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Abstract. This paper deals with the generalized regularization proximal point method
which was introduced by the authors in [Four parameter proximal point algorithms, Non-
linear Anal. 74 (2011), 544-555]. It is shown that sequences generated by it converge
strongly under minimal assumptions on the control parameters involved. Thus the main
result of this paper unify many results related to the prox-Tikhonov method, the contrac-
tion proximal point algorithm and/or the regularization method as well as some results
of the above quoted paper.

1. Introduction

Throughout this paper, H will be a real Hilbert space with inner product 〈·, ·〉 and induced
norm ‖ · ‖. Recall that a map T : H → H is called nonexpansive if for every x, y ∈ H we
have ‖Tx− Ty‖ ≤ ‖x− y‖. An operator A : D(A) ⊂ H → 2H is said to be monotone if

〈x− x′, y − y′〉 ≥ 0, ∀ (x, y), (x′, y′) ∈ G(A).

In other words, its graph G(A) = {(x, y) ∈ H × H : x ∈ D(A), y ∈ Ax} is a monotone
subset of the product space H × H. An operator A is called maximal monotone if in
addition to being monotone, its graph is not properly contained in the graph of any other
monotone operator. For a maximal monotone operator A, the resolvent of A, defined by
JAβ := (I + βA)−1, is well defined on the whole space H, single-valued and nonexpansive
for every β > 0.

One of the oldest and most effective iterative method for solving the set valued equation

find an x ∈ D(A) such that 0 ∈ A(x),(1)

where A is a maximal monotone operator, is the so called proximal point algorithm (PPA)
which was first introduce by Martinet [8] in 1970. Rockafellar [10] generalized the PPA
of Martinet by defining a sequence (xn) such that

(2) xn+1 = Jβnxn + en, n = 0, 1, . . . ,

for any starting point x0 ∈ H, where (en) is considered to be the sequence of computational
errors and (βn) ⊂ (0,∞). The sequence (xn) is known to converge weakly to a solution
of problem (1), if lim infn→∞ βn > 0 and

∑∞
n=0 ‖en‖ < ∞, see [10], but fails in general

to converge strongly [4]. As a result different proximal point algorithms which converge
strongly have been constructed by several authors, see for example [11, 13]. One such
algorithm which generates a sequence of proximal iterates according to the rule

xn+1 = αnu+ (1− αn)Jβnxn + en, for any u, x0 ∈ H and all n ≥ 0,(3)
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where (αn) ⊂ (0, 1) and (βn) ⊂ (0,∞), was introduced independently by Xu [13] and
Kamimura and Takahashi [5]. Different assumptions on the sequences of control parame-
ters (αn) and (βn) have been used to derive strong convergence results of the contraction
proximal point algorithm (3) above to the solution of problem (1) which is nearest to u,
see for example [1, 13] for details. The generalized contraction proximal point algorithm

xn+1 = αnu+ λnxn + γnJβnxn + en, n ≥ 0,(4)

where again u, x0 ∈ H are given, αn ∈ (0, 1), λn, γn ∈ [0, 1] with αn + λn + γn = 1,
and βn ∈ (0,∞), which was introduced by Yao and Noor [15] also converges strongly
(under appropriate assumptions) to the solution of problem 1 which is nearest to u. Just
as in the case of the scheme (3), different sets of conditions on the control parameters
αn, λn, γn and βn have been used to prove strong convergence of the iterative process (4),
see [2, 3, 15]. Another proximal method which generates strongly convergent sequences is
the prox-Tikhonov method of Lehdili and Moudafi [6] which was extended by Xu [14] in
the following way

xn+1 = Jβn(αnu+ (1− αn)xn + en), for all n ≥ 0,(5)

where u, x0 ∈ H are given, αn ∈ (0, 1) and βn ∈ (0,∞). The authors [1] have shown
that for αn → 0 and en → 0 as n → ∞, the regularization method is equivalent to
the scheme (3) above. Therefore, the results already proved for the contraction proximal
point algorithm also hold for the regularization method and vice versa. The authors [2]
generalized the regularization method as

xn+1 = Jβn(αnu+ λnxn + γnTxn + en) for n = 0, 1, . . .,(6)

where T : H → H is a nonexpansive map, βn ∈ (0,∞) and αn, λn, γn ∈ [0, 1] with
αn + λn + γn = 1. They showed that for ∅ 6= A−1(0) ⊂ Fix(T ), where T := {x ∈ H :
x = Tx} the sequence generated by this method is also strongly convergent (under some
conditions on αn, λn, γn, βn and en) to a solution of (1) which is nearest to u. The purpose
of this paper is to investigate if the method used in [12] can be applied to the scheme
(6) (which is different from (4) except when λn = 0 for all n and T = I, the identity
operator [2]) in order to get a strong converge result of a sequence generated by it under
minimal assumptions on the control parameters αn and βn, thereby refining the previously
obtained results associated with the iterative process (6).

2. Preliminary Results

Our analysis will be based on the following two lemmas

Lemma 1 (Xu [13]). Let (sn) be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− an)sn + anbn + cn, n ≥ 0,

where (an), (bn) and (cn) satisfy the conditions: (i) (an) ⊂ (0, 1), with
∏∞

n=0(1 − an) =
0, (ii) cn ≥ 0 for all n ≥ 0 with

∑∞
n=0 cn < ∞, and (iii) lim supn→∞ bn ≤ 0. Then

limn→∞ sn = 0.

Remark 2. If limn→∞ an = 0, then
∏∞

n=0(1− an) = 0 if and only if
∑∞

n=0 an =∞.

Lemma 3 (Maingé [7]). Let (sn) be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence (snj

) of (sn) such that snj
≤ snj+1

for all j ≥ 0. For every n ≥ n0, define an integer sequence (τ(n)) as

τ(n) = max{k ≤ n : snj
< snj+1}.



A GENERALIZATION OF THE REGULARIZATION PROXIMAL POINT METHOD 3

Then τ(n)→∞ as n→∞ and for all n ≥ n0

max{sτ(n), sn} ≤ sτ(n)+1.(7)

We will also need the following lemma whose proof can be easily reproduced.

Lemma 4 (Xu [14]). Let A : D(A) ⊂ H → 2H is a maximal monotone operator. For any
x ∈ H and µ ≥ β > 0, the following inequality holds:

‖x− Jβx‖ ≤ 2 ‖x− Jµx‖ .

The next lemma is well known, it can be found for example in [9, p. 20].

Lemma 5. Any maximal monotone operator A : D(A) ⊂ H → 2H satisfies the demiclose-
ness principle. In other words, given any two sequences (xn) and (yn) satisfying xn → x
and yn ⇀ y with (xn, yn) ∈ G(A), then (x, y) ∈ G(A).

3. Main Result

We shall use the ideas of the paper [12] to prove our main result below.

Theorem 6. Let A : D(A) ⊂ H → 2H be a maximal monotone operator and T : H → H
a nonexpansive map with ∅ 6= F := A−1(0) ⊂ Fix (T ), where Fix (T ) is the fixed point
set of T . For arbitrary but fixed vectors x0, u ∈ H, let (xn) be the sequence generated
by (6), where βn ∈ (0,∞) and αn, λn, γn ∈ [0, 1] with αn + λn + γn = 1. Assume that
limn→∞ αn = 0 with

∑∞
n=0 αn =∞ and βn ≥ β for some β > 0. If either

∑∞
n=0 ‖en‖ <∞

or ‖en‖/αn → 0, then (xn) converges strongly to the point of F nearest to u.

Proof. We have shown in the proof of Theorem 5 [2] that the exact iterative process of
(6), namely, the sequence (vn) defined by

vn+1 = Jβn(αnu+ λnvn + γnTvn) for n = 0, 1, . . .,(8)

for any v0 ∈ H is bounded. (In fact, we showed that (xn) is itself bounded). Now observe
that from the nonexpansivity of T and of the resolvent operator, we have

‖xn+1 − vn+1‖ ≤ λn ‖xn − vn‖+ γn ‖Txn − Tvn‖+ ‖en‖
≤ (1− αn) ‖xn − vn‖+ ‖en‖ .

It then follows from Lemma 1 that ‖xn − vn‖ → 0 as n → ∞. Therefore, it is enough
to show that vn → PFu, where PFu denotes the metric projection of u on F . For this
purpose, we first show that for any p ∈ F , we have

(1 + αn) ‖vn+1 − p‖2 ≤ (1− αn) ‖vn − p‖2 + 2αn〈u− p, vn+1 − p〉
− λn ‖vn+1 − vn‖2 − γn ‖Tvn − vn+1‖2 .(9)

Indeed, multiplying

vn+1 − p+ βnAvn+1 3 αn(u− p) + λn(vn − p) + γn(Tvn − p)
scalarly by vn+1 − p and using the monotonicity of A, we have

2 ‖vn+1 − p‖2 ≤ 2αn〈u− p, vn+1 − p〉+ 2λn〈vn − p, vn+1 − p〉+ 2γn〈Tvn − p, vn+1 − p〉
= 2αn〈u− p, vn+1 − p〉+ λn(‖vn − p‖2 + ‖vn+1 − p‖2 − ‖vn+1 − vn‖2)
+ γn(‖Tvn − p‖2 + ‖vn+1 − p‖2 − ‖Tvn − vn+1‖2)
≤ (1− αn)(‖vn+1 − p‖2 + ‖vn − p‖2) + 2αn〈u− p, vn+1 − p〉
− λn ‖vn+1 − vn‖2 − γn ‖Tvn − vn+1‖2 .
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Rearranging terms, we readily get (9). Denote sn := ‖vn − PFu‖2. Then it follows from
(9) and the boundedness of (vn) that

sn+1 − sn + λ2n ‖vn+1 − vn‖2 + γ2n ‖Tvn − vn+1‖2 ≤ αnM,(10)

for some positive constant M . On the other hand, we have from (8)

‖vn+1 − Jβvn+1‖ ≤ 2 ‖vn+1 − Jβnvn+1‖
≤ 2(αn ‖u− vn+1‖+ λn ‖vn − vn+1‖+ γn ‖Tvn − vn+1‖),(11)

where the first inequality follows from Lemma 4. In order to prove the result, we consider
two possible cases on the sequence (sn).

CASE 1: (sn) is eventually decreasing (i.e., there exists N ≥ 0 such that (sn) is decreasing
for all n ≥ N). In this case, (sn) must be convergent. Therefore, we derive from (10) and
(11)

lim
n→∞

‖vn+1 − Jβvn+1‖ = 0 = lim
n→∞

‖vn − Jβvn‖ .

Note that Aβ is a maximal monotone operator, thus so is A−1β , where Aβ denotes the

Yosida approximation of A. By Lemma 5, it follows that ωw((vn)) ⊂ A−1(0) =: F , where
ωw((vn)) denotes the set of weak cluster points of (vn). Now, extract a subsequence (vnk

)
of (vn) converging weakly to some y ∈ F such that

lim sup
n→∞

〈u− PFu, vn − PFu〉 = lim
k→∞

〈u− PFu, vnk
− PFu〉 = 〈u− PFu, y − PFu〉 ≤ 0,

where PFu denotes the projection of u on F . Then from (9), we have

‖vn+1 − PFu‖2 ≤ (1− αn) ‖vn − PFu‖2 + 2αn〈u− PFu, vn+1 − PFu〉,

and hence from Lemma 1, we get vn → PFu as desired.

CASE 2: (sn) is not eventually decreasing, that is, there is a subsequence (snj
) of (sn)

such that snj
≤ snj+1 for all j ≥ 0. We therefore define an integer sequence (τ(n)) as in

Lemma 3 so that for all n ≥ n0, sτ(n) ≤ sτ(n)+1 holds. In this case, we derive from (10)
and (11) ∥∥vτ(n)+1 − Jβvτ(n)+1

∥∥→ 0 as n→∞.

The demiclosedness property of A−1β yields ωw((vτ(n)+1)) ⊂ F . Consequently,

lim sup
n→∞

〈u− PFu, vτ(n)+1 − PFu〉 ≤ 0.

Therefore, for n ≥ n0, we have from (9)

sτ(n)+1 ≤ 〈u− PFu, vτ(n)+1 − PFu〉.

Passing to the limit in the above inequality, we arrive at sτ(n)+1 → 0 as n → ∞. Thus,
from (7) it follows that sn → 0 as n→∞. This completes the proof of the theorem. �

Remark 7. Theorem 6 refines [2, Theorem 5] and [3, Theorems 1-2]. Note that when T is
the identity operator, then we recover many other results announced recently [1, 5, 6, 12–
14].
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