖xn − vn‖+
n+m−1∑
k=n

‖ek‖, (22)

which implies that

‖xn+m − vn+m‖ ≤ ‖xn − vn‖+
n+m−1∑
k=n

‖ek‖.

In particular, {‖xn−vn‖} is convergent. By the parallelogram law applied to vn+m−xn+m

and vn − xn+m,

‖vn+m − vn‖2 + ‖2xn+m − (vn + vn+m)‖2 = 2(‖xn+m − vn+m‖2 + ‖xn+m − vn‖2).

Therefore, using (22), we have

‖vn+m − vn‖2 + 4‖xn+m − vn+m‖2 ≤ 2
(
‖xn+m − vn+m‖2 + ‖xn+m − vn‖2

)
≤ 2‖xn+m − vn+m‖2 + 2

(
‖xn − vn‖+

∞∑
k=n

‖ek‖

)2

,

which implies that

‖vn+m − vn‖2 ≤ −2‖xn+m − vn+m‖2 + 2

(
‖xn − vn‖+

∞∑
k=n

‖ek‖

)2

.

Thus {vn} is Cauchy, hence converges strongly to some q ∈ F .

For q = s− limPFxn, we have

‖xn+1 − q‖2 = ‖αn(PFxn − q + en) + (1− αn)(yn − q + en)‖2

≤ (1− αn)2‖yn − q + en‖2 + 2αn〈PFxn − q + en, xn+1 − q〉
≤ (1− αn)(‖xn − q‖+ ‖en‖)2 + 2Mαn‖PFxn − q + en‖
= (1− αn)‖xn − q‖2 + αnbn + cn,
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where bn = 2M‖PFxn − q + en‖ → 0 and cn = ‖en‖(2‖xn − q‖ + ‖en‖) → 0. Hence by
Lemma 1, {xn} converges strongly to q. �

4). If fn = f = (I + λA)−1 for all n ≥ 0 and λ > 0, then F (f) = F , and again we obtain
weak convergence of {xn} under the assumptions of Theorem 8.
5). If fn = (I+λnA)−1, for λn > 0, then F (fn) = F for all n ≥ 0, so we have the following
algorithm:

Special case of algorithm 3: Let A be a maximal monotone operator.
Step 1. Choose x0 ∈ H arbitrarily.
Step 2. For each n ≥ 0, choose the regularization parameters βn, λn > 0 and compute

yn = (I + βnA)−1(xn) and zn = (I + λnA)−1(xn).

Step 3. For each n ≥ 0, choose the relaxation parameter αn ∈ (0, 1) and compute (n+1)th
iterate:

xn+1 = αnzn + (1− αn)yn + en,

where {en} is a sequence of computational errors.

Note that for q ∈ F , we have

‖xn+1 − q‖ ≤ ‖xn − q‖+ ‖en‖.

So if
∑∞

n=0 ‖en‖ <∞ and αn → 0 we deduce that limn→∞ ‖xn − q‖ = ρ(q) for all q ∈ F .
Since ωw({xn}) ⊂ F for βn →∞, Opial’s lemma guarantees the weak convergence of {xn}
to a point of F .

Having in mind that
(I + λA)−1x→ PFx as λ→∞,

it is expected that the sequence {xn} generated by the above algorithm converges strongly,
if both λn, βn →∞. However, it turns out that only the assumption λn →∞ is enough to
guarantee strong convergence. Our aim now is to construct a sequence of parameters {λn}
such that for very large n, the corresponding sequence {xn} as given by the algorithm
in question converges strongly to a point of F . We then have the following modified
algorithm.

Let A be a maximal monotone operator.
Step 1. Choose x0 ∈ H arbitrarily.
Step 2. For each n ≥ 0, choose the regularization parameter βn > 0 and compute

yn = (I + βnA)−1(xn).

Step 3. Choose another regularization parameter λn large enough such that

‖(I + λnA)−1(xn)− PFxn‖ <
1

n
, and compute zn = (I + λnA)−1(xn). (23)

Step 4. For n ≥ 0, choose a relaxation parameter αn ∈ (0, 1) and compute the (n + 1)th
iterate:

xn+1 = αnzn + (1− αn)yn + en,

where {en} is a sequence of computational errors.
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Theorem 11 Let fn : H → H be a sequence of nonexpansive maps. If A is maximal
monotone with ∅ 6= F = A−1(0), αn ∈ (0, 1), αn → 0,

∑∞
n=0 αn =∞ and

∑∞
n=0 ‖en‖ <∞,

then for every x0 ∈ H, the sequence {xn} constructed by the above algorithm converges
strongly to some p ∈ F .

Proof:

For q ∈ F , we have
‖xn+1 − q‖ ≤ ‖xn − q‖+ ‖en‖,

showing that {‖xn − q‖} is convergent, (and hence bounded).

Now denote vn := PFxn. As in Theorem 10, we derive strong convergence of {vn} to some
point p ∈ F .

Now

‖xn+1 − p‖2 = ‖(1− αn)(yn − p+ en) + αn(zn − p+ en)‖2

≤ (1− αn)‖yn − p+ en‖2 + 2αn〈zn − p+ en, xn+1 − p〉
≤ (1− αn)(‖xn − p‖+ ‖en‖)2 + 2αn〈zn − vn, xn+1 − p〉+

2αn〈vn − p+ en, xn+1 − p〉
≤ (1− αn)‖xn − p‖2 + 2Mαn(‖zn − vn‖+ ‖vn − p+ en‖) + cn

= (1− αn)‖xn − p‖2 + αnbn + cn,

where bn := 2M(‖zn − vn‖ + ‖vn − p + en‖) → 0 and cn = ‖en‖(2‖xn − p‖ + ‖en‖) with∑∞
n=0 cn <∞. Hence by Lemma 1, ‖xn − p‖ → 0. �

We observe that in proving the above result, we only required βn to be positive, so we can
actually replace yn in the above algorithm by any nonexpansive map f (and hence by a
sequence of nonexpansive maps {fn}) satisfying the condition F ⊂ F (f) (F ⊂

⋂
n F (fn)).

Therefore we can generalize at once the above algorithm and hence the result as in the
following theorem. Observe the shift in the position of f from the previous results!

Algorithm 4 Let A be a maximal monotone operator and fn : H → H be a sequence
of nonexpansive maps.
Step 1. Choose x0 ∈ H arbitrarily.
Step 2. For each n ≥ 0, compute

yn = fn(xn).

Step 3. Choose a regularization parameter λn large enough such that

‖(I + λnA)−1(xn)− PFxn‖ <
1

n
, and compute zn = (I + λnA)−1(xn).

Step 4. For n ≥ 0, choose a relaxation parameter αn ∈ (0, 1) and compute the (n + 1)th
iterate:

xn+1 = αnzn + (1− αn)yn + en,

where {en} is a sequence of computational errors.
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Theorem 12 Let fn : H → H be a sequence of nonexpansive maps. If A is maximal
monotone with ∅ 6= F ⊂

⋂
n F (fn), αn ∈ (0, 1), αn → 0,

∑∞
n=0 αn =∞ and

∑∞
n=0 ‖en‖ <

∞, then for every x0 ∈ H, the sequence {xn} constructed by algorithm 4 converges strongly
to some p ∈ F .

6). If fn = (I + λnB)−1, for λn > 0, we have the following algorithm:

Algorithm 5 Let A and B be maximal monotone operators.
Step 1. Choose x0 ∈ H arbitrarily.
Step 2. For each n ≥ 0, choose the regularization parameters βn, λn > 0 and compute

yn = (I + βnA)−1(xn) and zn = (I + λnB)−1(xn).

Step 3. For each n ≥ 0, choose the relaxation parameter αn ∈ (0, 1) and compute (n+1)th
iterate:

xn+1 = αnzn + (1− αn)yn + en,

where {en} is a sequence of computational errors.

Theorem 13 Assume that A and B are maximal monotone operators with ∅ 6= F :=
A−1(0) = B−1(0). If

∑∞
n=0 ‖en‖ < ∞, αn ∈ (0, 1), αn → 0 with

∑∞
n=0 αn = ∞, and

βn → ∞, then for every x0 ∈ H, the sequence {xn} generated by algorithm 5 converges
weakly to some q ∈ F .

Proof:

For p ∈ F , we have

‖xn+1 − p‖ ≤ αn‖zn − p‖+ (1− αn)‖xn − p‖+ ‖en‖
≤ ‖xn − p‖+ ‖en‖,

which implies that limn→∞ ‖xn − p‖ exists for every p ∈ F . Moreover,

‖xn+1 − (I + βnA)−1xn‖ = ‖αn[(I + λnB)−1(xn)− (I + βnA)−1(xn)] + en‖
≤ αn(‖(I + λnB)−1(xn)− p‖+ ‖(I + βnA)−1(xn)− p‖) + ‖en‖
≤ 2αn‖xn − p‖+ ‖en‖ → 0.

Consequently, x∞ ∈ A−1(0) = F if xnk
⇀ x∞. Hence by Opial’s lemma, there exists a

point, say q ∈ F such that xn ⇀ q. �

The case when f is a strict contraction was discussed in [7]. However, it is worth men-
tioning that the author only considered algorithm 5 (with zn = f(xn) where f : H → H
for all n ≥ 0) without any error terms and proved strong convergence of {xn} (under
appropriate conditions) in a Banach space setting. For the sake of completeness of our
discussion, we prove a strong convergence result of {xn} given by algorithm 5 in the case
when f is a strict contraction. We adapt the proof of Theorem 4.2 [7] to this situation.

19



Theorem 14 Assume that
∑∞

n=0 ‖en‖ < ∞ and f : H → H is a strict contraction with
Lipschitz constant a ∈ (0, 1). If A is maximal monotone, F := A−1(0) 6= ∅, αn ∈ (0, 1),
αn → 0 with

∑∞
n=0 αn = ∞, and βn → ∞, then for every x0 ∈ H, the sequence {xn}

generated by algorithm 5 (with zn = f(xn) for all n ≥ 0) converges strongly to the unique
fixed point z of PF ◦ f , that is z = PFf(z).

Proof:

Step 1. Fix p ∈ A−1(0) and set M = max{‖x0−p‖, 1
1−a‖f(p)−p‖}. We show by induction

that for any n ≥ 0,

‖xn − p‖ ≤M +
n−1∑
k=0

‖ek‖. (24)

For n=0, (24) is clearly true. Assume that (24) holds for some n ≥ 0. We show that it
also holds for n+ 1. For p ∈ F , we have

‖xn+1 − p‖ ≤ αn‖f(xn)− p‖+ (1− αn)‖yn − p‖+ ‖en‖
≤ αn(‖f(xn)− f(p)‖+ ‖f(p)− p‖) + (1− αn)‖yn − p‖+ ‖en‖
≤ (1− αn(1− a))‖xn − p‖+ αn‖f(p)− p‖+ ‖en‖

= (1− αn(1− a))‖xn − p‖+ αn(1− a)
1

1− a
‖f(p)− p‖+ ‖en‖

≤ (1− αn(1− a))

[
M +

n−1∑
k=0

‖ek‖

]
+ αn(1− a)

1

1− a
M + ‖en‖

≤ M +
n∑
k=0

‖ek‖.

Step 2. Take a subsequence {xnk
} of {xn} such that

limn→∞〈f(z)− z, xn+1 − z〉 = lim
k→∞
〈f(z)− z, xnk+1 − z〉.

We assume that xnk+1 ⇀ v. Then it follows that

limn→∞〈f(z)− z, xn+1 − z〉 = 〈f(z)− z, v − z〉.

So it only remains to show that v ∈ F . For this purpose, we note that

‖xn+1 − (I + βnA)−1(xn)‖ ≤ αn‖f(xn)− (I + βnA)−1(xn)‖+ ‖en‖ → 0.

As in the proof of Theorem 5, we deduce that v ∈ F , hence limn→∞〈f(z)− z, xn− z〉 ≤ 0.

Step 3. Finally, we show that ‖xn − z‖ → 0. Applying the subdifferential inequality, we
have,

‖xn+1 − z‖2 ≤ (1− αn)2‖(I + βnA)−1(xn)− z + en‖2 + 2αn〈f(xn)− z + en, xn+1 − z〉
≤ (1− αn)2(‖xn − z‖2 + ‖en‖(‖en‖+ 2‖xn − z‖)) +

2αn〈f(xn)− f(z), xn+1 − z〉+ 2αn〈f(z)− z + en, xn+1 − z〉.
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Since {‖en‖} and {xn} are bounded, we have ‖en‖ + 2‖xn − z‖ ≤ K for some constant
K. Therefore,

‖xn+1 − z‖2 ≤ (1− αn)2‖xn − z‖2 +K‖en‖+ 2αn〈f(z)− z + en, xn+1 − z〉+

2aαn‖xn − z‖‖xn+1 − z‖
≤ (1− αn)2‖xn − z‖2 +K‖en‖+ 2αn〈f(z)− z + en, xn+1 − z〉+

aαn(‖xn − z‖2 + ‖xn+1 − z‖2),

which implies that

(1− aαn)‖xn+1 − z‖2 ≤ (1− 2αn + aαn)‖xn − z‖2 +K‖en‖+ α2
n‖xn − z‖2 +

2αn〈f(z)− z + en, xn+1 − z〉,

or equivalently,

‖xn+1 − z‖2 ≤
(

1− 2(1− a)αn
1− aαn

)
‖xn − z‖2 +

K‖en‖
1− aαn

+

2(1− a)αn
1− aαn

(
αnM

′

2(1− a)
+

1

1− a
〈f(z)− z + en, xn+1 − z〉

)
≤ (1− an)‖xn − z‖2 + anbn + cn,

where

cn =
K‖en‖
1− aαn

, an =
2(1− a)αn

1− aαn
, bn =

αnM
′

2(1− a)
+

1

1− a
〈f(z)− z + en, xn+1 − z〉,

and M ′ = supn ‖xn − z‖2, with
∑∞

n=0 an = ∞ and limn→∞ an = 0. Note also that∑∞
n=0 cn <∞ and limn→∞bn ≤ 0. Hence from Lemma 1, we have ‖xn − z‖ → 0. �
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