New results on the modified proximal point algorithm

O. A. Boikanyo and G. Moroșanu
Department of Mathematics and its Applications
Central European University
Nador u. 9, H-1051 Budapest, Hungary
E-mail addresses: boikanyo_oganeditse@ceu-budapest.edu,
morosanug@ceu.hu

Abstract

We present several strong convergence results for the modified proximal point algorithm $x_{n+1} = \alpha_n u + (1 - \alpha_n)J_{\beta_n}x_n + e_n$ ($n = 0, 1, \ldots$; $u, x_0 \in H$ given, and $J_{\beta_n} = (I + \beta_n A)^{-1}$, for a maximal monotone operator A) in a real Hilbert space, under new sets of conditions on $\alpha_n \in (0, 1)$ and $\beta_n \in (0, \infty)$. These conditions are weaker than those known to us and our results extend and improve some recent results such as those of Xu.

Keywords: Proximal point algorithm, prox-Tikhonov algorithm, monotone operator, control conditions, strong convergence.

2000 Mathematics Subject Classification: 47J25, 47H05, 47H09.

1 Introduction

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. A map $T : H \to H$ is said to be nonexpansive if for every $x, y \in H$ the inequality $\|Tx - Ty\| \leq \|x - y\|$ holds. In the case when $\|Tx - Ty\| \leq a\|x - y\|$ holds for some $a \in (0, 1)$, then T is said to be a contraction with Lipschitz constant a. We recall that a mapping $A : D(A) \subset H \to 2^H$ is said to be a monotone operator if

$$\langle x - x', y - y' \rangle \geq 0, \quad \forall (x, y), (x', y') \in A.$$

In other words, the graph of A, $G(A) = \{(x, y) \in H \times H : x \in D(A), y \in Ax\}$ is a monotone subset of $H \times H$. The operator A is said to be maximal monotone if its graph is not properly contained in the graph of any other monotone operator. It is well known that if A is maximal monotone and $\beta > 0$, then the resolvent of A, the operator $J_\beta : H \to H$ defined by $J_\beta(x) = (I + \beta A)^{-1}(x)$, is single-valued and nonexpansive (see,
For a fixed $u \in H$ and $t \in (0,1)$, let z_t denote the fixed point of the contraction T_t given by the rule $x \mapsto tu + (1-t)Tx$, i.e.,

$$z_t = tu + (1-t)Tz_t. \quad (1)$$

The strong convergence of z_t to a fixed point of T was proved in 1967 by Browder [3]. This result of Browder has been widely used in the theory of fixed points and extended in different directions by several authors. Motivated by Browder’s (implicit) convergence result, Halpern [5] considered the (explicit) iteration

$$x_{n+1} = \alpha_n u + (1-\alpha_n)Tx_n, \quad \text{for any } u, x_0 \in H \text{ with } \alpha_n \in (0,1) \text{ and all } n \geq 0, \quad (2)$$

in a Hilbert space and proved that under certain assumptions on α_n, the sequence $\{x_n\}$ given by the iterative process (2) is strongly convergent, and the limit is the point of $F(T) = \{x \in H \mid Tx = x\}$ which is nearest to u. Later, Lions [9] proved the strong convergence of (2) still in a Hilbert space under the control conditions

$$(C1) \lim_{n\to\infty} \alpha_n = 0, \quad (C2) \sum_{n=0}^{\infty} \alpha_n = \infty \quad \text{and} \quad (C3) \lim_{n\to\infty} \frac{|\alpha_{n+1} - \alpha_n|}{\alpha_{n+1}^2} = 0.$$

Unfortunately, Lions’ result excludes the natural choice $\alpha_n = n^{-1}$. This was overcome in 1992 by Wittmann [13] who showed strong convergence of $\{x_n\}$ under the control conditions (C1), (C2), and

$$(C4) \sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty.$$

In 2002, Xu [14] studied algorithm 2 extensively. First, he showed that in a Banach space setting, $\{x_n\}$ still maintains its strong convergence on removing the square in the denominator of (C3), thereby improving Lions’ result twofold. The conditions used were (C1), (C2), and

$$(C5) \lim_{n\to\infty} \frac{|\alpha_{n+1} - \alpha_n|}{\alpha_{n+1}} = 0.$$

He then showed that the conditions (C3) and (C4) are not comparable, and did the same for (C4) and (C5). Xu then observed that Halpern actually showed that the conditions (C1) and (C2) are necessary to have strong convergence to the metric projection of u on $F(T)$. This provided a partial answer to Reich’s question: Concerning $\{\alpha_n\}$, what are the necessary and sufficient conditions for $\{x_n\}$ to converge strongly? To the best of our knowledge, the other part of the question concerning sufficiency remains open. However, in a recent paper of Suzuki [12], it is shown that if the nonexpansive mapping T in (2) is of the form $T := \lambda S + (1-\lambda)I$ (with $\lambda \in (0,1)$, S a nonexpansive mapping and I the identity operator), then the conditions (C1) and (C2) are not only necessary for $\{x_n\}$ to converge strongly, but they are also sufficient. In fact, Suzuki showed strong convergence of the iterative process

$$x_{n+1} = \alpha_n u + (1-\alpha_n)(\lambda Sx_n + (1-\lambda)x_n), \quad \text{for any } u, x_0 \in H \text{ and all } n \geq 0, \quad (3)$$
in Banach spaces. The same result was obtained by Chidume and Chidume [4] independently. Very recently, He et. al. [6] showed also in Banach spaces that if the nonexpansive map S above is replaced by the resolvent, J_{β_n}, of an m-accretive operator, then strong convergence is still guaranteed under (C1), (C2), and the condition

$$\text{(C6) } \lim_{n \to \infty} |\beta_{n+1} - \beta_n| = 0,$$

with β_n bounded from below away from zero.

Notice that it is possible to prove strong convergence results if one replaces the nonexpansive map T in algorithm 2 by a sequence of nonexpansive mappings. For instance, one may consider the iterative process, known as the (modified) proximal point algorithm, defined by

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) J_{\beta_n} x_n, \quad \text{for any } u, x_0 \in H \text{ and all } n \geq 0,$$

(4)

where $\{\beta_n\} \subset (0, \infty)$. Under additional assumptions on β_n, the strong convergence of $\{x_n\}$ defined by (4) can be obtained. In 2000, Kamimura and Takahashi [7] showed that $\{x_n\}$ is strongly convergent to the fixed point set $F(J_c) = \{x \in H : J_c x = x\} = A^{-1}(0)$ (for all $c > 0$) nearest to u if one assumes (C1), (C2) and $\beta_n \to \infty$. In fact, they considered the following algorithm which is the inexact form of algorithm 4:

$$\left\{ \begin{array}{l}
y_n \approx J_{\beta_n} x_n, \quad \text{for all } n \geq 0, \\
x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n,
\end{array} \right.$$

(5)

for any $u, x_0 \in H$, where the criterion for the approximate computation of y_n is given by

$$\|y_n - J_{\beta_n} x_n\| \leq \delta_n \text{ with } \sum_{n=0}^{\infty} \delta_n < \infty.$$

It is worth mentioning that Xu [14] also obtained the same result independently, and in [1] (see also [2]), we extended this result to include non-summable errors, e_n. It is unclear if the same conclusion can also be derived for bounded β_n and the general condition that the error sequence tend to zero in norm.

The so called prox-Tikhonov regularization method have also been under investigation from several researchers. In 2006, Xu [15] extended the result of Lehdili and Moudafi [8] by considering the iterative process

$$x_{n+1} = J_{\beta_n} (\alpha_n u + (1 - \alpha_n) x_n + e_n), \quad \text{for any } u, x_0 \in H \text{ and all } n \geq 0,$$

(6)

were $\{e_n\}$ is a sequence of errors, and proved strong convergence of $\{x_n\}$ defined by (6) to the metric projection of u into the fixed point set $A^{-1}(0)$ under the control conditions which appear as a combination of α_n and β_n. More precisely, his conditions were

$$\text{(C7) } \sum_{n=0}^{\infty} \left| 1 - \frac{\alpha_n \beta_{n+1}}{\alpha_{n+1} \beta_n} \right| < \infty \text{ or, } \text{(C8) } \lim_{n \to \infty} \frac{1}{\alpha_n} \left| 1 - \frac{\alpha_n \beta_{n+1}}{\alpha_{n+1} \beta_n} \right| = 0.$$
Note that for $\beta_n \to \infty$, the natural choices of $\alpha_n = n^{-1}$ and $\beta_n = n$, fails under both conditions. In fact, for any choice of α_n and β_n, condition (C8) is impossible to achieve as shall be shown in this paper, (see Remark 4). In another result of Xu, Theorem 3.3 [15], it is shown that for summable errors, strong convergence is still maintained under the conditions (C1), (C2), (C4), and β_n bounded (from above and from below away from zero) with (C9) being satisfied. Song and Yang [11] established strong convergence of the prox-Tikhonov algorithm 6 when the errors are summable, (C1), (C2), (C4) being satisfied, and the following condition on β_n imposed: β_n is bounded from below away from zero with either

$$ (C9) \sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty, \quad \text{or} \quad (C9)^{'} \sum_{n=0}^{\infty} \frac{|\beta_{n+1} - \beta_n|}{\beta_{n+1}} < \infty. $$

They remarked that their result (Theorem 2) contains Theorem 3.3 [15] as a special case. Although this seems to be the case at first glance, it turns out that the two theorems are equivalent. In fact, the condition (C9)$^{'}$ on β_n is equivalent to (C9) and β_n bounded from below away from zero. Obviously, from this equivalence follows the equivalence of the two theorems. This equivalence is not so obvious and it is discussed in Lemma 4 below.

The main purpose of this paper is to prove strong convergence of $\{x_n\}$ conforming to the iterative process

$$ x_{n+1} = \alpha_n u + (1 - \alpha_n) J_{\beta_n} x_n + e_n, \quad \text{for any } u, x_0 \in H \text{ and all } n \geq 0, \quad (7) $$

under new conditions on α_n and β_n. Our new conditions will allow choices such as $\alpha_n = n^{-1}$ and $\beta_n = n$. Theorem 4 and Theorem 5 deal with the conditions

$$ \text{either} \quad (C10) \sum_{n=1}^{\infty} \left| \frac{\alpha_{n-1}}{\beta_n} - \frac{\alpha_n}{\beta_{n+1}} \right| < \infty \quad \text{or}, \quad (C11) \lim_{n \to \infty} \frac{1}{\alpha_n \beta^2_n} |\alpha_{n-1} \beta_{n+1} - \alpha_n \beta_n| = 0, $$

and

$$ \text{either} \quad (C12) \sum_{n=1}^{\infty} \left| \frac{1}{\beta_n} - \frac{1}{\beta_{n-1}} \right| < \infty \quad \text{or}, \quad (C13) \lim_{n \to \infty} \frac{1}{\alpha_n} \left| \frac{1}{\beta_n} - \frac{1}{\beta_{n-1}} \right| = 0, $$

respectively. In particular, our results provide an answer to the question we asked in [2]: Can one design a proximal point algorithm by choosing appropriate regularization parameters α_n such that strong convergence of $\{x_n\}$ is preserved, for $\|e_n\| \to 0$ and β_n bounded? Of course, for constant β_n, (C10) reduces to (C4) and (C11) reduces to (C5).

2 Preliminaries

In the sequel, H is a real Hilbert space, F denotes the set $A^{-1}(0) = \{x \in H : J_c x = x\} = F(J_c)$ for all $c > 0$, and given any sequence $\{x_n\}$, its weak ω-limit set will be denoted by $\omega_w(\{x_n\})$, that is,

$$ \omega_w(\{x_n\}) := \{x \in H \mid x_{n_k} \rightharpoonup x \text{ for some subsequence } \{x_{n_k}\} \text{ of } \{x_n\} \}. $$
Here “⇀” denotes weak convergence.

It is worth pointing out that, for $\alpha_n \to 0$ and $e_n \to 0$, the algorithms 6 and 7 are equivalent. Indeed, setting

$$v_n := \frac{x_n - \alpha_{n-1} - e_{n-1}}{1 - \alpha_{n-1}},$$

we have from (7) that $v_{n+1} = J_{\beta_n} x_n$ and using (8), we get

$$v_{n+1} = J_{\beta_n} (\alpha_{n-1} u + (1 - \alpha_{n-1}) v_n + e_{n-1}), \text{ for } n \geq 1. \tag{9}$$

It is not hard to see that (9) can be put in the form (6). Moreover, $\{v_n\}$ converges if and only if $\{x_n\}$ does, showing that the two algorithms are perfectly equivalent. We shall therefore always use either form of the algorithm at our convenience. If we consider (9) instead of (6), then conditions (C7) and (C8) take the form

$$(C7)' \sum_{n=1}^{\infty} \left| 1 - \frac{\alpha_{n-1} \beta_{n+1}}{\alpha_n \beta_n} \right| < \infty \text{ or, } (C8)' \lim_{n \to \infty} \frac{1}{\alpha_{n-1}} \left| 1 - \frac{\alpha_{n-1} \beta_{n+1}}{\alpha_n \beta_n} \right| = 0.$$

Theorem 3 and Remark 4 are concerned with these conditions.

Let us now recall some Lemmas which will be useful in proving our main results.

Lemma 1 (Subdifferential Inequality)

$$\|x + y\|^2 \leq \|y\|^2 + 2 \langle x, x + y \rangle \text{ for all } x, y \in H.$$

Lemma 2 (Resolvent Identity) For any $\beta, \gamma > 0$, and $x \in H$, the identity

$$J_{\beta} x = J_{\gamma} \left(\frac{\gamma}{\beta} x + \left(1 - \frac{\gamma}{\beta} \right) J_{\beta} x \right)$$

holds true.

Lemma 3 [14]. Let $\{s_n\}$ be a sequence of non-negative real numbers satisfying

$$s_{n+1} \leq (1 - a_n) s_n + a_n b_n + c_n, \text{ for } n \geq 0,$$

where $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ satisfy the conditions: (i) $\{a_n\} \subset [0, 1]$, with $\sum_{n=0}^{\infty} a_n = \infty$, (ii) $\limsup_{n \to \infty} b_n \leq 0$, and (iii) $c_n \geq 0$ for all $n \geq 0$ with $\sum_{n=0}^{\infty} c_n < \infty$. Then $\lim_{n \to \infty} s_n = 0$.

We next show that any sequence of positive real numbers satisfying the condition of (C9)' is bounded (with the lower bound being strictly positive).

Lemma 4 For any sequence $\{b_n\}$ of positive real numbers, the following conditions are equivalent: (i) $\sum_{n=0}^{\infty} |b_{n+1} - b_n| < \infty$ and $0 \leq \liminf_{n \to \infty} b_n$ ($= \lim_{n \to \infty} b_n$), (ii) $\sum_{n=0}^{\infty} \frac{|b_{n+1} - b_n|}{b_n} < \infty$, and (iii) $\sum_{n=0}^{\infty} \frac{|\beta_{n+1} - \beta_n|}{\beta_{n+1}} < \infty$.

5
Proof: First, it is easily seen that (i) \(\Rightarrow\) (ii), and (i) \(\Rightarrow\) (iii). Now let us prove that (ii) \(\Rightarrow\) (i). For this, it suffices to show that there exist constants \(m, M > 0\) such that \(m \leq b_n \leq M\) for all \(n = 0, 1, \ldots\)

From (ii), there exists a sequence \(\{a_n\} \subset \mathbb{R}\), such that \(\sum_{n=0}^{\infty} |a_n| < \infty\), and

\[
\frac{b_{n+1} - b_n}{b_n} = a_n \quad \Leftrightarrow \quad \frac{b_{n+1}}{b_n} = 1 + a_n, \quad n = 0, 1, \ldots
\]

Note that in particular, \(\lim_{n \to \infty} a_n = 0\). Therefore, we may assume without any loss of generality that \(|a_n| < 1\) for all \(n\). Then by simple induction, we have

\[
\frac{b_n}{b_0} = \prod_{k=0}^{n-1} (1 + a_k)
\]

Since \(1 + x \leq \exp(x)\) for all \(x \geq 0\), it follows from (10) that

\[
\frac{b_n}{b_0} = \prod_{k=0}^{n-1} (1 + a_k) \leq \prod_{k=0}^{n-1} (1 + |a_k|) \leq \exp \left(\sum_{k=0}^{n-1} |a_k| \right) \leq \exp \left(\sum_{k=0}^{\infty} |a_k| \right) =: M_0 < \infty. \quad (11)
\]

On the other hand,

\[
\sum_{k=0}^{\infty} |a_k| < \infty \quad \Leftrightarrow \quad \prod_{k=0}^{\infty} (1 - |a_k|) > 0,
\]

and again from (10) we obtain

\[
\frac{b_n}{b_0} = \prod_{k=0}^{n-1} (1 + a_k) \geq \prod_{k=0}^{n-1} (1 - |a_k|) \geq \prod_{k=0}^{\infty} (1 - |a_k|) =: m_0 > 0. \quad (12)
\]

The conclusion then follows from (11) and (12). Replacing \(b_n\) by \(b_n^{-1}\) in (ii), one readily gets (iii), showing that (iii) \(\Rightarrow\) (i) as desired.

Let the mapping \(h : H \to H\) be defined by \(x \mapsto tu + (1 - t)J_c x + e(t)\) for \(c > 0, u \in H\) and \(t \in (0, 1)\). For any fixed \(t\) (and \(c, u\)), one can easily check that the map \(h\) is a contraction with Lipschitz constant \(1 - t\). The Banach contraction principle asserts that \(h\) has a unique fixed point, say, \(z_t\). That is,

\[
z_t = tu + (1 - t)J_c z_t + e(t) \quad \text{for} \quad c > 0 \quad \text{and} \quad u \in H. \quad (13)
\]

In fact \(z_t\) depends on \(u\) and \(c\) as well.

Theorem 1 Take any \(c > 0\) and \(u \in H\), and assume

\[
t^{-1} \|e(t)\| \to 0 \quad \text{as} \quad t \to 0^+.
\]

If \(F \neq \emptyset\), then \(\{z_t\}\) defined in (13) converges strongly as \(t \to 0^+\) to the point of \(F\) nearest to \(u\), denoted by \(P_F u\). Moreover, this limit is attained uniformly with respect to \(c \geq \delta\) for every \(\delta > 0\).
Proof: For every \(p \in F \), we have from the subdifferential inequality (see Lemma 1 above)

\[
\|z_t - p\|^2 \leq (1 - t)^2 \|z_t - p\|^2 + 2t \langle u - p + t^{-1}e(t), z_t - p \rangle.
\]

In other words,

\[
(2 - t)\|z_t - p\|^2 \leq 2 \langle u - p + t^{-1}e(t), z_t - p \rangle.
\] (15)

This shows that \(\{z_t\} \) is bounded as \(t \to 0^+ \). Now setting

\[
v_t := (1 - t)^{-1}(z_t - tu - e(t)) = J_c z_t,
\]

we see that \(\{v_t\} \) is also bounded as \(t \to 0^+ \) and the weak \(\omega \)-limit sets of \(\{z_t\} \) and \(\{v_t\} \) (as \(t \to 0^+ \)) coincide, that is, \(\omega_\omega(\{z_t\}) = \omega_\omega(\{v_t\}) \). Since

\[
Av_t \ni \frac{1}{c}(z_t - v_t) \to 0 \quad \text{as} \quad t \to 0^+,
\]

we have \(\omega_\omega(\{z_t\}) \subset F \). By (14) and (15) with \(p = P_F u \) we get

\[
\limsup_{t \to 0^+} \|z_t - P_F u\|^2 \leq 0,
\]

which shows that

\[
\lim_{t \to 0^+} \|z_t - P_F u\| = 0.
\]

Obviously, the above limit is attained uniformly with respect to \(c \geq \delta \) for every \(\delta > 0 \). ■

Remark 1: Theorem 1 is an extension of Theorem 3.1 in [15], since \(v_t \) converges strongly to \(P_F u \) (as \(t \to 0^+ \)) if and only if \(z_t \) does. We note that Theorem 3.1 in [15] contains a mistake, since the strong limit of \(v_t \) (as \(t \to 0^+ \)) is not attained uniformly for \(c > 0 \) (but for \(c \geq \delta \) for every \(\delta > 0 \)).

3 Main Results

We devote this section to demonstrate the strong convergence of algorithm 7 under different sets of assumptions on the parameters \(\alpha_n \) and \(\beta_n \). We begin by proving a strong convergence result satisfying similar conditions to those of Lions. One of the conditions

\[
(C3)’ \quad \lim_{n \to \infty} \frac{\alpha_{n+1} - \alpha_n}{\alpha_n^2} = 0,
\]

is weaker than Lions’ condition (C3) in the case when \(\alpha_n \) is decreasing.

Theorem 2 Assume that \(A : D(A) \subset H \to 2^H \) is a maximal monotone operator and \(F := A^{-1}(0) \neq 0 \). For any fixed \(u, x_0 \in H \), let \(\{x_n\} \) be the sequence generated by algorithm (7) with the conditions: (i) \(\alpha_n \in (0, 1) \), (C1), (C2) and (C3)', (ii) either \(\sum_{n=0}^{\infty} \|e_n\| < \infty \) or \(\|e_n\|/\alpha_n \to 0 \), and (iii) \(\beta_n \in (0, \infty) \) with \((C6)' \lim_{n \to \infty} |\beta_n - \beta| = 0 \) for some \(\beta > 0 \), being satisfied. Then \(\{x_n\} \) converges strongly to \(P_F u \), the projection of \(u \) on \(F \).
Proof: Note that it was shown in [15] that \(\{x_n\} \) is bounded if \(\sum_{n=0}^{\infty} \|e_n\| < \infty \). Also it was shown in [2] that \(\{x_n\} \) is bounded if \(\{e_n/\alpha_n\} \) is bounded. For the sake of the reader's convenience, we shall however repeat the proof.

If \(\sum_{n=0}^{\infty} \|e_n\| < \infty \), then as in [15], it can be shown by induction that

\[
\|x_n - p\| \leq \max\{\|x_0 - p\|, \|u - p\|\} + \sum_{k=0}^{n-1} \|e_k\| \quad \text{for any } p \in F \text{ and } n \geq 0. \tag{16}
\]

Hence \(\{x_n\} \) is bounded (see also [2]).

Now assume that \(\{e_n/\alpha_n\} \) is bounded. Then, there exists a positive constant \(M \) such that

\[
\|u - p\| + \|e_n\|/\alpha_n \leq M \quad \text{for some } p \in F \text{ and } n \geq 0.
\]

We assume \(M \) is big enough so that \(\|x_0 - p\| \leq C := 2M \). Let us show that

\[
\|x_n - p\| \leq C \quad \text{for all } n \geq 0. \tag{17}
\]

Using (7) and applying the subdifferential inequality, we get

\[
\|x_{n+1} - p\|^2 = \|\alpha_n(u - p + e_n/\alpha_n) + (1 - \alpha_n)(J_{\beta_n}x_n - p)\|^2 \\
\leq (1 - \alpha_n)^2\|J_{\beta_n}x_n - p\|^2 + 2\alpha_n\langle u - p + e_n/\alpha_n, x_{n+1} - p \rangle \\
\leq (1 - \alpha_n)^2\|x_n - p\|^2 + 2M\alpha_n\|x_{n+1} - p\|.
\]

If \(\|x_n - p\| \leq C \) for some \(n \geq 0 \), then the last estimate gives

\[
\|x_{n+1} - p\|^2 \leq (1 - \alpha_n)^2C^2 + 2M\alpha_n\|x_{n+1} - p\|.
\]

Hence,

\[
(\|x_{n+1} - p\| - M\alpha_n)^2 \leq M^2\alpha_n^2 + (1 - \alpha_n)^2C^2,
\]

which yields

\[
\|x_{n+1} - p\| \leq M\alpha_n + \sqrt{M^2\alpha_n^2 + (1 - \alpha_n)^2C^2}.
\]

On the other hand, it is easy to check that

\[
M\alpha_n + \sqrt{M^2\alpha_n^2 + (1 - \alpha_n)^2C^2} \leq C.
\]

Thus \(\{x_n\} \) is bounded. For each \(n \), let \(z_n \) be the unique fixed point of the contraction \(x \mapsto \alpha_n u + (1 - \alpha_n)J_{\beta_n}x \). According to Theorem 1, \(z_n \to P_F u \) as \(n \to \infty \). Therefore it is enough to show that \(\|x_n - z_n\| \to 0 \) as \(n \to \infty \). For this purpose, we estimate \(\|x_{n+1} - z_{n+1}\| \) as follows

\[
\|x_{n+1} - z_{n+1}\| \leq \|x_{n+1} - z_n\| + \|z_n - z_{n+1}\|. \tag{18}
\]
Noting that $z_n = \alpha_n u + (1 - \alpha_n) J_\beta z_n$ and the fact that J_β is nonexpansive for all $\beta > 0$, we get

$$
\|x_{n+1} - z_n\| \leq (1 - \alpha_n) \|J_{\beta_n} x_n - J_\beta z_n\| + \|e_n\|
$$

$$
\leq (1 - \alpha_n) \|J_{\beta_n} x_n - J_{\beta_n} z_n\| + \|J_{\beta_n} z_n - J_\beta z_n\| + \|e_n\|
$$

$$
\leq (1 - \alpha_n) \|x_n - z_n\| + \frac{|\beta - \beta_n|}{\beta} \|z_n - J_\beta z_n\| + \|e_n\|
$$

$$
\leq (1 - \alpha_n) \|x_n - z_n\| + \alpha_n \frac{|\beta - \beta_n|}{\beta} \|u - J_\beta z_n\| + \|e_n\|, \quad (19)
$$

where the third inequality follows from the application of the resolvent identity. On the other hand, we compare z_n and z_{n+1} as follows

$$
\|z_n - z_{n+1}\| = \|(\alpha_n - \alpha_{n+1})(u - J_\beta z_{n+1}) + (1 - \alpha_n)(J_\beta z_n - J_\beta z_{n+1})\|
$$

$$
\leq |\alpha_n - \alpha_{n+1}| \|u - J_\beta z_{n+1}\| + (1 - \alpha_n) \|z_n - z_{n+1}\|
$$

which gives

$$
\|z_n - z_{n+1}\| \leq \frac{|\alpha_n - \alpha_{n+1}|}{\alpha_n} K, \quad (20)
$$

where K is a positive constant such that $\|u - J_\beta z_n\| \leq K$ for all n. Combining (18), (19) and (20) we get

$$
\|x_{n+1} - z_{n+1}\| \leq (1 - \alpha_n) \|x_n - z_n\| + \alpha_n b_n + c_n,
$$

where

$$
b_n = K \left[\frac{|\beta - \beta_n|}{\beta} + \frac{|\alpha_n - \alpha_{n+1}|}{\alpha_n^2} \right] \to 0 \quad \text{and} \quad c_n = \|e_n\| \quad \text{with} \quad \sum_{n=0}^{\infty} \|e_n\| < \infty,
$$

or

$$
\|x_{n+1} - z_{n+1}\| \leq (1 - \alpha_n) \|x_n - z_n\| + \alpha_n b'_n,
$$

where

$$
b'_n = K \left[\frac{|\beta - \beta_n|}{\beta} + \frac{|\alpha_n - \alpha_{n+1}|}{\alpha_n^2} \right] + \frac{\|e_n\|}{\alpha_n} \to 0
$$

for the case $\|e_n\|/\alpha_n \to 0$. In either case Lemma 3 gives the required conclusion.

Remark 2: For $\beta > 0$ and $\beta_n = (-1)^n \frac{1}{n+1} + \beta$, the condition (C6)’ is satisfied, whereas (C9) is not, showing that our condition on β_n is weaker than the one used in the following theorem due to Xu [15]. On the other hand, the sequences $\alpha_n = n^{-\frac{3}{4}}$ and $\alpha_n = 1/\ln n$ satisfy condition (i) of Theorem 2. Since (C3) and (C3)’ are not comparable to (C4) (see Remark 3.1 [14]), Theorem 2 is new.

Theorem Xu [15]. Assume that $A : D(A) \subset H \to 2^H$ is a maximal monotone operator and $F := A^{-1}(0) \neq \emptyset$. For any fixed $u, x_0 \in H$, let $\{x_n\}$ be the sequence generated by
algorithm (7) with the conditions: (i) \(\alpha_n \in (0, 1)\), (C1), (C2) and (C4), (ii) \(\beta_n \in (0, \infty)\) with \(\sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty\) and \(0 < \liminf_{n \to \infty} \beta_n (= \lim_{n \to \infty} \beta_n)\), being satisfied. If \(\sum_{n=0}^{\infty} \|\epsilon_n\| < \infty\), then \(\{x_n\}\) converges strongly to \(P_Fu\), the projection of \(u\) on \(F\).

Remark 3: Although it appears from Lemma 3 and inequality (20) that \(\sum_{n=0}^{\infty} \left|\frac{\alpha_n - \alpha_{n+1}}{\alpha_n}\right| < \infty\) can be a possible assumption on \(\alpha_n\), there is no sequence \(\{\alpha_n\} \subset (0, 1)\) satisfying (C1) and this condition. Indeed, if this condition is satisfied, then Lemma 4 implies that \(\alpha_n\) is bounded below away from zero, contradicting (C1).

We next give a result similar to Theorem 3.2 of Xu [15]. In the next result, if we consider algorithm 6 instead of algorithm 7, then we can prove the same result with (C8) replaced by (C8)’. In that case, the result extends Theorem 3.2 [15] to a larger class of problems. Indeed, if this condition is satisfied, then Lemma 4 implies that \(\alpha_n\) is bounded below away from zero, contradicting (C1).

Theorem 3 Assume that \(A : D(A) \subset H \to 2^H\) is a maximal monotone operator and \(F := A^{-1}(0) \neq \emptyset\). For any fixed \(u, x_0 \in H\), let \(\{x_n\}\) be the sequence generated by algorithm (7), where (i) \(\alpha_n \in (0, 1)\), with (C1), and (C2), (ii) either \(\sum_{n=0}^{\infty} \|\epsilon_n\| < \infty\) or \(\|\epsilon_n\| / \alpha_n \to 0\), and (iii) \(\beta_n \in (0, \infty)\) with \(\liminf_{n \to \infty} \beta_n > 0\), \(\beta_{n+1} \geq \alpha_n \beta_n\) and (C8)’.

Then \(\{x_n\}\) converges strongly to \(P_Fu\), the projection of \(u\) on \(F\).

Proof: For each fixed \(n\), let \(y_n\) be the unique fixed point of the contraction \(x \mapsto \alpha_{n-1}u + (1 - \alpha_{n-1})J_{\beta_n}x\). Then according to Theorem 1, \(y_n \to P_Fu\) as \(n \to \infty\). Set

\[
v_n := \frac{x_n - \alpha_{n-1}u - \epsilon_n - 1}{1 - \alpha_{n-1}} \quad \text{and} \quad w_n := \frac{y_n - \alpha_{n-1}u}{1 - \alpha_{n-1}}.
\]

As a consequence of the boundedness of \(\{x_n\}\) and \(\{y_n\}\) (see Theorem 2), the sequences \(\{v_n\}\) and \(\{w_n\}\) are bounded. Also by virtue of (21), \(w_n \to P_Fu\) as \(n \to \infty\). It follows from (7) and the definition of \(y_n\) that

\[v_{n+1} = J_{\beta_n}(1 - \alpha_{n-1})v_n + \alpha_{n-1}u + \epsilon_n - 1 \quad \text{and} \quad w_{n+1} = J_{\beta_n}(1 - \alpha_{n-1})w_n + \alpha_{n-1}u + \epsilon_n - 1.
\]

As before, using the nonexpansivity of the resolvent, we estimate \(\|v_{n+1} - w_{n+1}\|\) as follows

\[
\|v_{n+1} - w_{n+1}\| \leq \|v_{n+1} - w_n\| + \|w_{n+1} - w_n\| \\
\leq (1 - \alpha_{n-1}) \|v_n - w_n\| + \|w_{n+1} - w_n\| + \|\epsilon_{n-1}\|.
\]

Now using the resolvent identity and the nonexpansivity of the resolvent, we can estimate \(\|w_{n+1} - w_n\|\) as follows

\[
\|w_{n+1} - w_n\| = \|J_{\beta_n}\left(\frac{\beta_n}{\beta_{n+1}}(1 - \alpha_n)w_{n+1} + \alpha_nu + \left(1 - \frac{\beta_n}{\beta_{n+1}}\right)w_{n+1}\right) - J_{\beta_n}(1 - \alpha_{n-1})w_n + \alpha_{n-1}u)\| \\
\leq \left(1 - \frac{\alpha_n\beta_n}{\beta_{n+1}}\right) \|w_{n+1} - w_n\| + \|\alpha_{n-1} - \alpha_n\beta_n/\beta_{n+1}\| K,
\]

which gives

\[
\|w_{n+1} - w_n\| \leq \left|1 - \frac{\alpha_n\beta_n}{\alpha_n\beta_{n+1}}\right| K,
\]

10
for some positive constant K. Combining (22) and (23) we get

$$\|v_{n+1} - w_{n+1}\| \leq (1 - \alpha_n)\|v_n - w_n\| + \left| 1 - \frac{\alpha_{n-1}\beta_{n+1}}{\alpha_n\beta_n} \right| K + \|e_{n-1}\|. \quad (24)$$

Hence from Lemma 3, we see that $\|v_n - w_n\| \to 0$, and the proof is complete.

Remark 4: In view of Lemma 3 and (24), it is tempting to infer that the theorem is still valid under the condition $(C7)'$. However we show that this condition is impossible to attain for any sequences $\{\beta_n\}$ and $\{\alpha_n\}$ satisfying the conditions of the above theorem. To this end, we assume that $(C7)'$ holds true. Denote $b_n := \frac{\alpha_{n-1}}{\beta_n}$. Then

$$\sum_{n=1}^{\infty} \left| 1 - \frac{\alpha_{n-1}\beta_{n+1}}{\alpha_n\beta_n} \right| < \infty \iff \sum_{n=1}^{\infty} \frac{|b_{n+1} - b_n|}{b_{n+1}} < \infty.$$

Therefore, it follows from Lemma 4 that

$$\liminf_{n \to \infty} \frac{\alpha_{n-1}}{\beta_n} = \liminf_{n \to \infty} b_n > 0,$$

which implies that $\beta_n \to 0$ (since $\alpha_n \to 0$). This is a contradiction as β_n is bounded below away from zero.

However, if we allow $\beta_n \to 0$, then Theorem 1 is no longer applicable. Indeed, from $w_n = J_{\beta_n}((1 - \alpha_{n-1})w_n + \alpha_{n-1}u)$, we have

$$\frac{\alpha_{n-1}}{\beta_n} (u - w_n) \in Aw_n. \quad (25)$$

From the above inclusion relation, we can not derive $\omega_u(\{w_n\}) \subset F := A^{-1}(0)$, even if w_n is strongly convergent (since by (23), $\sum_{n=1}^{\infty} \|w_{n+1} - w_n\| < \infty$) because $\frac{\alpha_{n-1}}{\beta_n}$ may not necessarily converge to zero. Therefore, in this case $\{x_n\}$ is still strongly convergent (according to (24)) but we can not derive that its limit is in F. In fact, its limit need not be in F. We give an example to that effect.

Example 1: Let $\beta_n = \frac{1}{n}$ and $\alpha_n = \frac{1}{n+2}$ for $n \geq 1$. Then we have

$$1 - \frac{\alpha_{n-1}\beta_{n+1}}{\alpha_n\beta_n} = \frac{1}{(n+1)^2} =: a_n, \quad \text{for all } n \geq 1, \quad \text{and} \quad \frac{\beta_{n+1}}{\alpha_n} \to 1 \text{ as } n \to \infty.$$

Clearly the condition $\beta_{n+1} \geq \alpha_n\beta_n$ for all $n \geq 1$ is fulfilled. Let $H = \mathbb{R}$, and let the sequence $\{e_n\} \subset \mathbb{R}$ satisfy either the condition $\sum_{n=0}^{\infty} |e_n| < \infty$ or $|e_n|/\alpha_n \to 0$, (for example, $|e_n| = \frac{1}{(n+2)^2}$ or $|e_n| = \frac{1}{n\ln n}$ for $n \geq 2$ with $\sum_{n=2}^{\infty} |e_n| = \infty$, respectively), and let $A : D(A) = [0, \infty) \subset \mathbb{R} \to \mathbb{R}$ be defined by

$$Ax = \begin{cases}
ax, & \text{if } x > 0, \\
(-\infty, 0], & \text{if } x = 0, \\
0, & \text{if } x < 0,
\end{cases}$$
for some \(a > 0 \). Then if \(u > 0 \), we have for sufficiently large \(n \), \(\alpha_{n-1}u + e_{n-1} > 0 \) and

\[
0 < w_n = J_{\beta_n}((1 - \alpha_{n-1})w_n + \alpha_{n-1}u + e_{n-1}) = \frac{1}{1 + \beta_n a}((1 - \alpha_{n-1})w_n + \alpha_{n-1}u + e_{n-1}),
\]

which implies that \(w_n \to w_\infty := \frac{1}{1+a}u \notin F = \{0\} \). Hence \(x_n \to w_\infty \notin F \). The same conclusion is true if \(u < 0 \).

The argument given above shows that if \(\beta_n \) is bounded away from zero in Theorem 3.2 of [15], then the condition \((C7) \) is impossible to achieve. Also the above example shows that the result may not hold if \(\beta_n \to 0 \).

We now give an example to show the applicability of Theorem 3.

Example 2: Choose \(\beta_n = \beta_0 > 0 \) for all \(n \), \(\alpha_n = \frac{1}{\sqrt{n+1}} \) and \(\|e_n\| = \frac{1}{(n+1)^2} \) or \(\|e_n\| = \frac{1}{n+1} \) for all \(n \geq 0 \).

Theorem 4 Assume that \(A : D(A) \subset H \to 2^H \) is a maximal monotone operator and \(F := A^{-1}(0) \neq \emptyset \). For any fixed \(u, x_0 \in H \), let \(\{x_n\} \) be the sequence generated by algorithm (7) where conditions (i) and (ii) of Theorem 3 are fulfilled. If \(\beta_n \in (0, \infty) \) is increasing and bounded with either \((C10) \) or \((C11) \), then \(\{x_n\} \) converges strongly to \(P_Fu \), the projection of \(u \) on \(F \).

Proof: We know that \(\{x_n\} \) (and hence \(\{v_n\} \)) is bounded, see Theorem 2.

Claim: \(\limsup_{n \to \infty} \langle u - P_Fu, x_n - P_Fu \rangle \leq 0 \).

Let \(\{x_{n_k}\} \) be a subsequence of \(\{x_n\} \) converging weakly to some \(x_\infty \), such that

\[
\limsup_{n \to \infty} \langle u - P_Fu, x_n - P_Fu \rangle = \lim_{k \to \infty} \langle u - P_Fu, x_{n_k} - P_Fu \rangle = \langle u - P_Fu, x_\infty - P_Fu \rangle.
\]

To prove the claim, we only need to show that \(x_\infty \in F \), or more generally \(\omega_u(\{x_n\}) \subset F \).

If \(\beta_n \) is unbounded, then the conclusion follows from the inclusion relation

\[
\frac{v_{n+1} - v_n}{\beta_n} + A(v_n) \supseteq \frac{\alpha_{n-1}}{\beta_n} (u - v_n) + \frac{1}{\beta_n} e_{n-1}. \tag{26}
\]

Otherwise, from equation (9), the boundedness of \(\{\|e_n\|/\alpha_n\} \) and \(\{v_n\} \), the nonexpansivity of \(J_{\beta_n} \) and taking advantage of the resolvent identity, we can compare \(v_{n+2} \) and \(v_{n+1} \) as follows

\[
\|v_{n+2} - v_{n+1}\| = \|J_{\beta_n} \left(\frac{\beta_n}{\beta_{n+1}} \left((1 - \alpha_n) v_{n+1} + \alpha_n u + e_n \right) + (1 - \frac{\beta_n}{\beta_{n+1}}) v_{n+2} \right) \|
\]

\[
- \|J_{\beta_n}((1 - \alpha_{n-1})v_n + \alpha_{n-1}u + e_{n-1})\|
\]

\[
\leq \| \left(1 - \frac{\beta_n}{\beta_{n+1}} \right) (v_{n+2} - v_{n+1}) + \left(1 - \frac{\alpha_n \beta_n}{\beta_{n+1}} \right) (v_{n+1} - v_n) + \left(\alpha_n - \frac{\alpha_n \beta_n}{\beta_{n+1}} \right) (v_n - u) + \frac{\alpha_n \beta_n}{\beta_{n+1}} \left(\frac{e_n}{\alpha_n} - \frac{e_{n-1}}{\alpha_{n-1}} \right) \|
\]

\[
\leq \left(1 - \frac{\beta_n}{\beta_{n+1}} \right) \|v_{n+2} - v_{n+1}\| + \left(1 - \frac{\alpha_n \beta_n}{\beta_{n+1}} \right) \|v_{n+1} - v_n\|
\]

\[
+ \left| \alpha_n - \frac{\alpha_n \beta_n}{\beta_{n+1}} \right| K + \frac{\alpha_n \beta_n}{\beta_{n+1}} \left| \frac{e_n}{\alpha_n} - \frac{e_{n-1}}{\alpha_{n-1}} \right|,
\]
Therefore, from Lemma 3, we have (in both cases)
\[
\|v_{n+2} - v_{n+1}\| \leq \left(1 - \frac{\alpha_n \beta_n}{\beta_{n+1}}\right) \frac{\|v_{n+1} - v_n\|}{\beta_n} + \frac{\alpha_{n-1} - \alpha_n}{\beta_n} - \frac{\alpha_n}{\beta_{n+1}} K + \frac{\alpha_n}{\beta_{n+1}} \frac{e_n}{\alpha_n} - \frac{e_{n-1}}{\alpha_n - \alpha_{n-1}} \].
\]
Similarly, for the case \(\sum_{n=0}^{\infty} \|e_n\| < \infty\), we have
\[
\|v_{n+2} - v_{n+1}\| \leq \left(1 - \frac{\alpha_n \beta_n}{\beta_{n+1}}\right) \frac{\|v_{n+2} - v_{n+1}\|}{\beta_n} + \frac{\alpha_{n-1} - \alpha_n}{\beta_n} - \frac{\alpha_n}{\beta_{n+1}} K' + \frac{1}{\beta_0} (\|e_n\| + \|e_{n-1}\|).
\]
which implies that
\[
\frac{\|v_{n+2} - v_{n+1}\|}{\beta_n} \leq \left(1 - \frac{\alpha_n \beta_n}{\beta_{n+1}}\right) \frac{\|v_{n+1} - v_n\|}{\beta_n} + \frac{\alpha_{n-1} - \alpha_n}{\beta_n} - \frac{\alpha_n}{\beta_{n+1}} K' + \frac{1}{\beta_0} (\|e_n\| + \|e_{n-1}\|).
\]
Denote \(a_n := \frac{\alpha_n \beta_n}{\beta_{n+1}}\). Since \(\{\alpha_n\}\) satisfy \(\alpha_n \in (0, 1)\), \(\alpha_n \to 0\) and \(\sum_{n=0}^{\infty} \alpha_n = \infty\), so do \(\{a_n\}\).
Therefore, from Lemma 3, we have (in both cases)
\[
\frac{\|v_{n+1} - v_n\|}{\beta_n} \to 0 \iff \|v_{n+1} - v_n\| \to 0.
\]
Moreover, (26) implies that \(\omega_\beta(\{v_n\}) \subset F\), and from (8), we derive \(\omega_\beta(\{v_n\}) = \omega_\beta(\{x_n\})\), hence the claim.
Finally we show that \(\{x_n\}\) converges strongly to \(P_F u\). We have from the subdifferential inequality
\[
\|x_{n+1} - P_F u\|^2 \leq (1 - \alpha_n)\|x_n - P_F u\|^2 + 2\alpha_n \langle u - P_F u, x_{n+1} - P_F u \rangle + e_n.
\]
In the case when \(\|e_n\|/\alpha_n \to 0\), inequality (27) implies by Lemma 3 that \(x_n \to P_F u\). If \(\sum_{n=0}^{\infty} \|e_n\| < \infty\), then we derive from inequality (27)
\[
\|x_{n+1} - P_F u\|^2 \leq (1 - \alpha_n)\|x_n - P_F u\|^2 + 2\alpha_n \langle u - P_F u, x_{n+1} - P_F u \rangle + K\|e_n\|,
\]
for some \(K > 0\), and Lemma 3 again implies that \(x_n \to P_F u\) as desired.

Remark 5: The condition (C10) is weaker than the conditions (C4) and (C9) if \(\beta_n \geq \delta\) for all \(n\) and for some \(\delta > 0\). Indeed,
\[
\frac{\alpha_{n-1} - \alpha_n}{\beta_n} - \frac{\alpha_n}{\beta_{n+1}} \leq \frac{1}{\beta_n} |\alpha_{n-1} - \alpha_n| + \alpha_n \frac{1}{\beta_n} - \frac{1}{\beta_{n+1}} \leq \frac{1}{\delta} \left[|\alpha_{n-1} - \alpha_n| + \left|\beta_{n+1} - \beta_n\right| \right].
\]
Remark 6: Note that (C11) is satisfied for $\beta_n = n$ and $\alpha_n = (n + 1)^{-1}$, whereas the condition $(C8)'$ of Theorem 3.3 [15] fails. Moreover, (C11) works if β_n is constant and α_n taken as before but $(C8)'$ fails.

Although the condition $(C10)$ is weaker than (C4) and (C9) if $\liminf_{n \to \infty} \beta_n > 0$, our result is restricted to those β_n's which are bounded and increasing. The next result is designed to cater for those β_n's who does not satisfy this restrictive condition. It is actually an extension and improvement of Theorem Xu above. Our proof differs from those given in [11] and [15], and it relies on the equivalence of the algorithms 6 and 7. Note that it was observed in [11] that a gap exists in the proof of Theorem Xu. We remark here that our method of transforming equation (9) into equation (7) is an alternative way of solving this gap as can be seen from the proof of Theorem 5 below.

Theorem 5 Assume that $A : D(A) \subset H \to 2^H$ is a maximal monotone operator and $F := A^{-1}(0) \neq \emptyset$. For any fixed $u, v_1 \in H$, let the sequence $\{v_n\}$ be generated by algorithm (9) with the following conditions being satisfied: (i) $\alpha_n \in (0, 1)$, (C1), (C2), and either (C4) or (C5), (ii) either $\sum_{n=1}^{\infty} \|e_n\| < \infty$ or $\|e_n\|/\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \|e_n - e_{n-1}\| < \infty$, and (iii) $\liminf_{n \to \infty} \beta_n > 0$ and either (C12) or (C13). Then $\{v_n\}$ (and hence $\{x_n\}$) converges strongly to P_Fu, the projection of u on F.

Proof: Denoting $x_n := \alpha_{n-1}u + (1 - \alpha_{n-1})v_n + e_{n-1}$, we see that algorithm 9 reduces to algorithm 7. The two algorithms are equivalent as already noted above. We also know from Theorem 2 that $\{x_n\}$ is bounded. Since

$$x_{n+1} - x_n = (\alpha_n - \alpha_{n-1})(u - J_{\beta_n}x_n) + (e_n - e_{n-1}) + (1 - \alpha_n)(J_{\beta_n}x_n - J_{\beta_n}x_{n-1}),$$

we have (by the resolvent identity and the nonexpansivity of the resolvent),

$$\|x_{n+1} - x_n\| \leq (1 - \alpha_n) \left\| J_{\beta_n}x_n - J_{\beta_n} \left(\frac{\beta_n}{\beta_n - 1} x_n - 1 \right) + \frac{1 - \beta_n}{\beta_n - 1} J_{\beta_n}x_{n-1} \right\|$$

$$+ K\alpha_n - \alpha_{n-1} + \|e_n - e_{n-1}\|$$

$$\leq (1 - \alpha_n) \left\| \frac{\beta_n}{\beta_n - 1} (x_n - x_{n-1}) + \left(1 - \frac{\beta_n}{\beta_n - 1} \right) (x_n - J_{\beta_n}x_{n-1}) \right\|$$

$$+ K\alpha_n - \alpha_{n-1} + \|e_n - e_{n-1}\|$$

$$\leq (1 - \alpha_n) \beta_n \|x_n - x_{n-1}\| + \left| 1 - \frac{\beta_n}{\beta_n - 1} \right| K + K\alpha_n - \alpha_{n-1}$$

$$+ \left| 1 - \frac{\beta_n}{\beta_n - 1} \right| e_n - e_{n-1}$$

so that

$$\frac{\|x_{n+1} - x_n\|}{\beta_n} \leq (1 - \alpha_n) \frac{\|x_n - x_{n-1}\|}{\beta_n} + \left| 1 - \frac{\beta_n}{\beta_n - 1} \right| K + K'\alpha_n - \alpha_{n-1}$$

$$+ \frac{1}{\delta} \|e_n - e_{n-1}\|$$

for some constants $K, K' > 0$ and $\delta > 0$ is the greatest lower bound of β_n. From Lemma 3 and inequality (28), we have

$$\frac{\|x_{n+1} - x_n\|}{\beta_n} \to 0 \Rightarrow \frac{\|v_{n+1} - v_n\|}{\beta_n} \to 0.$$
Hence we can derive (see (26)), $\omega_w(\{x_n\}) = \omega_w(\{v_n\}) \subset F$. Consequently, we have
\[
\limsup_{n \to \infty} \langle u - P_F u, x_n - P_F u \rangle \leq 0.
\]

As in the proof of Theorem 4, we derive strong convergence of $\{x_n\}$ to $P_F u$. □

Remark 7: For $\liminf_{n \to \infty} \beta_n > 0$, the condition (C12) is weaker than (C9) whereas the condition (C10) is weaker than (C4) and (C12) whenever $\liminf_{n \to \infty} \beta_n > 0$ holds. But the condition that β_n is increasing and bounded is much stronger than the assumption $\liminf_{n \to \infty} \beta_n > 0$. So there are cases in which Theorem 5 is applicable and Theorem 4 is not.

The following corollary is an extension of Theorem Xu.

Corollary 1 Assume that $A : D(A) \subset H \to H$ is a maximal monotone operator and $F := A^{-1}(0) \neq \emptyset$. For any fixed $u, v_1 \in H$, let the sequence $\{v_n\}$ be generated by algorithm 9, where $\alpha_n \in (0, 1)$ and $\beta_n \in (0, \infty)$, with the conditions (i) and (ii) taken as in Theorem 5. If (iii) $\liminf_{n \to \infty} \beta_n > 0$ and either (C9) or (C14) $\lim_{n \to \infty} \frac{1}{\alpha_n} \left| 1 - \frac{\beta_n}{\beta_{n+1}} \right| = 0$ holds, then $\{v_n\}$ (hence $\{x_n\}$) converges strongly to $P_F u$.

We give an example to show that the conditions of (iii) are different.

Example 3: Let $\alpha_n = \frac{(n + 1)^{-1}}{4}$ and $\beta_n = 2(n + 1)(n + 2)^{-1}$ for all $n \geq 0$. Then α_n and β_n satisfy both conditions of (iii) while $\beta_n = (n + 1)$ and α_n as above satisfy only (C14).

Remark 8: Let us observe that if $\|e_n\|/\alpha_n \to 0$ and $\sum_{n=0}^{\infty} \|e_n\| = \infty$, then automatically $\sum_{n=0}^{\infty} \alpha_n = \infty$. Also the trend that has been followed by many authors in order to obtain strong convergence of the PPA was to use the criterion which restricts the error sequence to be summable. We have deviated from this tradition by allowing any sequence of errors converging strongly to zero and still derived strong convergence of the PPA. Indeed, if $\sum_{n=0}^{\infty} \|e_n\| = \infty$ and $\|e_n\| \to 0$, then we can construct (or choose) a sequence $\{\alpha_n\}$ of parameters depending on $\{e_n\}$ such that the condition $\|e_n\|/\alpha_n \to 0$ holds (for example $\alpha_n = \|e_n\|$ if $e_n \neq 0$ and all n big enough). Otherwise, i.e. if $\sum_{n=0}^{\infty} \|e_n\| < \infty$, we can choose freely (independent of e_n) $\alpha_n \in (0, 1)$ such that the conditions $\alpha_n \to 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$ are satisfied.

Acknowledgment

The authors thank Alexandru Kristály for his insightful comments on this paper.

References

