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Abstract. Motivated by Nash equilibrium problems on ’curved’ strategy sets,
the concept of Nash-Stampacchia equilibrium points is introduced for a fi-
nite family of non-smooth functions defined on geodesic convex sets of certain
Riemannian manifolds. Characterization, existence, and stability of Nash-

Stampacchia equilibria are studied when the strategy sets are compact/non-
compact subsets of certain Hadamard manifolds, exploiting two well-known
geometrical features of these spaces both involving the metric projection op-
erator. These two properties actually characterize the non-positivity of the

sectional curvature of complete and simply connected Riemannian spaces, de-
limiting the Hadamard manifolds as the optimal geometrical framework of
Nash-Stampacchia equilibrium problems. Our analytical approach exploits

various elements from set-valued analysis, dynamical systems, and non-smooth
calculus on Riemannian manifolds developed by Yu. S. Ledyaev and Q. J. Zhu
[Trans. Amer. Math. Soc. 359 (2007), 3687-3732].

1. Introduction

After the seminal paper of Nash [14] there has been considerable interest in
the theory of Nash equilibria due to its applicability in various real-life phenomena
(game theory, price theory, networks, etc). Appreciating Nash’s contributions, R. B.
Myerson states that ”Nash’s theory of noncooperative games should now be recog-
nized as one of the outstanding intellectual advances of the twentieth century”. The
Nash equilibrium problem involves n players such that each player know the equi-
librium strategies of the partners, but moving away from his/her own strategy alone
a player has nothing to gain. Formally, if the sets Ki denote the strategies of the
players and fi : K1×...×Kn → R are their loss-functions, i ∈ {1, ..., n}, the problem
is to find an n-tuple p = (p1, ..., pn) ∈ K = K1× ...×Kn such that fi(p) ≤ fi(p; qi)
for every qi ∈ Ki and i ∈ {1, ..., n}, where (p; qi) = (p1, ..., pi−1, qi, pi+1, ..., pn) ∈ K.
Such point p is called a Nash equilibrium point for (f ,K) = (f1, ..., fn;K1, ...,Kn),
the set of these points being denoted by SNE(f ,K).

While most of the known developments in the Nash equilibrium theory deeply
exploit the usual convexity of the setsKi together with the vector space structure of
their ambient spacesMi (i.e., Ki ⊂Mi), it is nevertheless true that these results are
in large part geometrical in nature. The main purpose of this paper is to enhance
those geometrical and analytical structures which serve as a basis of a systematic
study of Nash-type equilibrium problems in a general setting as presently possible.
In the light of these facts our contribution to the Nash equilibrium theory should
be considered rather intrinsical and analytical than game-theoretical.
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We assume a priori that the strategy sets Ki are geodesic convex subsets of
certain finite-dimensional Riemannian manifolds (Mi, gi), i.e., for any two points
of Ki there exists a unique geodesic in (Mi, gi) connecting them which belongs
entirely to Ki. This approach can be widely applied when the strategy sets are
’curved’. Note that the choice of such Riemannian structures does not influence
the Nash equilibrium points for (f ,K). As far as we know, the first step into this
direction was made recently in [10] via a McClendon-type minimax inequality for
acyclic ANRs, guaranteeing the existence of at least one Nash equilibrium point
for (f ,K) whenever Ki ⊂ Mi are compact and geodesic convex sets of certain
finite-dimensional Riemannian manifolds (Mi, gi) while the functions fi have certain
regularity properties, i ∈ {1, ..., n}.

In [10] we introduced and studied for a wide class of non-smooth functions the
set of Nash-Clarke points for (f ,K), denoted in the sequel as SNC(f ,K); for details,
see Section 3. Note that SNC(f ,K) is larger than SNE(f ,K); thus, a promising way
to find the elements of SNE(f ,K) is to determine the set SNC(f ,K). In spite of the
naturalness of this approach, we already pointed out its limited applicability due
to the involved structure of SNC(f ,K), conjecturing a more appropriate concept in
order to locate the elements of SNE(f ,K).

Motivated by the latter problem, we observe that the Fréchet and limiting sub-
differential calculus of lower semicontinuous functions on Riemannian manifolds
developed by Ledyaev and Zhu [11] and Azagra, Ferrera and López-Mesas [1] pro-
vides a very satisfactory approach. The idea is to consider the following system of
variational inequalities: find p ∈ K and ξiC ∈ ∂iCfi(p) such that

⟨ξiC , exp−1
pi

(qi)⟩gi ≥ 0 for all qi ∈ Ki, i ∈ {1, ..., n},

where ∂iCfi(p) denotes the Clarke subdifferential of the locally Lipschitz function
fi(p; ·) at the point pi ∈ Ki; for details, see Section 3. The solutions of this
system form the set of Nash-Stampacchia equilibrium points for (f ,K), denoted by
SNS(f ,K), which is the main concept of the present paper.

One of the advantages of the new concept is that the set SNS(f ,K) is ’closer’ to
SNE(f ,K) than SNC(f ,K). More precisely, we state that SNE(f ,K) ⊂ SNS(f ,K) ⊂
SNC(f ,K) for the same class of non-smooth functions f = (f1, ..., fn) as in [10] (see
Theorem 3.1 (i)-(ii)). To establish these inclusions we give an explicit characteriza-
tion of the Fréchet and limiting normal cones of geodesic convex sets in arbitrarily
Riemannian manifolds by exploiting some fundamental results from [1] and [11].
Moreover, if f = (f1, ..., fn) verifies a suitable convexity assumption then the three
Nash-type equilibria coincide (see Theorem 3.1 (iii)).

Having these inclusions in mind, the main purpose of the present paper is to
establish existence, location and stability of Nash-Stampacchia equilibrium points
for (f ,K) in different settings. While a Nash equilibrium point is obtained precisely
as the fixed point of a suitable function (see for instance Nash’s original proof via
Kakutani fixed-point theorem), Nash-Stampacchia equilibrium points are expected
to be characterized in a similar way as fixed points of a special map defined on
the product Riemannian manifold M = M1 × ... ×Mn endowed with its natural
Riemannian metric g inherited from the metrics gi, i ∈ {1, ..., n}. In order to achieve
this aim, certain curvature and topological restrictions are needed on the manifolds
(Mi, gi). By assuming that the ambient Riemannian manifolds (Mi, gi) for the
geodesic convex strategy sets Ki are Hadamard manifolds, the key observation (see
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Theorem 4.1) is that p ∈ K is a Nash-Stampacchia equilibrium point for (f ,K) if
and only if p is a fixed point of the set-valued map Af

α : K → 2K defined by

Af
α(p) = PK(expp(−α∂∆C f(p))).

Here, PK is the metric projection operator associated to the geodesic convex set
K ⊂ M, α > 0 is a fixed number, and ∂∆C f(p) denotes the diagonal Clarke subdif-
ferential at point p of f = (f1, ..., fn); see Section 3.

Within this geometrical framework, two cases are discussed. First, when K ⊂ M
is compact, one can prove via the Begle’s fixed point theorem for set-valued maps
the existence of at least one Nash-Stampacchia equilibrium point for (f ,K) (see
Theorem 4.2). Second, we consider the case when K ⊂ M is not necessarily com-
pact. By requiring more regularity on f in order to avoid technicalities, we consider
two dynamical systems; a discrete one

(DDS)α pk+1 = Af
α(PK(pk)), p0 ∈ M; ,

and a continuous one

(CDS)α

{
η̇(t) = exp−1

η(t)(A
f
α(PK(η(t))))

η(0) = p0 ∈ M.

The main result (see Theorem 4.3) proves that the set of Nash-Stampacchia equi-
librium points for (f ,K) is a singleton and the orbits of both dynamical systems
exponentially converge to this unique point whenever a Lipschitz-type condition
holds on ∂∆C f . Here, we exploit some arguments from the theory of differential
equations on manifolds as well as careful comparison results of Rauch-type. It is
clear by construction that the orbit of (DDS)α is viable relative to the set K, i.e.,
pk ∈ K for every k ≥ 1. By using a recent result of Ledyaev and Zhu [11], one can
also prove an invariance property of the set K with respect to the orbit of (CDS)α.
Note that the aforementioned results concerning the ’projected’ dynamical system
(CDS)α are new even in the Euclidean setting studied by Cavazzuti, Pappalardo
and Passacantando [4], and Xia and Wang [17].

Since the manifolds (Mi, gi) are assumed to be of Hadamard type (see Theorems
4.1-4.3), so is the product manifold (M,g). Our analytical arguments concerning
Nash-Stampacchia equilibrium problems deeply exploit two geometrical features of
closed, geodesic convex sets of the product Hadamard manifold (M,g):

(A) Validity of the obtuse-angle property, see Proposition 2.1 (i). This fact is
exploited in the characterization of Nash-Stampacchia equilibrium points
for (f ,K) via the fixed points of the map Af

α, see Theorem 4.1.
(B) Non-expansiveness of the projection operator, see Proposition 2.1 (ii). This

property is applied several times in the proof of Theorems 4.2-4.3.

It is natural to ask to what extent the Riemannian structures of (Mi, gi) are de-
termined when the properties (A) and (B) simultaneously hold on the product
manifold (M,g). A constructive proof combined with the parallelogramoid of Levi-
Civita and a result of C.-H. Chen [6] shows that if (Mi, gi) are complete, simply
connected Riemannian manifolds then (A) and (B) are both verified on (M,g) if
and only if (Mi, gi) are Hadamard manifolds (see Theorem 5.1). Consequently,
we may assert that Hadamard manifolds are the optimal geometrical framework to
elaborate a fruitful theory of Nash-Stampacchia equilibrium problems on manifolds.

The paper is divided as follows. In §2 we recall (or even prove) those notions and
results which will be used throughout the paper: basic elements from Riemannian
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geometry, the parallelogramoid of Levi-Civita; properties of the metric projection;
non-smooth calculus, dynamical systems and viability results on Riemannian man-
ifolds. In §3 we compare the three Nash-type equilibria; namely, the set of Nash
equilibrium points, the set of Nash-Clarke points, and the set of Nash-Stampacchia
points for (f ,K), respectively. Simultaneously, we also recall some results from
[10]. In §4, we prove the main results of this paper. First, we are dealing with the
existence of Nash-Stampacchia points for (f ,K) in the compact case. Then, the
uniqueness and exponential stability of Nash-Stampacchia equilibrium points for
(f ,K) is proved whenever K is not necessarily compact in the Hadamard manifold
(M,g). We present an example in both cases. Finally, in §5 we characterize the
geometric properties (A) and (B) on (M,g) by the Hadamard structures of the
complete and simply connected Riemannian manifolds (Mi, gi), i ∈ {1, ..., n}.

2. Preliminaries: metric projections, non-smooth calculus and
dynamical systems on Riemannian Manifolds

2.1. Elements from Riemannian geometry. We first recall those elements from
Riemannian geometry which will be used throughout the paper. We mainly follow
Cartan [3] and do Carmo [8].

In this subsection, (M, g) is a connected m-dimensional Riemannian manifold.
Let TM = ∪p∈M (p, TpM) and T ∗M = ∪p∈M (p, T ∗

pM) be the tangent and cotan-
gent bundles to M. For every p ∈ M , the Riemannian metric induces a natural
Riesz-type isomorphism between the tangent space TpM and its dual T ∗

pM ; in
particular, if ξ ∈ T ∗

pM then there exists a unique Wξ ∈ TpM such that

(2.1) ⟨ξ, V ⟩g,p = gp(Wξ, V ) for all V ∈ TpM.

Instead of gp(Wξ, V ) and ⟨ξ, V ⟩g,p we shall write simply g(Wξ, V ) and ⟨ξ, V ⟩g when
no confusion arises. Due to (2.1), the elements ξ and Wξ are identified. With the
above notations, the norms on TpM and T ∗

pM are defined by

∥ξ∥g = ∥Wξ∥g =
√
g(Wξ,Wξ).

Moreover, the generalized Cauchy-Schwartz inequality is also valid, saying that for
every V ∈ TpM and ξ ∈ T ∗

pM ,

(2.2) |⟨ξ, V ⟩g| ≤ ∥ξ∥g∥V ∥g.

Let ξk ∈ T ∗
pk
M , k ∈ N, and ξ ∈ T ∗

pM . The sequence {ξk} converges to ξ, denoted
by limk ξk = ξ, when pk → p and ⟨ξk,W (pk)⟩g → ⟨ξ,W (p)⟩g as k → ∞, for every
C∞ vector field W on M .

Let h : M → R be a C1 functional at p ∈ M ; the differential of h at p, denoted
by dh(p), belongs to T ∗

pM and is defined by

⟨dh(p), V ⟩g = g(gradh(p), V ) for all V ∈ TpM.

If (x1, ..., xm) is the local coordinate system on a coordinate neighborhood (Up, ψ)

of p ∈ M , and the local components of dh are denoted hi = ∂h
∂xi

, then the local

components of gradh are hi = gijhj . Here, g
ij are the local components of g−1.

Let γ : [0, r] →M be a C1 path, r > 0. The length of γ is defined by

Lg(γ) =

∫ r

0

∥γ̇(t)∥gdt.
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For any two points p, q ∈M , let

dg(p, q) = inf{Lg(γ) : γ is a C1 path joining p and q in M}.

The function dg : M ×M → R is a metric which generates the same topology on
M as the underlying manifold topology. For every p ∈M and r > 0, we define the
open ball of center p ∈M and radius r > 0 by

Bg(p, r) = {q ∈M : dg(p, q) < r}.

Let us denote by ∇ the unique natural covariant derivative on (M, g), also called
the Levi-Civita connection. A vector field W along a C1 path γ is called parallel
when ∇γ̇W = 0. A C∞ parameterized path γ is a geodesic in (M, g) if its tangent
γ̇ is parallel along itself, i.e., ∇γ̇ γ̇ = 0. The geodesic segment γ : [a, b] → M is
called minimizing if its length is not larger than the length of any other piecewise
differentiable curve joining γ(a) and γ(b).

Standard ODE theory implies that for every V ∈ TpM , p ∈ M , there exists an
open interval IV ∋ 0 and a unique geodesic γV : IV → M with γV (0) = p and
γ̇V (0) = V. Due to the ’homogeneity’ property of the geodesics (see [8, p. 64]), we
may define the exponential map expp : TpM →M as expp(V ) = γV (1). Moreover,

(2.3) d expp(0) = idTpM .

Note that there exists an open (starlike) neighborhood U of the zero vectors in TM
and an open neighborhood V of the diagonal M ×M such that the exponential
map V 7→ expπ(V )(V ) is smooth and the map π× exp : U → V is a diffeomorphism,
where π is the canonical projection of TM onto M. Moreover, for every p ∈ M
there exists a number rp > 0 and a neighborhood Ũp such that for every q ∈ Ũp,

the map expq is a C∞ diffeomorphism on B(0, rp) ⊂ TqM and Ũp ⊂ expq(B(0, rp));

the set Ũp is called a totally normal neighborhood of p ∈M . In particular, it follows

that every two points q1, q2 ∈ Ũp can be joined by a minimizing geodesic of length

less than rp. Moreover, for every q1, q2 ∈ Ũp we have

(2.4) ∥ exp−1
q1 (q2)∥g = dg(q1, q2).

We conclude this subsection by recalling a less used form of the sectional curva-
ture by the so-called Levi-Civita parallelogramoid. Let p ∈ M and V0,W0 ∈ TpM
two vectors with g(V0,W0) = 0. Let σ : [−δ, 2δ] → M be the geodesic segment
σ(t) = expp(tV0) and W be the unique parallel vector field along σ with the initial
data W (0) = W0, the number δ > 0 being small enough. For any t ∈ [0, δ], let
γt : [0, δ] → M be the geodesic γt(u) = expσ(t)(uW (t)). Then, the sectional curva-

ture of the two-dimensional subspace S =span{W0, V0} ⊂ TpM at the point p ∈M
is given by

Kp(S) = lim
u,t→0

d2g(p, σ(t))− d2g(γ0(u), γt(u))

dg(p, γ0(u)) · dg(p, σ(t))
,

see Cartan [3, p. 244-245]. The infinitesimal geometrical object determined by the
four points p, σ(t), γ0(u), γt(u) (with t, u small enough) is called the parallelo-
gramoid of Levi-Civita.

2.2. Metric projections. Let (M, g) be an m-dimensional Riemannian manifold
(m ≥ 2), K ⊂M be a non-empty set. Let

PK(q) = {p ∈ K : dg(q, p) = inf
z∈K

dg(q, z)}
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be the set of metric projections of the point q ∈M to the set K. Due to the theorem
of Hopf-Rinow, if (M, g) is complete, then any closed set K ⊂ M is proximinal,
i.e., PK(q) ̸= ∅ for all q ∈ M . In general, PK is a set-valued map. When PK(q)
is a singleton for every q ∈ M, we say that K is a Chebyshev set. The map PK is
non-expansive if

dg(PK(q1), PK(q2)) ≤ dg(q1, q2) for all q1, q2 ∈M.

In particular, K is a Chebyshev set whenever the map PK is non-expansive.
The set K ⊂M is geodesic convex if every two points q1, q2 ∈ K can be joined by

a unique geodesic whose image belongs to K. Note that (2.4) is also valid for every
q1, q2 ∈ K in a geodesic convex set K since exp−1

qi is well-defined on K, i ∈ {1, 2}.
The function f : K → R is convex, if f ◦ γ : [0, 1] → R is convex in the usual sense
for every geodesic γ : [0, 1] → K provided that K ⊂M is a geodesic convex set.

A non-empty closed set K ⊂ M verifies the obtuse-angle property if for fixed
q ∈M and p ∈ K the following two statements are equivalent:

(OA1) p ∈ PK(q);
(OA2) If γ : [0, 1] → M is the unique minimal geodesic from γ(0) = p ∈ K to

γ(1) = q, then for every geodesic σ : [0, δ] → K (δ ≥ 0) emanating from
the point p, we have g(γ̇(0), σ̇(0)) ≤ 0.

Remark 1. (a) The first variational formula of Riemannian geometry shows that
(OA1) implies (OA2) for every closed set K ⊂M in a complete Riemannian man-
ifold (M, g).

(b) In the Euclidean case (Rm, ⟨·, ·⟩Rm), (here, ⟨·, ·⟩Rm is the standard inner
product in Rm), every non-empty closed convex set K ⊂ Rm verifies the obtuse-
angle property, see Moskovitz-Dines [13], which reduces to the well-known geometric
form:

p ∈ PK(q) ⇔ ⟨q − p, z − p⟩Rm ≤ 0 for all z ∈ K.

A Riemannian manifold (M, g) is a Hadamard manifold if it is complete, simply
connected and its sectional curvature is non-positive. It is well-known that on a
Hadamard manifold (M, g) every geodesic convex set is a Chebyshev set. Moreover,
we have

Proposition 2.1. Let (M, g) be a finite-dimensional Hadamard manifold, K ⊂M
be a closed set. The following statements hold true:

(i) (Walter [16]) If K ⊂ M is geodesic convex, it verifies the obtuse-angle
property;

(ii) (Grognet [9]) PK is non-expansive if and only if K ⊂M is geodesic convex.

2.3. Non-smooth calculus on manifolds. We first recall some basic notions
and results from the subdifferential calculus on Riemannian manifolds, developed
by Azagra, Ferrera and López-Mesas [1], Ledyaev and Zhu [11]. Then, we es-
tablish an analytical characterization of the limiting/Fréchet normal cone on Rie-
mannian manifolds (see Theorem 2.1) which plays a crucial role in the study of
Nash-Stampacchia equilibrium points.

Let (M, g) be anm-dimensional Riemannian manifold and let f :M → R∪{+∞}
be a lower semicontinuous function with dom(f) ̸= ∅. The Fréchet-subdifferential
of f at p ∈ dom(f) is the set

∂F f(p) = {dh(p) : h ∈ C1(M) and f − h attains a local minimum at p}.
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Proposition 2.2. [1, Theorem 4.3] Let (M, g) be an m-dimensional Riemann-
ian manifold and let f : M → R ∪ {+∞} be a lower semicontinuous function,
p ∈dom(f) ̸= ∅ and ξ ∈ T ∗

pM. The following statements are equivalent:

(i) ξ ∈ ∂F f(p);
(ii) For every chart ψ : Up ⊂ M → Rm with p ∈ Up, if ζ = ξ ◦ dψ−1(ψ(p)), we

have that

lim inf
v→0

(f ◦ ψ−1)(ψ(p) + v)− f(p)− ⟨ζ, v⟩g
∥v∥

≥ 0;

(iii) There exists a chart ψ : Up ⊂M → Rm with p ∈ Up, if ζ = ξ ◦ dψ−1(ψ(p)),
then

lim inf
v→0

(f ◦ ψ−1)(ψ(p) + v)− f(p)− ⟨ζ, v⟩g
∥v∥

≥ 0.

In addition, if f is locally bounded from below, i.e., for every q ∈ M there exists a
neighborhood Uq of q such that f is bounded from below on Uq, the above conditions
are also equivalent to

(iv) There exists a function h ∈ C1(M) such that f−h attains a global minimum
at p and ξ = dh(p).

Now, we recall two further notions of subdifferential. Let f : M → R ∪ {+∞} be
a lower semicontinuous function; the limiting subdifferential and singular subdiffer-
ential of f at p ∈M are the sets

∂Lf(p) = {lim
k
ξk : ξk ∈ ∂F f(pk), (pk, f(pk)) → (p, f(p))}

and

∂∞f(p) = {lim
k
tkξk : ξk ∈ ∂F f(pk), (pk, f(pk)) → (p, f(p)), tk → 0+}.

Proposition 2.3. [11] Let (M, g) be a finite-dimensional Riemannian manifold
and let f :M → R ∪ {+∞} be a lower semicontinuous function. Then, we have

(i) ∂F f(p) ⊂ ∂Lf(p), p ∈ dom(f);
(ii) 0 ∈ ∂∞f(p), p ∈M ;
(iii) If p ∈dom(f) is a local minimum of f , then 0 ∈ ∂F f(p) ⊂ ∂Lf(p).

Let K ⊂M be a closed set. Following [11], the Fréchet-normal cone and limiting
normal cone of K at p ∈ K are the sets

NF (p;K) = ∂F δK(p)

and

NL(p;K) = ∂LδK(p),

where δK is the indicator function of the set K, i.e., δK(q) = 0 if q ∈ K and
δK(q) = +∞ if q /∈ K. The following result - which is one of our key tools to study
Nash-Stampacchia equilibrium points on manifolds - is probably know, but since
we have not found an explicit reference, we give its complete proof.

Theorem 2.1. Let (M, g) be an m-dimensional Riemannian manifold. For any
closed, geodesic convex set K ⊂M and p ∈ K, we have

NF (p;K) = NL(p;K) = {ξ ∈ T ∗
pM : ⟨ξ, exp−1

p (q)⟩g ≤ 0 for all q ∈ K}.
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Proof. We first prove that

(2.5) NF (p;K) ⊂ {ξ ∈ T ∗
pM : ⟨ξ, exp−1

p (q)⟩g ≤ 0 for all q ∈ K}.
To see this, let us fix ξ ∈ NF (p;K) = ∂F δK(p), i.e., on account of Proposition 2.2
(i) ⇔ (iv), there exists h ∈ C1(M) such that ξ = dh(p) and δK −h attains a global
minimum at p. In particular, the latter fact implies that

(2.6) h(q) ≤ h(p) for all q ∈ K.

Fix q ∈ K. Since K is geodesic convex, the unique geodesic γ : [0, 1] → M joining
the points p and q, defined by γ(t) = expp(t exp

−1
p (q)), belongs entirely to K.

Therefore, in view of (2.6), we have that (h ◦ γ)(t) ≤ (h ◦ γ)(0) = h(p) for every
t ∈ [0, 1]. Consequently,

(h ◦ γ)′(0) = lim
t→0+

(h ◦ γ)(t)− (h ◦ γ)(0)
t

≤ 0.

On the other hand, we have that

(h ◦ γ)′(0) = ⟨dh(γ(0)), γ̇(0)⟩g = ⟨ξ, exp−1
p (q)⟩g,

which concludes the proof of relation (2.5).
Now, we prove that

(2.7) NL(p;K) ⊂ {ξ ∈ T ∗
pM : ⟨ξ, exp−1

p (q)⟩g ≤ 0 for all q ∈ K}.
Indeed, let ξ ∈ NL(p;K) = ∂LδK(p). Thus, there exists a sequence {pk} ⊂ M
such that (pk, δK(pk)) → (p, δK(p)) with ξk ∈ ∂F δK(pk) and limk ξk = ξ. Note
that δK(p) = 0, thus we necessarily have {pk} ⊂ K. By relation (2.5) and ξk ∈
∂F δK(pk) = NF (pk;K) we have that ⟨ξk, exp−1

pk
(q)⟩g ≤ 0 for all q ∈ K and k ∈ N.

Letting k → ∞ in the last inequality and taking into account that limk ξk = ξ, we
conclude that ⟨ξ, exp−1

p (q)⟩g ≤ 0 for all q ∈ K, i.e., (2.7) is proved. Now, according
to Proposition 2.3 (i) and relation (2.7), we have that

NF (p;K) ⊂ NL(p;K) ⊂ {ξ ∈ T ∗
pM : ⟨ξ, exp−1

p (q)⟩g ≤ 0 for all q ∈ K}.
To conclude the proof, it remains to show that

{ξ ∈ T ∗
pM : ⟨ξ, exp−1

p (q)⟩g ≤ 0 for all q ∈ K} ⊂ NF (p;K).

Let us fix ξ ∈ T ∗
pM with

(2.8) ⟨ξ, exp−1
p (q)⟩g ≤ 0 for all q ∈ K.

We show that (iii) from Proposition 2.2 holds true with the choices f = δK and

ψ = exp−1
p : Ũp → TpM = Rm where Ũp ⊂ M is a totally normal ball centered at

p. Due to these choices, the inequality from Proposition 2.2 (iii) reduces to

(2.9) lim inf
v→0

δK(expp(v))− ⟨ξ, v⟩g
∥v∥

≥ 0,

since we have δK(p) = 0, ψ(p) = 0 and dψ−1(ψ(p)) = d expp(0) = idTpM , see (2.3).
To verify (2.9), two subcases are considered (∥v∥ is assumed to be small enough):

(a) expp(v) /∈ K. Then δK(expp(v)) = +∞, thus the inequality (2.9) is proved.

(b) expp(v) ∈ K. Then δK(expp(v)) = 0 and there exists a unique q ∈ K ∩ Ũp

such that v = exp−1
p (q). Thus, (2.9) follows at once from (2.8).

Consequently, from Proposition 2.2 (i) ⇔ (iii), we have that ξ ∈ ∂F δK(p), i.e.,
ξ ∈ NF (p;K). �
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Proposition 2.4. [11, Theorem 4.13 (Sum rule)] Let (M, g) be an m-dimensional
Riemannian manifold and let f1, ..., fH :M → R ∪ {+∞} be lower semicontinuous

functions. Then, for every p ∈ M we have either ∂L(
∑H

l=1 fl)(p) ⊂
∑H

l=1 ∂Lfl(p),

or there exist ξ∞l ∈ ∂∞fl(p), l = 1, ...,H, not all zero such that
∑H

l=1 ξ
∞
l = 0.

Let U ⊂M be an open subset of the Riemannian manifold (M, g). We say that a
function f : U → R is locally Lipschitz at p ∈ U if there exist an open neighborhood
Up ⊂ U of p and a number Cp > 0 such that for every q1, q2 ∈ Up,

|f(q1)− f(q2)| ≤ Cpdg(q1, q2).

The function f : U → R is locally Lipschitz on (U, g) if it is locally Lipschitz at
every p ∈ U.

Fix p ∈ U , v ∈ TpM , and let Ũp ⊂ U be a totally normal neighborhood of p. If

q ∈ Ũp, following [1, Section 5], for small values of |t|, we may introduce

σq,v(t) = expq(tw), w = d(exp−1
q ◦ expp)exp−1

p (q)v.

If the function f : U → R is locally Lipschitz on (U, g), then

f0(p, v) = lim sup
q→p, t→0+

f(σq,v(t))− f(q)

t

is called the Clarke generalized derivative of f at p ∈ U in direction v ∈ TpM , and

∂Cf(p) = co(∂Lf(p))

is the Clarke subdifferential of f at p ∈ U, where ’co’ stands for the convex hull.
When f : U → R is a C1 functional at p ∈ U then ∂Cf(p) = ∂Lf(p) = ∂F f(p) =
{df(p)}, see [1, Proposition 4.6]. Moreover, when (M, g) is the standard Euclidean
space, the Clarke subdifferential and the Clarke generalized gradient do coincide,
see Clarke [7].

One can easily prove that the function f0(·, ·) is upper-semicontinuous on TU =
∪p∈UTpM and f0(p, ·) is positive homogeneous. In addition, if U ⊂ M is geodesic
convex and f : U → R is convex, then

(2.10) f0(p, v) = lim
t→0+

f(expp(tv))− f(p)

t
,

see Claim 5.4 and the first relation on p. 341 of [1].

Proposition 2.5. [11, Corollary 5.3] Let (M, g) be a complete Riemannian man-
ifold and let f : M → R ∪ {+∞} be a lower semicontinuous function. Then the
following statements are equivalent:

(i) f is locally Lipschitz at p ∈M ;
(ii) ∂Cf is bounded in a neighborhood of p ∈M ;
(iii) ∂∞f(p) = {0}.

2.4. Dynamical systems on manifolds. In this subsection we recall the exis-
tence of a local solution for a Cauchy-type problem defined on Riemannian mani-
folds and its viability relative to a closed set.

Let (M, g) be a finite-dimensional Riemannian manifold and G :M → TM be a
vector field on M, i.e., G(p) ∈ TpM for every p ∈M . We assume in the sequel that
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G : M → TM is a C1−0 vector field (i.e., locally Lipschitz); then the dynamical
system

(DS)G

{
η̇(t) = G(η(t)),
η(0) = p0,

has a unique maximal semiflow η : [0, T ) →M , see Chang [5, p. 15]. In particular,
η is an absolutely continuous function such that [0, T ) ∋ t 7→ η̇(t) ∈ Tη(t)M and it
verifies (DS)G for a.e. t ∈ [0, T ).

A set K ⊂ M is invariant with respect to the solutions of (DS)G if for every
initial point p0 ∈ K the unique maximal semiflow/orbit η : [0, T ) → M of (DS)G
fulfills the property that η(t) ∈ K for every t ∈ [0, T ).We introduce the Hamiltonian
function as

HG(p, ξ) = ⟨ξ,G(p)⟩g, (p, ξ) ∈M × T ∗
pM.

Note that HG(p, dh(p)) < ∞ for every p ∈ M and h ∈ C1(M). Therefore, after
a suitable adaptation of the results from Ledyaev and Zhu [11, Subsection 6.2] we
may state

Proposition 2.6. Let G : M → TM be a C1−0 vector field and K ⊂ M be a
non-empty closed set. The following statements are equivalent:

(i) K is invariant with respect to the solutions of (DS)G;
(ii) HG(p, ξ) ≤ 0 for any p ∈ K and ξ ∈ NF (p;K).

3. Nash-type equilibria on Riemannian manifolds: comparisons

Let K1, ...,Kn (n ≥ 2) be non-empty sets, corresponding to the strategies of
n players and fi : K1 × ... × Kn → R (i ∈ {1, ..., n}) be the payoff functions,
respectively. Throughout the paper, the following notations will be used:

• K = K1 × ...×Kn;
• f = (f1, ..., fn);
• (f ,K) = (f1, ..., fn;K1, ...,Kn);
• p = (p1, ..., pn);
• (p; qi) = (p1, ..., pi−1, qi, pi+1, ..., pn);
• (K;Ui) = K1 × ...×Ki−1 × Ui ×Ki+1 × ...×Kn, for some Ui ⊃ Ki.

Definition 3.1. The set of Nash equilibrium points for (f ,K) is

SNE(f ,K) = {p ∈ K : fi(p; qi) ≥ fi(p) for all qi ∈ Ki, i ∈ {1, ..., n}}.

The main result of the paper [10] states that in a quite general framework the set
of Nash equilibrium points for (f ,K) is not empty. More precisely, we have

Proposition 3.1. [10] Let (Mi, gi) be finite-dimensional Riemannian manifolds;
Ki ⊂ Mi be non-empty, compact, geodesic convex sets; and fi : K → R be con-
tinuous functions such that Ki ∋ qi 7→ fi(p; qi) is convex on Ki for every p ∈ K,
i ∈ {1, ..., n}. Then there exists at least one Nash equilibrium point for (f ,K), i.e.,
SNE(f ,K) ̸= ∅.

Similarly to Proposition 3.1, let us assume that for every i ∈ {1, ..., n}, one can
find a finite-dimensional Riemannian manifold (Mi, gi) such that the strategy set
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Ki is closed and geodesic convex in (Mi, gi). Let M =M1× ...×Mn be the product
manifold with its standard Riemannian product metric

g(V,W) =
n∑

i=1

gi(Vi,Wi)

for every V = (V1, ..., Vn),W = (W1, ...,Wn) ∈ Tp1M1 × ... × TpnMn = TpM. Let
U = U1 × ...× Un ⊂ M be an open set such that K ⊂ U; we always mean that Ui

inherits the Riemannian structure of (Mi, gi). Let

L(K,U,M) = {f = (f1, ..., fn) ∈ C0(K,Rn) : fi : (K;Ui) → R is continuous and

fi(p; ·) is locally Lipschitz on (Ui, gi)

for all p ∈ K, i ∈ {1, ..., n}}.
The next notion has been introduced in [10].

Definition 3.2. Let f ∈ L(K,U,M). The set of Nash-Clarke points for (f ,K) is

SNC(f ,K) = {p ∈ K : f0i (p, exp
−1
pi

(qi)) ≥ 0 for all qi ∈ Ki, i ∈ {1, ..., n}}.

Here, f0i (p, exp
−1
pi

(qi)) denotes the Clarke generalized derivative of fi(p; ·) at point
pi ∈ Ki in direction exp−1

pi
(qi) ∈ TpiMi. More precisely,

(3.1) f0i (p, exp
−1
pi

(qi)) = lim sup
q→pi,q∈Ui, t→0+

fi(p;σq,exp−1
pi

(qi)
(t))− fi(p; q)

t
,

where σq,v(t) = expq(tw), and w = d(exp−1
q ◦ exppi

)exp−1
pi

(q)v for v ∈ TpiMi, and |t|
is small enough. By exploiting a minimax result of McClendon [12], the following
existence result is available concerning the Nash-Clarke points for (f ,K).

Proposition 3.2. [10] Let (Mi, gi) be complete finite-dimensional Riemannian
manifolds; Ki ⊂Mi be non-empty, compact, geodesic convex sets; and f ∈ L(K,U,M)

such that for every p ∈ K, i ∈ {1, ..., n}, Ki ∋ qi 7→ f0i (p, exp
−1
pi

(qi)) is convex and

f0i is upper semicontinuous on its domain of definition. Then SNC(f ,K) ̸= ∅.

Remark 2. Although Proposition 3.2 gives a possible approach to locate Nash equi-
librium points on Riemannian manifolds, its applicability is quite reduced. As far
as we know, only two special cases can be described which imply the convexity of
Ki ∋ qi 7→ f0i (p, exp

−1
pi

(qi)); namely, (a) (Mi, gi) is Euclidean, i ∈ I1; (b)Ki = Imγi
where γi : [0, 1] → Mi is a minimal geodesic and f0i (p, γ̇i(ti)) ≥ −f0i (p,−γ̇i(ti)),
i ∈ I2 for every p ∈ K with pi = γi(ti) (0 ≤ ti ≤ 1). Note that the sets
I1, I2 ⊂ {1, ..., n} are such that I1 ∪ I2 = {1, ..., n}. The limited applicability
of Proposition 3.2 motivates the introduction and study of the following concept
which plays the central role in the present paper.

Definition 3.3. Let f ∈ L(K,U,M). The set of Nash-Stampacchia equilibrium points
for (f ,K) is

SNS(f ,K) = {p ∈ K : ∃ξiC ∈ ∂iCfi(p) such that ⟨ξiC , exp−1
pi

(qi)⟩gi ≥ 0,

for all qi ∈ Ki, i ∈ {1, ..., n}}.

Here, ∂iCfi(p) denotes the Clarke subdifferential of the function fi(p; ·) at point
pi ∈ Ki, i.e., ∂Cfi(p; ·)(pi) = co(∂Lfi(p; ·)(pi)).
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Our first aim is to compare the three Nash-type points introduced in Definitions
3.1-3.3. Before to do that, we introduce another class of functions. If Ui ⊂ Mi is
geodesic convex for every i ∈ {1, ..., n}, we may define

K(K,U,M) = {f ∈ C0(K,Rn) : fi : (K;Ui) → R is continuous and fi(p; ·) is
convex on (Ui, gi) for all p ∈ K, i ∈ {1, ..., n}}.

Remark 3. Due to Azagra, Ferrera and López-Mesas [1, Proposition 5.2], one has
K(K,U,M) ⊂ L(K,U,M) whenever Ui ⊂Mi is geodesic convex for every i ∈ {1, ..., n}.

The main result of this section reads as follows.

Theorem 3.1. Let (Mi, gi) be finite-dimensional Riemannian manifolds; Ki ⊂Mi

be non-empty, closed, geodesic convex sets; Ui ⊂ Mi be open sets containing Ki;
and fi : K → R be some functions, i ∈ {1, ..., n}. Then, we have

(i) SNE(f ,K) ⊂ SNS(f ,K) whenever f ∈ L(K,U,M);
(ii) SNS(f ,K) ⊂ SNC(f ,K) whenever f ∈ L(K,U,M) and Ui ⊂ Mi are geodesic

convex for every i ∈ {1, ..., n};
(iii) SNE(f ,K) = SNS(f ,K) = SNC(f ,K) whenever f ∈ K(K,U,M).

Proof. (i) Let p ∈ SNE(f ,K) and fix i ∈ {1, ..., n}. Since fi(p; qi) ≥ fi(p) for all
qi ∈ Ki, then

fi(p; qi) + δKi(qi)− fi(p)− δKi(pi) ≥ 0 for all qi ∈ Ui,

which means that pi ∈ Ki is a global minimum of fi(p; ·)+δKi on Ui. According to
Proposition 2.3 (iii), one has 0 ∈ ∂L(fi(p; ·)+δKi)(pi). Since f ∈ L(K,U,M), conform
Proposition 2.5 (i)⇔(iii), we have that ∂∞fi(p; ·)(pi) = {0}. Thus, considering the
functions fi(p; ·) and δKi in Proposition 2.4, we may exclude its second alternative,
obtaining

0 ∈ ∂Lfi(p; ·)(pi) + ∂LδKi(pi) = ∂Lfi(p; ·)(pi) +NL(pi;Ki)

⊂ ∂Cfi(p; ·)(pi) +NL(pi;Ki) = ∂iCfi(p) +NL(pi;Ki).

Consequently, there exists ξiC ∈ ∂iCfi(p) with −ξiC ∈ NL(pi;Ki). On account of
Theorem 2.1, we obtain ⟨ξiC , exp−1

pi
(qi)⟩gi ≥ 0 for all qi ∈ Ki, i.e., p ∈ SNS(f ,K).

(ii) Let p ∈ SNS(f ,K). Fix also arbitrarily i ∈ {1, ..., n} and qi ∈ Ki. It follows
that there exists ξiC ∈ ∂iCfi(p) = ∂Cfi(p; ·)(pi) such that

(3.2) ⟨ξiC , exp−1
pi

(qi)⟩gi ≥ 0.

By definition, there exist some λl ≥ 0, l ∈ J , with cardJ < ∞ and
∑

l∈J λl = 1

such that ξiL,l ∈ ∂Lfi(p; ·)(pi) and ξiC =
∑

l λlξ
i
L,l. Consequently, for each l ∈ J ,

there exists a sequence {pki,l} ⊂ Ui and ξ
k
i,l ∈ ∂F fi(p; ·)(pki,l) with

(3.3) lim
k
pki,l = pi, lim

k
ξki,l = ξiL,l.

We may assume that pki,l ̸= qi for each k ∈ N and l ∈ J . In view of Proposition 2.2

(i)⇔(ii), we have in particular that

(3.4) lim inf
t→0+

fi(p; exppk
i,l
(t exp−1

pk
i,l

(qi)))− fi(p; p
k
i,l)− ⟨ξki,l, t exp

−1
pk
i,l

(qi)⟩gi
tdgi(p

k
i,l, qi)

≥ 0.
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Indeed, since Ui ⊂ Mi is convex, we may choose ψ = exp−1
pk
i,l

: Ui → Tpk
i,l
Mi =

RdimMi and v = t exp−1
pk
i,l

(qi) with t→ 0+; consequently, ψ(pki,l) = 0, dψ−1(ψ(pki,l)) =

d exppk
i,l
(0) = idT

pk
i,l

Mi , and ∥ exp−1
pk
i,l

(qi)∥gi = dgi(p
k
i,l, qi).

Now, by (3.1) and (3.4) it follows that for every k ∈ N,

f0i ((p; p
k
i,l), exp

−1
pk
i,l

(qi)) ≥ ⟨ξki,l, exp−1
pk
i,l

(qi)⟩gi .

By the upper-semicontinuity of f0i ((p; ·), ·) and relation (3.3), we have that

f0i (p, exp
−1
pi

(qi)) = f0i ((p; pi), exp
−1
pi

(qi))

≥ lim sup
k

f0i ((p; p
k
i,l), exp

−1
pk
i,l

(qi))

≥ lim sup
k

⟨ξki,l, exp−1
pk
i,l

(qi)⟩gi

= ⟨ξiL,l, exp
−1
pi

(qi)⟩gi .

Multiplying by λl the above inequality and adding them for each l ∈ J , from
relation (3.2) we obtain that

f0i (p, exp
−1
pi

(qi)) ≥ ⟨
∑
l∈J

λlξ
i
L,l, exp

−1
pi

(qi)⟩gi = ⟨ξiC , exp−1
pi

(qi)⟩gi ≥ 0.

In conclusion, we have that p ∈ SNC(f ,K).
(iii) Due to (i)-(ii) and Remark 3, it is enough to prove that SNC(f ,K) ⊂

SNE(f ,K). Let p ∈ SNC(f ,K), i.e., for every i ∈ {1, ..., n} and qi ∈ Ki,

(3.5) f0i (p, exp
−1
pi

(qi)) ≥ 0.

Fix i ∈ {1, ..., n} and qi ∈ Ki arbitrary. Since fi(p; ·) is convex on (Ui, gi), on
account of (2.10), we have

(3.6) f0i (p, exp
−1
pi

(qi)) = lim
t→0+

fi(p; exppi
(t exp−1

pi
(qi)))− fi(p)

t
.

Note that the function

R(t) =
fi(p; exppi

(t exp−1
pi

(qi)))− fi(p)

t

is well-defined on the whole interval (0, 1]; indeed, t 7→ exppi
(t exp−1

pi
(qi)) is the

minimal geodesic joining the points pi ∈ Ki and qi ∈ Ki which belongs to Ki ⊂ Ui.
Moreover, it is well-known that t 7→ R(t) is non-decreasing on (0, 1]. Consequently,

fi(p; qi)− fi(p) = fi(p; exppi
(exp−1

pi
(qi)))− fi(p) = R(1) ≥ lim

t→0+
R(t).

On the other hand, (3.5) and (3.6) give that limt→0+ R(t) ≥ 0, which concludes the
proof. �

Remark 4. In [10] we considered the sets SNE(f ,K) and SNC(f ,K). Note however
that the set of Nash-Stampacchia equilibrium points SNS(f ,K), which is between
the former ones, seems to be the most appropriate concept to find Nash equilibrium
points in very general contexts: (a) the set of Nash-Stampacchia equilibria is larger
than those of Nash equilibrium points; (b) an efficient theory of Nash-Stampacchia
equilibria can be developed whenever the sets Ki, i ∈ {1, ..., n}, are subsets of
certain Hadamard manifolds. In the next section we fully develop this theory.



14 ALEXANDRU KRISTÁLY

4. Nash-Stampacchia equilibria on Hadamard manifolds: existence,
uniqueness and exponential stability

Let (Mi, gi) be finite-dimensional Hadamard manifolds, i ∈ {1, ..., n}. Standard
arguments show that (M,g) is also a Hadamard manifold, see Ballmann [2, Ex-
ample 4, p.147] and O’Neill [15, Lemma 40, p. 209]. Moreover, on account of the
characterization of (warped) product geodesics, see O’Neill [15, Proposition 38, p.
208], if expp denotes the usual exponential map on (M,g) at p ∈ M, then for every
V = (V1, ..., Vn) ∈ TpM, we have

expp(V) = (expp1
(V1), ..., exppn

(Vn)).

We consider that Ki ⊂Mi are non-empty, closed, geodesic convex sets and Ui ⊂Mi

are open sets containing Ki, i ∈ {1, ..., n}.
Let f ∈ L(K,U,M). The diagonal Clarke subdifferential of f = (f1, ..., fn) at p ∈ K

is

∂∆C f(p) = (∂1Cf1(p), ..., ∂
n
Cfn(p)).

From the definition of the metric g, for every p ∈ K and q ∈ M it turns out that

(4.1) ⟨ξ∆C , exp−1
p (q)⟩g =

n∑
i=1

⟨ξiC , exp−1
pi

(qi)⟩gi , ξ∆C = (ξ1C , ..., ξ
n
C) ∈ ∂∆C f(p).

4.1. Nash-Stampacchia equilibrium points versus fixed points of Af
α. For

each α > 0 and f ∈ L(K,U,M), we define the set-valued map Af
α : K → 2K by

Af
α(p) = PK(expp(−α∂∆C f(p))), p ∈ K.

Note that for each p ∈ K, the set Af
α(p) is non-empty and compact. The following

result plays a crucial role in our further investigations.

Theorem 4.1. Let (Mi, gi) be finite-dimensional Hadamard manifolds; Ki ⊂ Mi

be non-empty, closed, geodesic convex sets; Ui ⊂ Mi be open sets containing Ki,
i ∈ {1, ..., n}; and f ∈ L(K,U,M). Then the following statements are equivalent:

(i) p ∈ SNS(f ,K);
(ii) p ∈ Af

α(p) for all α > 0;
(iii) p ∈ Af

α(p) for some α > 0.

Proof. In view of relation (4.1) and the identification between TpM and T ∗
pM, see

(2.1), we have that

p ∈ SNS(f ,K) ⇔ ∃ξ∆C = (ξ1C , ..., ξ
n
C) ∈ ∂∆C f(p) such that(4.2)

⟨ξ∆C , exp−1
p (q)⟩g ≥ 0 for all q ∈ K

⇔ ∃ξ∆C = (ξ1C , ..., ξ
n
C) ∈ ∂∆C f(p) such that

g(−αξ∆C , exp−1
p (q)) ≤ 0 for all q ∈ K and

for all/some α > 0.

On the other hand, let γ, σ : [0, 1] → M be the unique minimal geodesics defined by
γ(t) = expp(−tαξ∆C ) and σ(t) = expp(t exp

−1
p (q)) for any fixed α > 0 and q ∈ K.

Since K is geodesic convex in (M,g), then Imσ ⊂ K and

(4.3) g(γ̇(0), σ̇(0)) = g(−αξ∆C , exp−1
p (q)).
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Taking into account relation (4.3) and Proposition 2.1 (i), i.e., the validity of the
obtuse-angle property on the Hadamard manifold (M,g), (4.2) is equivalent to

p = γ(0) = PK(γ(1)) = PK(expp(−αξ∆C )),

which is nothing but p ∈ Af
α(p). �

Remark 5. Note that the implications (ii) ⇒ (i) and (iii) ⇒ (i) hold for arbitrarily
Riemannian manifolds, see Remark 1 (a). These implications are enough to find
Nash-Stampacchia equilibrium points for (f ,K) via fixed points of the map Af

α.
However, in the sequel we exploit further aspects of the Hadamard manifolds as
non-expansiveness of the projection operator of geodesic convex sets and a Rauch-
type comparison property. Moreover, in the spirit of Nash’s original idea that Nash
equilibria appear exactly as fixed points of a specific map, Theorem 4.1 provides
a full characterization of Nash-Stampacchia equilibrium points for (f ,K) via the
fixed points of the set-valued map Af

α when (Mi, gi) are Hadamard manifolds.

In the sequel, two cases will be considered to guarantee Nash-Stampacchia equi-
librium points for (f ,K), depending on the compactness of the strategy sets Ki.

4.2. Existence of Nash-Stampacchia equilibrium points; compact case.
Our first result guarantees the existence of a Nash-Stampacchia equilibrium point
for (f ,K) whenever the sets Ki are compact; the proof is based on Begle’s fixed
point theorem for set-valued maps. More precisely, we have

Theorem 4.2. Let (Mi, gi) be finite-dimensional Hadamard manifolds; Ki ⊂ Mi

be non-empty, compact, geodesic convex sets; and Ui ⊂Mi be open sets containing
Ki, i ∈ {1, ..., n}. Assume that f ∈ L(K,U,M) and K ∋ p 7→ ∂∆C f(p) is upper
semicontinuous. Then there exists at least one Nash-Stampacchia equilibrium point
for (f ,K), i.e., SNS(f ,K) ̸= ∅.

Proof. Fix α > 0 arbitrary. We prove that the set-valued map Af
α has closed graph.

Let (p,q) ∈ K×K and the sequences {pk}, {qk} ⊂ K such that qk ∈ Af
α(pk) and

(pk,qk) → (p,q) as k → ∞. Then, for every k ∈ N, there exists ξ∆C,k ∈ ∂∆C f(pk)

such that qk = PK(exppk
(−αξ∆C,k)). On account of Proposition 2.5 (i)⇔(ii), the

sequence {ξ∆C,k} is bounded on the cotangent bundle T ∗M. Using the identification
between elements of the tangent and cotangent fibers, up to a subsequence, we
may assume that {ξ∆C,k} converges to an element ξ∆C ∈ T ∗

pM. Since the set-valued

map ∂∆C f is upper semicontinuous on K and pk → p as k → ∞, we have that
ξ∆C ∈ ∂∆C f(p). The non-expansiveness of PK (see Proposition 2.1 (ii)) gives that

dg(q, PK(expp(−αξ∆C ))) ≤

≤ dg(q,qk) + dg(qk, PK(expp(−αξ∆C )))

= dg(q,qk) + dg(PK(exppk
(−αξ∆C,k)), PK(expp(−αξ∆C )))

≤ dg(q,qk) + dg(exppk
(−αξ∆C,k), expp(−αξ∆C ))

Letting k → ∞, both terms in the last expression tend to zero. Indeed, the former
follows from the fact that qk → q as k → ∞, while the latter is a simple consequence
of the local behaviour of the exponential map recalled in Subsection 2.1. Thus,

q = PK(expp(−αξ∆C )) ∈ PK(expp(−α∂∆C f(p))) = Af
α(p),

i.e., the graph of Af
α is closed.
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By definition, for each p ∈ K the set ∂∆C f(p) is convex, so contractible. Since
both PK and the exponential map are continuous, Af

α(p) is contractible as well for
each p ∈ K, so acyclic.

Now, we are in position to apply Begle’s fixed point theorem, see for instance
McClendon [12, Proposition 1.1]. Consequently, there exists p ∈ K such that
p ∈ Af

α(p). On account of Theorem 4.1, p ∈ SNS(f ,K). �

Example 4.1. Let

K1 = {(x1, x2) ∈ R2
+ : x21 + x22 ≤ 4 ≤ (x1 − 1)2 + x22}, K2 = [−1, 1],

and the functions f1, f2 : K1 ×K2 → R defined for (x1, x2) ∈ K1 and y ∈ K2 by

f1((x1, x2), y) = y(x31 + y(1− x2)
3); f2((x1, x2), y) = −y2x2 + 4|y|(x1 + 1).

It is clear that K1 ⊂ R2 is not convex in the usual sense while K2 ⊂ R is. However,
if we consider the Poincaré upper-plane model (H2, gH), the set K1 ⊂ H2 is geo-

desic convex (and compact) with respect to the metric gH = (
δij
x2
2
). Therefore, we

embed the set K1 into the Hadamard manifold (H2, gH), and K2 into the standard
Euclidean space (R, g0). After natural extensions of f1(·, y) and f2((x1, x2), ·) to
the whole U1 = H2 and U2 = R, respectively, we clear have that f1(·, y) is a C1

function on H2 for every y ∈ K2, while f2((x1, x2), ·) is a locally Lipschitz function
on R for every (x1, x2) ∈ K1. Therefore, f = (f1, f2) ∈ L(K1×K2,H2×R,H2×R) and for
every ((x1, x2), y) ∈ K = K1 ×K2, we have

∂1Cf1((x1, x2), y) = gradf1(·, y)(x1, x2) =
(
gijH

∂f1(·, y)
∂xj

)
i
= 3yx22(x

2
1,−y(1− x2)

2);

∂2Cf2((x1, x2), y) =

 −2yx2 − 4(x1 + 1) if y < 0,
4(x1 + 1)[−1, 1] if y = 0,
−2yx2 + 4(x1 + 1) if y > 0.

It is now clear that the map K ∋ ((x1, x2), y) 7→ ∂∆C f(((x1, x2), y)) is upper semi-
continuous. Consequently, on account of Theorem 4.2, SNS(f ,K) ̸= ∅, and its
elements are precisely the solutions ((x̃1, x̃2), ỹ) ∈ K of the system{

⟨∂1Cf1((x̃1, x̃2), ỹ), exp
−1
(x̃1,x̃2)

(q1, q2)⟩gH ≥ 0 for all (q1, q2) ∈ K1,

ξ2C(q − ỹ) ≥ 0 for some ξ2C ∈ ∂2Cf2((x̃1, x̃2), ỹ) for all q ∈ K2.
(S1)

In order to solve (S1) we first observe that

(4.4) K1 ⊂ {(x1, x2) ∈ R2 :
√
3 ≤ x2 ≤ 2(x1 + 1)}.

We distinguish some cases:
(a) If ỹ = 0 then both inequalities of (S1) hold for every (x̃1, x̃2) ∈ K1 by choosing

ξ2C = 0 ∈ ∂2Cf2((x̃1, x̃2), 0) in the second relation. Thus, ((x̃1, x̃2), 0) ∈ SNS(f ,K)
for every (x̃1, x̃2) ∈ K.

(b) Let 0 < ỹ < 1. The second inequality of (S1) gives that −2ỹx̃2+4(x̃1+1) = 0;
together with (4.4) it yields 0 = ỹx̃2−2(x̃1+1) < x̃2−2(x̃1+1) ≤ 0, a contradiction.

(c) Let ỹ = 1. The second inequality of (S1) is true if and only if −2x̃2 +4(x̃1 +
1) ≤ 0. Due to (4.4), we necessarily have x̃2 = 2(x̃1 + 1); this Euclidean line
intersects the set K1 in the unique point (x̃1, x̃2) = (0, 2) ∈ K1. By the geometrical
meaning of the exponential map one can conclude that

{t exp−1
(0,2)(q1, q2) : (q1, q2) ∈ K1, t ≥ 0} = {(x,−y) ∈ R2 : x, y ≥ 0}.
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Taking into account this relation and ∂1Cf1((0, 2), 1) = (0,−12), the first inequality
of (S1) holds true as well. Therefore, ((0, 2), 1) ∈ SNS(f ,K).

(d) Similar reason as in (b) (for −1 < ỹ < 0) and (c) (for ỹ = −1) gives that
((0, 2),−1) ∈ SNS(f ,K).

Thus, from (a)-(d) we have that SNS(f ,K) = (K1×{0})∪{((0, 2), 1), ((0, 2),−1)}.
Now, on account of Theorem 3.1 (i) we may choose the Nash equilibrium points

for (f ,K) among the elements of SNS(f ,K) obtaining that SNE(f ,K) = K1 ×{0}.

4.3. Uniqueness of the Nash-Stampacchia equilibrium point; non-compact
case. In the sequel, we are focusing to the location of Nash-Stampacchia equilib-
rium points for (f ,K) in the case when Ki are not necessarily compact on the
Hadamard manifolds (Mi, gi). In order to avoid technicalities in our further calcu-
lations, we introduce the class of functions

C(K,U,M) = {f ∈ C0(K,Rn) : fi : (K;Ui) → R is continuous and fi(p; ·) is of
class C1 on (Ui, gi) for all p ∈ K, i ∈ {1, ..., n}}.

If is clear that C(K,U,M) ⊂ L(K,U,M). Moreover, when f ∈ C(K,U,M) then ∂∆C f(p)

and Af
α(p) are singletons for every p ∈ K and α > 0.

For f ∈ C(K,U,M), α > 0 and 0 < ρ < 1 we assume the Lipschitz-type condition:

(Hα,ρ
K ) dg(expp(−α∂∆C f(p)), expq(−α∂∆C f(q))) ≤ (1− ρ)dg(p,q) for all p,q ∈ K.

Finding fixed points for Af
α, one could expect to apply dynamical systems; we

consider both discrete and continuous ones. First, for some α > 0 and p0 ∈ M
fixed, we consider the discrete dynamical system

(DDS)α pk+1 = Af
α(PK(pk)).

Second, according to Theorem 4.1, we clearly have that

p ∈ SNS(f ,K) ⇔ 0 = exp−1
p (Af

α(p)) for all/some α > 0.

Consequently, for some α > 0 and p0 ∈ M fixed, the above equivalence motivates
the study of the continuous dynamical system

(CDS)α

{
η̇(t) = exp−1

η(t)(A
f
α(PK(η(t))))

η(0) = p0.

The next result describes the exponential stability of the orbits in both cases.

Theorem 4.3. Let (Mi, gi) be finite-dimensional Hadamard manifolds; Ki ⊂ Mi

be non-empty, closed geodesics convex sets; Ui ⊂ Mi be open sets containing Ki;
and fi : K → R be functions, i ∈ {1, ..., n} such that f ∈ C(K,U,M). Assume that
(Hα,ρ

K ) holds true for some α > 0 and 0 < ρ < 1. Then the set of Nash-Stampacchia
equilibrium points for (f ,K) is a singleton, i.e., SNS(f ,K) = {p̃}. Moreover, for
each p0 ∈ M,

(i) the orbit {pk} of (DDS)α converges exponentially to p̃ ∈ K and

dg(pk, p̃) ≤
(1− ρ)k

ρ
dg(p1,p0) for all k ∈ N;

(ii) the orbit η of (CDS)α is globally defined on [0,∞) and it converges expo-
nentially to p̃ ∈ K and

dg(η(t), p̃) ≤ e−ρtdg(p0, p̃) for all t ≥ 0.
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Proof. Let p,q ∈ M be arbitrarily fixed. On account of the non-expansiveness of
the projection PK (see Proposition 2.1 (ii)) and hypothesis (Hα,ρ

K ), we have that

dg((A
f
α ◦ PK)(p), (Af

α ◦ PK)(q))

= dg(PK(expPK(p)(−α∂∆C f(PK(p)))), PK(expPK(q)(−α∂∆C f(PK(q)))))

≤ dg(expPK(p)(−α∂∆C f(PK(p))), expPK(q)(−α∂∆C f(PK(q))))

≤ (1− ρ)dg(PK(p), PK(q))

≤ (1− ρ)dg(p,q),

which means that the map Af
α ◦ PK : M → M is a (1− ρ)-contraction on M.

(i) Since (M,dg) is a complete metric space, a standard Banach fixed point
argument shows that Af

α ◦ PK has a unique fixed point p̃ ∈ M. Since ImAf
α ⊂ K,

then p̃ ∈ K. Therefore, we have that Af
α(p̃) = p̃. Due to Theorem 4.1, SNS(f ,K) =

{p̃} and the estimate for dg(pk, p̃) yields in a usual manner.
(ii) Since Af

α ◦PK : M → M is a (1−ρ)-contraction on M (thus locally Lipschitz
in particular), the map M ∋ p 7→ G(p) := exp−1

p (Af
α(PK(p))) is of class C1−0.

Now, due to the arguments from Subsection 2.4, we may guarantee the existence
of a unique maximal orbit η : [0, Tmax) →M of (CDS)α.

We assume that Tmax <∞. Let us define the continuous function h : [0, Tmax) →
R by

h(t) =
1

2
d2
g(η(t), p̃).

The function h is differentiable for a.e. t ∈ [0, Tmax) and in the differentiable points
of η we have

h′(t) = −g(η̇(t), exp−1
η(t)(p̃))

= −g(exp−1
η(t)(A

f
α(PK(η(t)))), exp−1

η(t)(p̃)) (see (CDS)α)

= −g(exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃), exp
−1
η(t)(p̃))

−g(exp−1
η(t)(p̃), exp

−1
η(t)(p̃))

≤ ∥ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)∥g · ∥ exp−1
η(t)(p̃))∥g − ∥ exp−1

η(t)(p̃))∥
2
g.

In the last estimate we used the Cauchy-Schwartz inequality (2.2). From (2.4) we
have that

(4.5) ∥ exp−1
η(t)(p̃))∥g = dg(η(t), p̃).

We claim that for every t ∈ [0, Tmax) one has

(4.6) ∥ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)∥g ≤ dg(A
f
α(PK(η(t))), p̃).

To see this, fix a differentiable point t ∈ [0, Tmax) of η, and let γ : [0, 1] → M,
γ̃ : [0, 1] → Tη(t)M and γ : [0, 1] → Tη(t)M be three curves such that

• γ is the unique minimal geodesic joining the two points γ(0) = p̃ ∈ K and
γ(1) = Af

α(PK(η(t)));
• γ̃(s) = exp−1

η(t)(γ(s)), s ∈ [0, 1];

• γ(s) = (1− s) exp−1
η(t)(p̃) + s exp−1

η(t)(A
f
α(PK(η(t)))), s ∈ [0, 1].

By the definition of γ, we have that

(4.7) Lg(γ) = dg(A
f
α(PK(η(t))), p̃).
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Moreover, since γ is a segment of the straight line in Tη(t)M that joins the endpoints
of γ̃, we have that

(4.8) l(γ) ≤ l(γ̃).

Here, l denotes the length function on Tη(t)M. Moreover, since the curvature of
(M,g) is non-positive, we may apply a Rauch-type comparison result for the lengths
of γ and γ̃, see do Carmo [8, Proposition 2.5, p.218], obtaining that

(4.9) l(γ̃) ≤ Lg(γ).

Combining relations (4.7), (4.8) and (4.9) with the fact that

l(γ) = ∥ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)∥g,

relation (4.6) holds true.
Coming back to h′(t), in view of (4.5) and (4.6), it turns out that

(4.10) h′(t) ≤ dg(A
f
α(PK(η(t))), p̃) · dg(η(t), p̃)− d2

g(η(t), p̃).

On the other hand, note that p̃ ∈ SNS(f ,K), i.e., Af
α(p̃) = p̃. By exploiting

the non-expansiveness of the projection operator PK, see Proposition 2.1 (ii) and
(Hα,ρ

K ), we have that

dg(A
f
α(PK(η(t))), p̃) =

= dg(A
f
α(PK(η(t))), Af

α(p̃))

= dg(PK(expPK(η(t))(−α∂∆C f(PK(η(t))))), PK(expp̃(−α∂∆C f(p̃))))

≤ dg(expPK(η(t))(−α∂∆C f(PK(η(t)))), expp̃(−α∂∆C f(p̃)))

≤ (1− ρ)dg(PK(η(t)), p̃)

= (1− ρ)dg(PK(η(t)), PK(p̃))

≤ (1− ρ)dg(η(t), p̃).

Combining the above relation with (4.10), for a.e. t ∈ [0, Tmax) it yields

h′(t) ≤ (1− ρ)d2
g(η(t), p̃)− d2

g(η(t), p̃) = −ρd2
g(η(t), p̃),

which is nothing but

h′(t) ≤ −2ρh(t) for a.e. t ∈ [0, Tmax).

Due to the latter inequality, we have that

d

dt
[h(t)e2ρt] = [h′(t) + 2ρh(t)]e2ρt ≤ 0 for a.e. t ∈ [0, Tmax).

After integration, one gets

(4.11) h(t)e2ρt ≤ h(0) for all t ∈ [0, Tmax).

According to (4.11), the function h is bounded on [0, Tmax); thus, there exists p ∈ M
such that limt↗Tmax η(t) = p. The last limit means that η can be extended toward
the value Tmax, which contradicts the maximality of Tmax. Thus, Tmax = ∞.

Now, relation (4.11) leads to the required estimate; indeed, we have

dg(η(t), p̃) ≤ e−ρtdg(η(0), p̃) = e−ρtdg(p0, p̃) for all t ∈ [0,∞),

which concludes our proof. �
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Remark 6. We assume the hypotheses of Theorem 4.3 are still verified and p0 ∈ K.
(i) Discrete case. Since ImAf

α ⊂ K, then the orbit of (DDS)α belongs to the set
K, i.e., pk ∈ K for every k ∈ N.
(ii) Continuous case. We shall prove thatK is invariant with respect to the solutions
of (CDS)α, i.e., the image of the global solution η : [0,∞) → M of (CDS)α with
η(0) = p0 ∈ K, entirely belongs to the set K. To show the latter fact, we are
going to apply Proposition 2.6 by choosing M := M and G : M → TM defined by
G(p) := exp−1

p (Af
α(PK(p))).

Fix p ∈ K and ξ ∈ NF (p;K). Since K is geodesic convex in (M,g), on account
of Theorem 2.1, we have that ⟨ξ, exp−1

p (q)⟩g ≤ 0 for all q ∈ K. In particular, if we

choose q0 = Af
α(PK(p)) ∈ K, it turns out that

HG(p, ξ) = ⟨ξ,G(p)⟩g = ⟨ξ, exp−1
p (Af

α(PK(p)))⟩g = ⟨ξ, exp−1
p (q0)⟩g ≤ 0.

Our claim is proved by applying Proposition 2.6.

Example 4.2. (a) Assume that Ki is closed and convex in the Euclidean space
(Mi, gi) = (Rmi , ⟨·, ·⟩Rmi ), i ∈ {1, ..., n}, and let f ∈ C(K,U,Rm) wherem =

∑n
i=1mi.

If ∂∆C f is L−globally Lipschitz and κ-strictly monotone on K ⊂ Rm, then the func-

tion f verifies (Hα,ρ
K ) with α = κ

L2 and ρ = κ2

2L2 . (Note that the above facts imply
that κ ≤ L, thus 0 < ρ < 1.) Indeed, for every p,q ∈ K we have that

d2
g(expp(−α∂∆C f(p)), expq(−α∂∆C f(q)))

= ∥p− α∂∆C f(p)− (q− α∂∆C f(q))∥2Rm = ∥p− q− (α∂∆C f(p)− α∂∆C f(q))∥2Rm

= ∥p− q∥2Rm − 2α⟨p− q, ∂∆C f(p)− ∂∆C f(q)⟩Rm + α2∥∂∆C f(p)− α∂∆C f(q)∥2Rm

≤ (1− 2ακ+ α2L2)∥p− q∥2Rm = (1− κ2

L2
)d2

g(p,q)

≤ (1− ρ)2d2
g(p,q).

(b) Let K = K1 = K2 = R2
+ and for x = (x1, x2) ∈ K and y = (y1, y2) ∈ K, we

consider the functions f1, f2 : K ×K → R defined by

f1(x, y) = (c11x1 − h11(y))
2 + (c12x2 − h12(y))

2;

f2(x, y) = (c21y1 − h21(x))
2 + (c22y2 − h22(x))

2,

where cij > 0 are fixed numbers and hij : K → R are Lij-globally Lipschitz
functions, i, j ∈ {1, 2}. Assume that

2min
i,j

cij > 3max
i,j

Lij .

We may prove that there exists a unique Nash equilibrium point for (f ,K) =
(f1, f2;K,K). Indeed, we first consider Nash-Stampacchia equilibrium points for
(f ,K). Extending in a natural way f1(·, y) and f2(x, ·) to the whole U1 = U2 = R2

for every x, y ∈ K, it yields that f ∈ C(K,R4,R4). Moreover, for every (x, y) ∈ K, we
have

∂∆C f(x, y) = 2(c11x1 − h11(y), c12x2 − h12(y), c21y1 − h21(x), c22y2 − h22(x)).

A simple calculation shows that ∂∆C f is L−globally Lipschitz and κ-strictly mono-
tone on K ⊂ R4 with

L = 2
√
3max

i,j
cij > 0; κ = 2min

i,j
cij − 3max

i,j
Lij > 0.
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According to (a), f verifies (Hα,ρ
K ) with α = κ

L2 and ρ = κ2

2L2 . On account of
Theorem 4.3, the set of Nash-Stampacchia equilibrium points for (f ,K) contains
exactly one point, i.e., the system{

(c1ix̃i − h1i(ỹ))(x− x̃i) ≥ 0 for all x ∈ [0,∞), i ∈ {1, 2},
(c2j ỹj − h2j(x̃))(y − ỹj) ≥ 0 for all y ∈ [0,∞), j ∈ {1, 2}, (S2)

has a unique solution (x̃, ỹ) ∈ K. Moreover, the orbits of both dynamical systems
(DDS)α and (CDS)α exponentially converge to (x̃, ỹ). Since f1(·, y) and f2(x, ·)
are convex functions on K for every x, y ∈ K, then f ∈ K(K,R4,R4) as well. Due to
Theorem 3.1 (iii), we have that SNE(f ,K) = SNS(f ,K) = {(x̃, ỹ)}.

5. Metric projections vs Hadamard manifolds: curvature rigidity

The obtuse-angle property and the non-expansiveness of PK for the closed, geo-
desic convex set K ⊂ M played indispensable roles in the proof of Theorems 4.1-4.3,
which are well-known features of Hadamard manifolds (see Proposition 2.1). In Sec-
tion 4 the product manifold (M,g) is considered to be a Hadamard one due to the
fact that (Mi, gi) are Hadamard manifolds themselves for each i ∈ {1, ..., n}. We
actually have the following characterization which is also of geometric interests in
its own right and entitles us to assert that Hadamard manifolds are the natural
framework to develop the theory of Nash-Stampacchia equilibria on manifolds.

Theorem 5.1. Let (Mi, gi) be complete, simply connected Riemannian manifolds,
i ∈ {1, ..., n}, and (M,g) their product manifold. The following statements are
equivalent:

(i) Any non-empty, closed, geodesic convex set K ⊂ M verifies the obtuse-angle
property and PK is non-expansive;

(ii) (Mi, gi) are Hadamard manifolds for every i ∈ {1, ..., n}.
Proof. (ii)⇒(i). As mentioned before, if (Mi, gi) are Hadamard manifolds for every
i ∈ {1, ..., n}, then (M,g) is also a Hadamard manifold, see Ballmann [2, Example
4, p.147] and O’Neill [15, Lemma 40, p. 209]. We apply Proposition 2.1 for (M,g).

(i)⇒(ii). We first prove that (M,g) is a Hadamard manifold. Since (Mi, gi) are
complete and simply connected Riemannian manifolds for every i ∈ {1, ..., n}, the
same is true for (M,g). We now show that the sectional curvature of (M,g) is
non-positive. To see this, let p ∈ M and W0,V0 ∈ TpM \ {0}. We claim that the
sectional curvature of the two-dimensional subspace S =span{W0,V0} ⊂ TpM
at the point p is non-positive, i.e., Kp(S) ≤ 0. We assume without loosing the
generality that V0 and W0 are g-perpendicular, i.e., g(W0,V0) = 0.

Let us fix rp > 0 and δ > 0 such that Bg(p, rp) is a totally normal ball of p and

(5.1) δ (∥W0∥g + 2∥V0∥g) < rp.

Let σ : [−δ, 2δ] → M be the geodesic segment σ(t) = expp(tV0) and W be the
unique parallel vector field along σ with the initial data W(0) = W0. For any
t ∈ [0, δ], let γt : [0, δ] → M be the geodesic segment γt(u) = expσ(t)(uW(t)).

Let us fix t, u ∈ [0, δ] arbitrarily, u ̸= 0. Due to (5.1), the geodesic segment γt|[0,u]
belongs to the totally normal ball Bg(p, rp) of p; thus, γt|[0,u] is the unique minimal
geodesic joining the point γt(0) = σ(t) to γt(u). Moreover, since W is the parallel
transport of W(0) = W0 along σ, we have g(W(t), σ̇(t)) = g(W(0), σ̇(0)) =
g(W0,V0) = 0; therefore,

g(γ̇t(0), σ̇(t)) = g(W(t), σ̇(t)) = 0.
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Consequently, the minimal geodesic segment γt|[0,u] joining γt(0) = σ(t) to γt(u),
and the set K = Imσ = {σ(t) : t ∈ [−δ, 2δ]} fulfill hypothesis (OA2). Note that Imσ
is a closed, geodesic convex set in M; thus, from hypothesis (i) it follows the set Imσ
verifies the obtuse-angle property and the map PImσ is non-expansive. Therefore,
(OA2) implies (OA1), i.e., for every t, u ∈ [0, δ], we have σ(t) ∈ PImσ(γt(u)). Since
Imσ is a Chebyshev set (cf. the non-expansiveness of PImσ), for every t, u ∈ [0, δ],
we have

(5.2) PImσ(γt(u)) = {σ(t)}.

In particular, for every t, u ∈ [0, δ], relation (5.2) and the non-expansiveness of PImσ

imply

dg(p, σ(t)) = dg(σ(0), σ(t))(5.3)

= dg(PImσ(γ0(u)), PImσ(γt(u)))

≤ dg(γ0(u), γt(u)).

The above construction (i.e., the parallel transport of W(0) = W0 along σ) and the
formula of the sectional curvature in the parallelogramoid of Levi-Civita defined by
the points p, σ(t), γ0(u), γt(u), see Subsection 2.1, give

Kp(S) = lim
u,t→0

d2
g(p, σ(t))− d2

g(γ0(u), γt(u))

dg(p, γ0(u)) · dg(p, σ(t))
.

According to (5.3), the latter limit is non-positive, so Kp(S) ≤ 0, which concludes
the first part, namely, (M,g) is a Hadamard manifold.

Now, the main result of Chen [6, Theorem 1] implies that the metric spaces
(Mi, dgi) are Aleksandrov NPC spaces for every i ∈ {1, ..., n}. Consequently, for
each i ∈ {1, ..., n}, the Riemannian manifolds (Mi, gi) have non-positive sectional
curvature, thus they are Hadamard manifolds. The proof is complete. �
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