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ABSTRACT. Eigenvalue problems involving the Laplace operator on bounded domains lead to a discrete or a
continuous set of eigenvalues. In this paper we highlight the case of an eigenvalue problem involving the Laplace
operator which possesses, on the one hand, a continuous family of eigenvalues and, on the other hand, at least
one more eigenvalue which is isolated in the set of eigenvalues of that problem.
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1 Introduction and the main result

In this paper we consider that Q C RY (N > 3) is a bounded domain with smooth boundary. By an

eigenvalue problem involving the Laplace operator we understand a problem of the type

—Au = Af(z,u), in
(1)
u =0, on 0f),
where f: Q@ xR — R is a given function and A € R is a real number. We will say that A is an eigenvalue
of problem (1) if there exists u € H}(2) \ {0} such that

/Vqud:z—)\/f(x,u)vdx:O,
Q Q

for any v € H}(2). Moreover, if A is an eigenvalue of problem (1) then u € HZ () \ {0} given in the
above definition is called the eigenfunction corresponding to the eigenvalue A. In this paper we will be

interested in finding positive eigenvalues for problems of type (1), that means A € (0, 00).
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The study of eigenvalue problems involving the Laplace operator guides our mind back to a basic
result in the elementary theory of partial differential equations which asserts that the problem (which

represents a particular case of problem (1), obtained when f(x,u) = u)

—Au=Au, in €
(2)
u =0, on 0N,

possesses an unbounded sequence of eigenvalues 0 < Ay < Ao < ... < A, < .... This celebrated result
goes back to the Riesz-Fredholm theory of self-adjoint and compact operators on Hilbert spaces.
In what concerns A1, the lowest eigenvalue of problem (2), we remember that it can be characterized

from a variational point of view as the minimum of the Rayleigh quotient, i.e.

/ \Vu|? dzx

M= inf 2 (3)

ueH (Q)\{0} / W2 dx

Q

Moreover, it is known that A; is simple, i.e. all the associated eigenfunctions are merely multiples of

each other (see, e.g. Gilbarg and Trudinger [5]). Furthermore, the corresponding eigenfunctions of A
never change signs in ).

Going further, another type of eigenvalue problems involving the Laplace operator (obtained in the

case when we take in (1), f(z,u) = [u|P®)=2u) is given by the model equation

—Au = Nu[f®2y, in Q
(4)
u =0, on 0f),

where p(z) : Q — (1,2N/(N — 2)) is a given continuous function. (Obviously, the case when p(x) is
a constant function on Q is allowed but we avoid the case when p = 2 since this case is the object of
problem (2), discussed above.) For this problem the growth rate of the function p(x) will be essential
in the description of the set of eigenvalues. First, assuming that mingp > 2 it can be proved (by using
a mountain-pass argument) that any A > 0 is an eigenvalue of problem (4). Next, in the case when
ming p < 2 it can be proved (by using Ekeland’s variational principle) that the problem has a continuous
family of eigenvalues which lies in a neighborhood of the origin (see, e.g., Mihailescu and Radulescu
[8] or Fan [2] for some extensions). Finally, we point out that the above result can be completed in
the particular case when maxgp < 2. More exactly, in this situation it can be proved that the energy
functional associated to problem (4) has a nontrivial (global) minimum point for any positive A large
enough. In other words, if maxgp < 2 then there exist two positive constants p1 and ps such that any
A€ (0, p1) U (p2,00) is an eigenvalue of problem (4).

We notice that in all the situations presented above on (4) the set of eigenvalues is not completely
described, excepting the case when ming p > 2. However, in all the cases the set of eigenvalues possesses

a continuous subfamily.



In what concerns the eigenvalue problems involving quasilinear operators we remember, in the case
of homogeneous elliptic operators, the contributions of Anane [1], de Thélin [12, 13], Lindqvist [6] and
Filippucci-Pucci-Radulescu [4], while in the case of nonhomogeneous elliptic operators we point out the
recent advances of Fan-Zhang-Zhao [3], Mihailescu-Radulescu [8, 9, 10], Mihailescu-Pucci-Radulescu [7]
and Fan [2].

Motivated by the above results on problems (2) and (4) which show that the eigenvalue problems
involving the Laplace operator lead to a discrete spectrum (see the case of problem (2)) or a continuous
spectrum (see the case of problem (4) in the different forms pointed out above) we consider important to
supplement the above situations by studying a new eigenvalue problem involving the Laplace operator
which possesses, on the one hand, a continuous family of eigenvalues and, on the other hand, at least
one more eigenvalue which is isolated in the set of eigenvalues of that problem.

More exactly, we will study problem (1) in the case when

h(z,t), if t>0
f<$,t) - (5)
t, if ¢t<0,

where h : Q x [0,00) — R is a Carathéodory function satisfying the following hypotheses
(H1) there exists a positive constant C' € (0,1) such that |h(z,t)| < Ct for any t > 0 and a.e. x € ;
(H2) there exists tg > 0 such that H(z,t) := JO h(z,s) ds > 0, for a.e. x €

h(z,t)

(H3) lim; oo =7~ = 0, uniformly in 2.

Examples. We point out certain examples of functions h which satisfies the hypotheses (H1)-(H3):
1. h(x,t) =sin(t/2), for any ¢t > 0 and any z € §;
2. h(x,t) = klog(1l +t), for any ¢t > 0 and any z € 2, where k € (0, 1) is a constant;
3. h(z,t) = g(x)(t1®@=1 — 2@=1) for any t > 0 and any = € Q, where p(z), q(z) : Q — (1,2) are
two continuous functions satisfying maxg p < ming ¢, and g € L>°(12) satisfies 0 < infn g < supg g < 1.

The main result of our paper is the following:

Theorem 1. Assume that function f is given by relation (5) and conditions (H1), (H2) and (H3) are
fulfilled. Assume that A1 is defined by relation (3). Then A1 is an eigenvalue of problem (1) which is
isolated in the set of eigenvalues of this problem. Moreover, the set of eigenvectors corresponding to A\
is a cone. Furthermore, any A € (0, A1) is not an eigenvalue of problem (1) but there exists 3 > A\

such that any X € (u1,00) is an eigenvalue of problem (1).

2 Proof of the main result
For any u € HE () we denote

ut(x) = max{tu(z),0}, Vze.



Then uy, u— € Hj(Q) and

0, if [u<0] 0, if [u>0]
VU+ = Vu_ =
Vu, if [u>0], Vu, if [u<0],
(see, e.g. [5, Theorem 7.6]). Thus, problem (1) with f given by relation (5) becomes
—Au = Ah(z,us) —u_], in Q
u =0, on 01,

and X > 0 is an eigenvalue of problem (6) if there exists u € H}(Q2) \ {0} such that

/ Vui Vo dr — / Vu_Vuv dx — )\/ [h(z,us) —u_]vdr =0, (7)
Q Q Q

for any v € Hg(Q).

Lemma 1. Any A € (0, \1) is not an eigenvalue of problem (6).

Proof. Assume that A\ > 0 is an eigenvalue of problem (6) with the corresponding eigenfunction w.
Letting v = u4 and v = u_ in the definition of the eigenvalue A we find that the following two relations
hold true

/Q \Vuy|? de = )\/Qh(:n,qu)qu dz (8)

/|Vu_|2 dx:)\/u2 dz. (9)
Q Q

In this context, hypothesis (H1) and relations (3), (8) and (9) imply

and

Al/ui dxﬁ/\Vu+\2 dl':)\/h(l',U+)’LL+ dwgk/ui dz
Q Q Q Q

/\1/u2_dx§/|Vu\2d:U:)\/u2_d1:.
Q Q Q

If X is an eigenvalue of problem (6) then u # 0 and thus, at least one of the functions u4 and u_ is not

and

the zero function. Thus, the last two inequalities show that A is an eigenvalue of problem (6) only if

A > AL (]

Lemma 2. )\ is an eigenvalue of problem (6). Moreover, the set of eigenvectors corresponding to A\

1S @ cone.

Proof. Indeed, as we already pointed out, A; is the lowest eigenvalue of problem (2), it is simple, i.e.

all the associated eigenfunctions are merely multiples of each other (see, e.g. Gilbarg and Trudinger



[5]) and the corresponding eigenfunctions of A; never change signs in €. In other words, there exists
e1 € HY(Q)\ {0}, with e1(z) < 0 for any = € Q such that

/V61V’Ud:n—)\1/elvdx:0,
Q Q

for any v € H}(Q). Thus, we have (e1)+ = 0 and (e;)— = e; and we deduce that relation (7) holds
true with u = e; € H}(Q) \ {0} and A = A\;. In other words, \; is an eigenvalue of problem (6) and
undoubtedly, the set of its corresponding eigenvectors lies in a cone of H&(Q) The proof of Lemma 2

is complete. [l
Lemma 3. )\ is isolated in the set of eigenvalues of problem (6).

Proof. By Lemma 1 we know that in the interval (0, A1) there is no eigenvalue of problem (6). On
the other hand, hypothesis (H1) and relations (3) and (8) show that if X is an eigenvalue of problem (6)

for which the positive part of its corresponding eigenfunction, that is u, is not identically zero then

Al/ua_ dxﬁ/\Vu.,.Q d$:)\/h(ﬂf,U+)U+ dxg)\C’/uf_ dx,
Q Q Q Q

and thus, since C' € (0,1) we infer A > % > A1. We deduce that for any eigenvalue A € (0,\;/C)
of problem (6) we must have u; = 0. It follows that if A € (0, A\;/C) is an eigenvalue of problem (6)
then it is actually an eigenvalue of problem (2) with the corresponding eigenfunction negative in €.
But, we already noticed that the set of eigenvalues of problem (2) is discrete and A\; < Ag. In other
words, taking ¢ = min{\;/C, A2} we find that 6 > A\; and any A € (A\,0) can not be an eigenvalue of
problem (2) and, consequently, any A € (A1, ) is not an eigenvalue of problem (6). We conclude that

A1 is isolated in the set of eigenvalues of problem (6). The proof of Lemma 3 is complete. O

Next, we show that there exists p; > 0 such that any A € (1, 00) is an eigenvalue of problem (6).

With that end in view, we consider the eigenvalue problem

—Au = Ah(z,us), in Q

u =0, on 01},

We say that A is an eigenvalue of problem (10) if there exists u € H}(2) \ {0} such that

/Vqu d:x—)\/h(w,u+)vdx:0,
Q Q

for any v € H(Q).

We notice that if A is an eigenvalue for (10) with the corresponding eigenfunction wu, then taking
v = u_ in the above relation we deduce that u_ = 0, and thus, we find © > 0. In other words, the
eigenvalues of problem (10) possesses nonnegative corresponding eigenfunctions. Moreover, the above

discussion show that an eigenvalue of problem (10) is an eigenvalue of problem (6).



For each A\ > 0 we define the energy functional associated to problem (10) by I, : H}(Q2) — R,

1
—2/\Vu]2 dx—)\/H(x,u+) dx
Q Q

where H(x,t) fo z,s) ds. Standard arguments show that I, € C1(H{(Q),R) with the derivative
given by

<I)\( / VuVv dz — )\/ Wz, uy)v do,
Q

for any u, v € H}(2). Thus, A > 0 is an eigenvalue of problem (10) if and only if there exists a critical
nontrivial point of functional Iy.

Lemma 4. The functional Iy is bounded from below and coercive.
Proof. By hypothesis (H3) we deduce that

lim Hz.?)

t—o00 t2

=0, uniformly in 2.
Then for a given A > 0 there exists a positive constant C'y > 0 such that
A
AH(z,t) < th2+0)" Vt>0, ae.z e,

where A is given by relation (3).
Thus, we find that for any u € H}(Q) it holds true

> 5 [Val de =3 [ do—culal = {llP - oo,
where by | - || is denoted the norm on H(f), that is [[ul = ([ [Vul? dz)'/2. This shows that I is
bounded from below and coercive. The proof of Lemma 4 is complete. O

Lemma 5. There exists A* > 0 such that assuming that X > X* we have inf 1) Ix <0.

Proof. Hypothesis (H2) implies that there exists ty > 0 such that
H(z,t)) >0 ae.z €.

Let ; C Q be a compact subset, sufficiently large, and ug € C3(Q2) C Hg(Q) such that ug(z) = to for
any x € O and 0 < ug(x) < to for any z € Q\ Q.
Thus, by hypothesis (H1) we have

/ H(xz,uy) de > H(z,ty) de — Cul dx
Q (o Q\Q

> H(z,ty) dz — Ct3|Q\ Q| > 0.
1951

We conclude that I\(ug) < 0 for A > 0 sufficiently large, and thus, inf a1 () Ir < 0. The proof of Lemma
5 is complete. O



Lemmas 4 and 5 show that for any A > 0 large enough, the functional I, possesses a negative
global minimum (see, [11, Theorem 1.2]), and thus, any A > 0 large enough is an eigenvalue of problem
(10) and consequently of problem (6). Combining that fact with the results of Lemmas 1, 2 and 3 we

conclude that Theorem 1 holds true.

Remark. Finally, we notice that similar results as those given by Theorem 1 can be formulated
for equations of type (6) but replacing the Laplace operator Au by the p-Laplace operator, that is
Apu = div(|Vu|P~2Vu), with 1 < p < co. Certainly, in that case hypotheses (H1)-(H3) should be
modified accordingly with the new situation. This statement is supported by the fact that the first
eigenvalue of the p-Laplace operator on bounded domains satisfies similar properties as the one obtained
in the case of the Laplace operator (see, e.g., [1]) combined with the remark that the results on problem

(10) can be easily extended to the case of the p-Laplace operator.
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